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A B S T R A C T

Many platform chemicals can be produced from renewable biomass by microorganisms, with organic acids
making up a large fraction. Intolerance to the resulting low pH growth conditions, however, remains a challenge
for the industrial production of organic acids by microorganisms. Issatchenkia orientalis SD108 is a promising host
for industrial production because it is tolerant to acidic conditions as low as pH 2.0. With the goal to system-
atically assess the metabolic capabilities of this non-model yeast, we developed a genome-scale metabolic model
for I. orientalis SD108 spanning 850 genes, 1826 reactions, and 1702 metabolites. In order to improve the model’s
quantitative predictions, organism-specific macromolecular composition and ATP maintenance requirements
were determined experimentally and implemented. We examined its network topology, including essential genes
and flux coupling analysis and drew comparisons with the Yeast 8.3 model for Saccharomyces cerevisiae. We
explored the carbon substrate utilization and examined the organism’s production potential for the industrially-
relevant succinic acid, making use of the OptKnock framework to identify gene knockouts which couple pro-
duction of the targeted chemical to biomass production. The genome-scale metabolic model iIsor850 is a data-
supported curated model which can inform genetic interventions for overproduction.
1. Introduction

Over a decade ago, the US Department of Energy identified twelve
building block chemicals that can be produced from sugars, which can be
subsequently converted to a number of high-value bio-based chemicals or
materials (Werpy and Petersen, 2004). These platform chemicals remain
relevant to date and include eight blocks of organic acids which range in
length from three to six carbons. The first of these blocks, the 1,4-dicar-
boxylic acids (i.e., succinic, malic and fumaric acid), has the potential to
be a key building block for deriving both commodity and specialty
chemicals. For example, succinic acid (formally named butanedioic acid)
can readily be converted to polymer precursors such as 1,4-butanediol,
N-methyl-2-pyrrolidone, tetrahydrofuran and γ-butyrolactone. Addi-
tional acids with multiple applications include 3-hydroxypropionic acid,
2,5-furandicarboxylic acid, itaconic acid, levulinic acid and muconic
acid.
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Any industrially-viable process relying on a microbial platform to
produce this class of compounds will both have to produce efficiently
(i.e., with a high yield from sugar) the desired organic acid along with
tolerating the low pH associated with a high titer (Abbott et al., 2009).
The yeast Issatchenkia orientalis has been proposed to be an excellent
candidate since it exhibits both acid and ethanol tolerance (Okuma et al.,
1986). I. orientalis is also known as Pichia kudriavzevii, Candida glycerin-
ogenes and Candida krusei (Kurtzman et al., 2008) with a recent study
indicating that 32 isolates of P. kudriavzevii and C. krusei are the same
species with collinear genomes 99.6% identical in DNA sequence (Dou-
glass et al., 2018). Moreover, strains have been isolated which degrade
malic acid (Seo et al., 2007) and grow at a pH of 2.5 on hemicellulosic
and cellulosic oligosaccharides obtained by two-step extraction with
sulfuric acid from six plant sources (Thalagala et al., 2009). Strains also
produce ethanol in media containing 5% sodium sulfate at pH 2.0
(Hisamatsu et al., 2006). Furthermore, recombinant I. orientalis strains
can produce 15–20 g/L lactic acid under anaerobic conditions in an
ctober 2020
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unbufferedmedium at a pH of 2 (Suominen et al., 2012) and succinic acid
with a titer of 11.6 g/L (Xiao et al., 2014). A recent isolate that was
subsequently genetically modified and adapted to high lactic acid con-
centrations was reported to produce as much as 154 g/L D-lactic acid at a
pH of 4.7 with the addition of calcium hydroxide (Park et al., 2018).

The strain I. orientalis SD108, which was used as a host for succinic
acid overproduction, was found to be tolerant to high levels of succinic
acid, itaconic acid, adipic acid, and acetic acid (Xiao et al., 2014), making
it an attractive alternative organism for the production of
industrially-relevant organic acids. Although it is not as well-studied as
the model yeast Saccharomyces cerevisiae, new genetic tools have been
developed (Tran et al., 2019; Cao et al., 2020). Advances in domesti-
cating non-model microorganisms, including yeasts, have recently been
reviewed (Fatma et al., 2020). As the first eukaryotic genome to be fully
sequenced and annotated (Goffeau et al., 1997), S. cerevisiae has a rich
history of reconstructed genome-scale metabolic models (Forster et al.,
2003; Duarte et al., 2004; Kuepfer et al., 2005; Nookaew et al., 2008;
Herrgard et al., 2008; Mo et al., 2009; Dobson et al., 2010; Zomorrodi
and Maranas, 2010; Heavner et al., 2012, 2013; Osterlund et al., 2013;
Aung et al., 2013) that was recently reviewed (Lopes and Rocha, 2017).
Genome-scale metabolic reconstructions are already in place for a
growing number of eukaryotic, prokaryotic and archaeal species
(O’Brien Edward et al., 2015; Kim et al., 2017) and can be used to
evaluate the capabilities of microbial chemical production (Purdy and
Reed, 2017). Such curated metabolic reconstructions codify the
gene-protein-reaction associations for the biochemical transformations
and transport of metabolites that take place in a cell. The resulting
genome-scale models globally track mass flows and balance redox re-
actions through metabolism.

The principles of genome-scale metabolic reconstructions and the
mathematical modeling processes have been reviewed extensively before
(Feist et al., 2009; Oberhardt et al., 2009; Thiele and Palsson, 2010).
Certain steps require particular care. During the process of generating a
genome-scale metabolic reconstruction, it is informative to evaluate the
network topology for metabolites unreachable under any uptake condi-
tion. Optimization tools such as GapFind can automatically identify
metabolites which are disconnected from the rest of metabolism and
GapFill can generate hypotheses to reconnect them (Satish Kumar et al.,
2007). In addition, growth inconsistencies may exist between model
predictions and in vivo phenotypes. Substrate utilization prediction in-
consistencies can be addressed systematically using optimization tools
such as GrowMatch to suggest specific additions or removals of func-
tionality in the model (Kumar and Maranas, 2009). Often, additional
experimental pieces of evidence are needed to accept the growth
restoring function into the model. These processes should be performed
stringently so that gaps are filled only in order to ensure the production of
core biomass precursors. Care must be exercised, as non-native functions
erroneously appended into the model can adversely affect predictions.
Deficiencies in model quality may also arise, in part, because of lack of
complete mass balance resulting from non-standardized biomass re-
actions (Chan et al., 2017). Once a curated genome-scale metabolic
reconstruction is in place, optimization tools such as OptKnock (Burgard
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et al., 2003), OptGene (Patil et al., 2005), OptStrain (Pharkya et al.,
2004), GeneForce (Barua et al., 2010) or OptForce (Ranganathan et al.,
2010; Ranganathan and Maranas, 2010) can aid in blueprinting suc-
cessful engineering interventions in microbial strains that lead to the
targeted overproduction of desired metabolites (Wang et al., 2017).

Curated genome-scale reconstructions for Candida glabrata (Xu et al.,
2013), Pichia pastoris (Chung et al., 2010; Sohn et al., 2010; Caspeta et al.,
2012; Tomas-Gamisans et al., 2016), Scheffersomyces stipites (Caspeta
et al., 2012; Balagurunathan et al., 2012; Liu et al., 2012), Schizo-
saccharomyces pombe (Sohn et al., 2012), Yarrowia lipolytica (Loira et al.,
2012; Pan and Hua, 2012; Kavscek et al., 2015; Kerkhoven et al., 2016),
and Rhodosporidium toruloides (Tiukova et al., 2019; Dinh et al., 2019) are
already available. These models offer templates for reconstructing
metabolic models for other yeast species. However, no metabolic models
for any species of I. orientalis or P. kudriavzevii have been reported in the
literature to date. The sequenced genome for I. orientalis SD108 is
available (Xiao et al., 2014) and informs the model reconstruction effort
presented herein. Filling in this gap with a curated metabolic recon-
struction also helps with the KBase effort (Arkin et al., 2018) to catalog
and automate the building of fungal models.

In this work, we highlight the development of a genome-scale meta-
bolic (GSM) reconstruction for I. orientalis SD108, referred to hereafter as
iIsor850, which contains 850 genes, 1826 reactions, 1702 metabolites,
and 874 unique metabolite species distributed between 14 compart-
ments. We used the GSM model Yeast 7.6 of S. cerevisiae (Aung et al.,
2013) combined with the KBase database (Arkin et al., 2018) to initiate
the draft reconstruction, and reevaluated the model in the light of Yeast
8.3.4 S. cerevisiaemodel updates. The model was subsequently subjected
to network connectivity analysis which suggested refinements in the
genes and reactions present, with updated gene-protein-reaction (GPR)
associations created for 100 genes, non-homologous to those in the GSM
Yeast 8.3.4. A new biomass description was formulated from macromo-
lecular composition measurements performed in this study, and voids in
its detailed composition were approximated by the data available in yeast
7.6 (Aung et al., 2013). ATP maintenance requirements were calculated
from carbon-limited chemostat data also generated in the current study.
We examined the consistency of model predictions of growth phenotypes
for carbon and nitrogen substrate utilization as well as those of gene
deletions we performed using clustered regularly interspaced short
palindromic repeats (CRISPR) Cas9 gene editing tools. After these vali-
dations, the model was subsequently used to pinpoint genetic in-
terventions, through the application of OptKnock, that results in the
overproduction of succinic acid. Components of these solutions share
similarity to approaches implemented in vivo for other organisms, which
supports that the model codifies the relevant biochemistry. The model
iIsor850 enables the use of metabolic engineering computational tools
towards improving I. orientalis SD108 for the production of
industrially-relevant organic acids.

2. Materials and methods

2.1. Draft reconstruction from existing fungal genome-scale reconstructions
and model refinements

In general, the workflow used followed an established protocol for
generating metabolic models utilizing previously built metabolic models
for closely related organisms (Mueller et al., 2013). This protocol pro-
vides a priority structure for assigning functions to genes using a multiple
source annotation workflow. Briefly, the recent genome sequence and
gene annotations of I. orientalis SD108 were used for this reconstruction
(Xiao et al., 2014). An initial draft reconstruction was assembled by
mapping genes and reactions from the S. cerevisiae genome-scale model
Yeast 7.6 (Aung et al., 2013), updated with additional information from
(Chowdhury et al., 2015). First, homologous genes were determined by
bidirectional protein BLAST (Sayers et al., 2020) with an E-value cutoff of
10�5 (Mueller et al., 2013). Next, we evaluated the gene-protein-reaction
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(GPR) association in Yeast 7.6 using these bidirectional hits and added a
reaction to the draft model only if its GPR association was satisfied by the
determined gene homologs necessary for a functional protein. In this
way, we initially only transferred reactions with sufficient GPR associa-
tions. We further extended the draft reconstruction using the KBase
“build fungal model” application (Arkin et al., 2018), which extracted
homologous genes and associated reactions from a library of fungal
genome-scale models using homologous genes identification schematics
similar to what we used with the Yeast 7.6 model. We built the initial
scaffold using Yeast 7.6 model rather than KBase because the biochem-
ical information in Yeast 7.6 was experimentally verified whenever
possible and we wished to draw upon that literature as much as possible.
Next, additional reactions and GPRs were manually added using the
annotated genome and validated with NCBI’s Conserved Domain Data-
base (Marchler-Bauer et al., 2015). When necessary, missing assignments
of reaction compartments were addressed using the protein subcellular
localization prediction software DeepLoc (Almagro Armenteros et al.,
2017). We followed the BiGG Models knowledgebase (Norsigian et al.,
2020) for reaction and metabolite identifiers (BiGG ID) where possible,
and adopted a naming scheme for metabolites that indicated
compartmentalization.

We next updated refined the draft model to improve its quality.
Specifically, we ensured that every reaction (excluding pseudo and ex-
change reactions) is mass and charge balanced and as a result we updated
metabolite formulae and reaction stoichiometries using standardized
metabolite formulae from MetaCyc (Caspi et al., 2018) and ModelSEED
(Henry et al., 2010) databases. Furthermore, some GPR associations of
S. cerevisiae Yeast 7.6 reactions were recently updated in the yeast model
repository (https://github.com/SysBioChalmers/yeast-GEM, version
8.3.4); we examined these updated and modifications were made to the
GPR associations. Furthermore, we identified and fixed thermodynami-
cally infeasible cycles, including cycles that allow the unbounded pro-
duction of ATP. Such cycles were eliminated by simply blocking the
reverse direction of the ATP hydrolysis reaction and making the overall
reaction irreversible (Fritzemeier et al., 2017). Finally, after all updates
described in subsequent sections, we checked the model structure and
consistency using the MEMOTE test suite (Lieven et al., 2020) with the
model annotations standardized to the MIRIAM namespace (Juty et al.,
2012), which is used by MEMOTE. We iteratively addressed flagged is-
sues, and the final version of the model passed all MEMOTE tests.

2.2. Experimental determination of biomass composition

Biomass composition was determined for I. orientalis SD108 culti-
vated in chemostat using carbon as the limiting nutrient. An overnight
stock was prepared in minimal medium that contains yeast nitrogen base
without amino acids (YNB, Sigma Y0626) and 20 g/L glucose. It was then
inoculated at 1:100 from overnight culture into 250 mL culture to grow
in continuous mode in a 500-mL chemostat (Sixfors; Infors AG, Bott-
mingen, Switzerland) using YNB with 0.8 g/L glucose. The culture was
allowed to grow overnight before turning on dilution. Temperature was
maintained at 30 �C. Moisturized air was delivered at a flow rate of 20
Nl/h. The culture was stirred at 400 rpm for sufficient oxygen, and was
kept at 0.1 h�1 growth rate. After the culture had reached steady state (as
determined by pH and cell density which were observed to be stable for
at least 12 h), it was harvested for the biomass measurement. The pH in
the vessel was not controlled; the starting pH was 5.2, and the final pH
was 3.5.

DNA was measured using diphenylamine reagent. 7.5 mL culture was
pelleted and washed by 1 mL cold 1 mM HClO4. Serial dilutions of 1 mg/
mL Calf thymus DNA (Sigma) were prepared for calibration. Samples
were hydrolyzed in 500 μL 1.6 M HClO4 for 30 min at 70 �C, and then
reacted with 1 mL diphenylamine reagent (0.5 g diphenylamine in 50 mL
glacial acetate, 0.5 mL 98% H2SO4, and 0.125 mL 3.2% acetaldehyde
water solution) at 50 �C for 3 h. After centrifugation, the supernatant was
taken for OD600 measurement.
3

RNA was measured by 260 nm absorption. Basically, 2.5 mL culture
was pelleted and washed, and digested with 300 μL 0.3M KOH at 37 �C
for 60min. DNA and protein were then precipitated by 100 μL 3MHClO4.
Supernatant was taken and precipitate was washed with 600 μL 0.5M
HClO4. Absorption of combined supernatant at 260 nm, 900 nm, and 977
nm was measured. RNA concentration was calculated as 5.6⋅(A260-
A260,blank)/(A977-A900) in μg/mL.

Protein was measured using the Biuret method. Briefly, 2.5 mL cul-
ture was pelleted, washed and boiled in 100 μL 3M NaOH at 98 �C for 5
min. After cool down, the mixture was reacted with 100 μL CuCO4 for 5
min at room temperature. After centrifugation, supernatant was taken for
determination of 555 nm absorption, which was calibrated by serial
dilution of Bovine serum albumin (BSA) solutions (Thermo).

Lipid was determined by measuring saponified fatty acids using LC-
MS. Briefly, cell pellet from 2.5 mL culture was extracted and saponi-
fied in 1 mL 0.3M KOH–MeOH solution at 80 �C for 60 min, then
neutralized by 100 μL formic acid, and then extracted by 1 mL hexane 20
nM. 20 nM isotope-labeled fatty acid standards (U–13C–C16:0,
U–13C–C18:1, U–13C–C18:2; Cambridge Isotope) were added before
saponification as internal standards. Extracted fatty acids were dried
under N2 and redissolved in 200 μL acetonitrile:methanol (1:1), and then
analyzed by reversed-phase C8 column chromatography coupled to
negative-ion mode, full-scan high-resolution LC-MS (Exactive, Thermo).

Carbohydrate was determined by hydrolyzing cell pellet from 2.5 mL
culture in 100 μL 2M HCl at 80 �C for 1 h. 0.4 mg U–13C-glucose was
added as internal control before hydrolyzation. The lysate was neutral-
ized by 100 μL 2M NH4HCO3, diluted in 1.8 mL 80% MeOH and
centrifuged. The supernatant was taken and analyzed by negative-ion
mode LC-MS equipped with hydrophilic interaction liquid chromatog-
raphy (Q Exactive Plus, Thermo). Mass peaks equivalent to C6H12O6 were
selected for quantification.

2.3. Generation of biomass reaction

The original Yeast 7.6 biomass reaction was used as the starting point
for the biomass reaction. We used the biomass macromolecular compo-
sition generated in this study (see above) alongside data from literature
to determine the metabolite coefficients in the biomass objective func-
tion (specifically for carbon limitation conditions) (see Supplementary
Materials 3 for details). We also incorporated other experimentally
determined biomass specifications including genome GC content (i.e.,
38.33%) (Douglass et al., 2018), and relative abundance of acyl groups
and free fatty acids in lipids (this study). We took experimentally
determined specifications from S. cerevisiae; specifically amino acid,
inorganic compounds (i.e., phosphate, sulfate, and metal ions), and cell
wall compositions (Klis et al., 2014), as corresponding data for I. orientalis
SD108 were not available. Additional data adopted from the yeast 7.6
model were lipid subspecies composition (e.g., phosphatidylinositol,
phosphatidylcholine, phosphatidylethanolamine, and phosphatidylser-
ine composition). These data from experiments on S. cerevisiae and Yeast
7.6 were deemed acceptable as I. orientalis and S. cerevisiae are closely
related. Without measurements of the soluble metabolite pool, we set the
coefficients of twelve cofactors and prosthetic groups to a small number
(i.e., to 10�4) so as to impose a biosynthesis requirement on the in silico
model; similar measures have been previously adopted for the biomass
reactions in other models such as those for S. cerevisiaemodels (Mo et al.,
2009), including Yeast 7.6 (Aung et al., 2013). Metabolite coefficients
associated with growth-associated ATP maintenance were also updated
(see below). Calculations and detailed listings of metabolites and co-
efficients in the biomass reaction are provided in Supplementary Mate-
rials 3.

2.4. Determination of ATP maintenance requirements

Growth associated ATP maintenance (GAM) and non-growth associ-
ated ATP maintenance (NGAM) values were determined using ministat

https://github.com/SysBioChalmers/yeast-GEM
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culture data collected as part of this study. The 20 mL culture volume in
55 mL vessel ministat design was adopted from (Miller et al., 2013). We
used the same glucose limited conditions as for the chemostat and the
same inoculation procedure. Temperature was maintained at 30 �C.
Moisturized air was delivered at a flow rate of 7.5Nl/h per vessel. Steady
state was assessed with OD and pH, which were observed to be stable for
at least 12 h before sampling. We measured the glucose uptake rates over
a range of dilution rates (i.e., from 0.11 hr�1 to 0.65 hr�1) by sampling 1
mL culture from a ministat, from which 150 μL supernatant was used to
measure glucose by YSI 2900D Biochemistry Analyzer (YSI, Yellow
Springs, OH, USA). We used one biological replicate for each dilution rate
and performed technical replicates for error analysis. For OD to gDW
conversion, we summed the measured biomass components (using the
methods described in 4.2) to get gDW for equivalent 1 mL cell having 1
OD. To calculate the ATP maintenance requirement per experimental
data point, glucose uptake rate (vglc) was set to the experimentally
measured values and growth rate (vbiom) was determined by conversion
from the experimentally measured range of dilution rates. We then set
the NGAM and GAM demand in the model to zero. Next, ATP mainte-
nance requirement was given by the ATP hydrolysis rate (vatpm) which
was found for each dilution rate by constraining the model at the
experimental vglc and vbiom values and then maximizing the flux through
the reaction ATP þ H2O → ADP þ Hþ þ HPO4

2�. Using linear regression,
we estimated the GAM and NGAM as the slope and intercept, respec-
tively, of vatpm as a function of growth rate. We then set the intercept (i.e.,
NGAM) to a value of 1 as in Yeast 8.3.4 and estimated the GAM as the
slope (see Supplementary Materials 4). For these carbon limitation con-
ditions, we measured the compositional profile at the lowest and highest
growth rates (data not shown). The results remained relatively constant
and in agreement with the composition used during the model biomass
reaction construction; thus, no adjustments were made to the biomass
reaction whilst determining the GAM value.

2.5. Modeling simulations

Flux balance analysis (FBA) was used throughout the process for
model validation and prediction stages (Orth et al., 2010). Model simu-
lations of growth phenotypes were obtained using FBA with the objective
of maximizing the biomass reaction (vbiom) whose flux corresponds to the
growth rate. During initial testing and model predictions of positive
growth on all substrates, the carbon substrate uptake rate was set to a
value 3.3 mmol gDW�1 hr�1; we chose this value as a rough estimate for
glucose uptake from data in (Xiao et al., 2014) and arbitrarily applied it
to each carbon substrate. For subsequent quantitative comparisons with
in vivo data, the substrate specific consumption rates (g gDW�1 hr�1),
such as glucose (vglc), were set to the values determined experimentally in
the current work. For growth predictions involving rich media, supple-
mentary compound uptake rates were set to 0.165 mmol gDW�1 hr�1

(i.e., 5% of default substrate uptake rate of 3.3 mmol gDW�1 hr�1).
Simulating rich media components has been described previously (Dinh
et al., 2019). In general, the supplementary nutrients present in YNB
included thiamine, riboflavin, nicotinate, pyridoxin, folate, (R)-panto-
thenate, 4-aminobenzoate, and myo-inositol. The undefined composition
of yeast extract in Yeast-Peptone-Dextrose (YPD) media was assumed to
be that of YNB media plus 20 amino acids and d-glucose. Oxygen and
ammonium uptake rates were unconstrained in all simulations unless
otherwise noted. Glucose uptake rate was set to 10.0 mmol gDW�1 hr�1

during OptKnock simulations. Oxygen uptake rate was limited to 21.0
mmol gDW�1 hr�1 during OptKnock simulations except during micro-
aerobic conditions, as noted. Gene knockout was translated to the cor-
responding reaction(s) knockout by examining the Boolean GPR
associations, and the reaction was knocked out in the model by setting
the corresponding upper and lower flux bounds both to zero. A gene was
classified as essential if the maximal growth rate of the corresponding
knockout mutant was calculated by FBA to be less than 0.001 hr�1. FBA
calculations, Flux Coupling Finder, and OptKnock were implemented
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using GAMS 24.8.5 using IBM ILOG CPLEX solver on the
high-performance computing resource cluster of Pennsylvania State
University’s Institute for CyberScience Advanced CyberInfrastructure
(ICS-ACI), Roar. Production envelopes were computed using the COBR-
Apy package (version 0.13.4) (Ebrahim et al., 2013) and used IBM ILOG
CPLEX solver (version 12.9).

2.6. Batch growth of I. orientalis SD108

YPD medium (10 g/L yeast extract, 20 g/L peptone, and 20 g/L
glucose) was used for routine growth of I. orientalis SD108. Growth rates
of I. orientalis SD108 were tested in minimal medium (MM) using
different C/N ratios (20 g/L d-glucose, 1.7 g/L yeast nitrogen base
without amino acids and ammonium sulfate, 0.4–7.1 g/L NH4Cl, C/N ¼
5:1–90:1, 25 mM Na2HPO4, 150 mM KH2PO4, pH 5.6). Stationary phase
I. orientalis SD108 seed cultures were obtained by inoculating single
colonies from a YPD agar plate into 25 mL YPD liquid medium in 125 mL
baffled flask. For growth, the seed cultures were then used to inoculate
into 50 mL minimal medium in 250 mL baffled flask with a starting
OD600 of 1. The cells were then grown at 30 �C and 250 rpm. All
experimental conditions were performed with four replicates. Growth
viability on carbon substrates was tested in minimal media with different
carbon substrates as the sole carbon source at 20 g/L unless indicated
otherwise. Cell growth was measured by the absorbance at 600 nm using
cell density meter. Dry cell weights (CW) were determined as follows.
The 1–5mL of culture samples were collected into pre-weighed tubes and
centrifuged at 16,000�g for 5 min. Supernatant was discarded, and
pellets were then washed twice with 50 mM phosphate buffered saline.
Washed pellets were dried till constant weight at 65 �C for 24–48 h and
the tubes were then weighed.

For supernatant composition analysis, I. orientaliswild type or mutant
strains were grown in YPD medium containing 2% glucose for overnight
at 30 �C and 250 rpm. Next, cells were washed with deionized water and
inoculated in 20 mL of respective medium with the initial OD600 of 0.1.
For different carbon substrate utilization, YNB medium was supple-
mented with 2% carbon source (glucose, glycerol, lactic acid, succinic
acid, citric acid, ethanol, fructose, xylose) and cell sample was harvested
at various time point and supernatant was analyzed for carbon source,
organic acid, and alcohol by HPLC (Agilent Technologies 1200 Series,
Santa Clara, CA). The HPLC was equipped with a RezexTM ROA-Organic
Acid Hþ (8%) column (Phenomenex Inc., Torrance, CA) and a refractive
index detector (RID). The column was eluted with 0.005 N H2SO4 at a
flow rate of 0.6 mL/min at 50 �C (Liu et al., 2019).

2.7. Construction of mutant strains

For construction of mutant strain, we used the CRISPR/Cas9 system
developed recently for I. orientalis (Tran et al., 2019). We used the
pVT15b plasmid containing improved Cas9 from Streptococcus pyrogens,
URA3 expression cassette from I. orientalis; E. coli selection marker and
origin of replication; and ARS from S. cerevisiae. The spacer was designed
using Benchling (https://benchling.com), and the spacer and HR donor
were ordered as gBlocks from Integrated DNA Technologies (IDT, Cor-
alville, IA) and further assembled into CRISPR/Cas9 plasmid using BsaI
restriction site by Golden Gate assembly method. Cloned plasmid was
further confirmed through the restriction digestion using BsaI and EcoRI
restriction enzymes.

For the transformation in I. orientalis, a colony of I. orientalis was
inoculated in 2 mL of YPAD for overnight at 30 �C and 250 rpm. Next day
culture of I. orientalis was diluted to an initial OD600 of 0.2 and cells were
continuously grown until they reached to OD600 of 0.8–1. Cells were
collected by centrifugation, washed twice with deionized water, and
resuspended in 360 μL of transformation mixture containing 240 μL of
50% w/v PEG3350, 36 μL of 1 M lithium acetate, 50 μL of 2 mg/mL
deoxyribonucleic acid from salmon testes (SS-DNA) that was boiled at
100 �C for 5 min and quickly chilled on ice, plasmid (500 ng), and

https://benchling.com


Table 1
Statistics for genome-scale model iIsor850.

Properties Statistics

Genesa 850
% of chromosomal ORFs 17%
without homolog included in Yeast 8.3.4 100
without identified S. cerevisiae homolog 44

Reactions 1826
Metabolic reactions 1066
with GPR assigned 993

Unique metabolic reactions 1040
Transport reactions 587
Extracellular transport 160
with GPR assigned 71

Intracellular transport 419
with GPR assigned 83

Exchange reactions 170
Metabolites 1702
Unique metabolites 874
Compartments 14

a The model description for iIsor850 also contains pseudo-genes used to
denote spontaneous reactions and those reactions with unknown associated
enzymes, which have been excluded from the gene counts.
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deionized water. After mixing thoroughly, the suspension was subjected
to heat shock for 1 h at 42 �C. After the heat shock, cells were collected by
gentle centrifugation and spread on the SC-Ura plates. After 3–4 days,
when colony appears, deletion of the genes was confirmed through the
sequencing or PCR using appropriate primers. A list of strains used in this
work are provided in Table 3.

3. Results and discussion

3.1. Properties of the model and refinements of the reconstruction

The genome-scale model iIsor850 incorporates relevant yeast
biochemistry that has been systematically cataloged into previous
genome-scale models for S. cerevisiae (i.e., Yeast 7.6 and subsequent
update Yeast 8.3.4 (Aung et al., 2013)) and other KBase fungal models
(Arkin et al., 2018)). It augments this knowledgebase with unique
metabolic content culled from I. orientalis genome annotation (Xiao et al.,
2014) and the literature. iIsor850 is informed by experimental data on
growth rates generated in the current work. A majority of the model
components, including 88% of genes, 78% of reactions, and 75% of
metabolites, are biochemically equivalent to those in S. cerevisiae Yeast
7.6 model. An additional 7% of genes, 5% of reactions, and 6% of me-
tabolites were incorporated from KBase and its “build fungal model”
application which contains metabolic reaction information for
non-model yeasts. The genome annotation and manual model additions
and modifications yielded the remainder of the model (i.e., 5% of the
genes and 17% of the reactions). Some of these manual modifications
indirectly incorporate reactions included in a different form in the Yeast
7.6 model. For example, variants of diacylglycerol acyltransferase which
catalyze reactions involving 32 variants of triacylglycerol in Yeast 7.6
were streamlined into a single reaction in order to more economically
reflect the current level of biochemical detail known for I. orientalis. Note
that for the sake of convenience 805 out of a total 850 genes in the model
are referred to by both the I. orientalis gene locus ID and the corre-
sponding homolog gene name in S. cerevisiae (not all of which are in the
Yeast 8.3.4 model) and the remaining 44 absent homologs in S. cerevisiae
referred to only by the I. orientalis gene locus ID. By using a more recent
version of the consensus yeast model available at https://github.com/
SysBioChalmers/yeast-GEM (i.e., Yeast 8.3.4), we updated the GPR as-
signments for 19 reactions, such as adding an isozyme to the GPR of
phosphoglycerate mutase. Unfortunately, we were able to assign GPR
associations for only 20% of the transport reactions, which in large part
reflects the similar level of lack of knowledge as in the Yeast 8.3.4 model.
However, we were able to assign GPR associations to 94% of the meta-
bolic reactions that span all 14 compartments in the model. The statistics
of the curated model iIsor850 are summarized in Table 1.

We used eggNOG (Huerta-Cepas et al., 2018), which clusters pre-
dicted orthologs (i.e., eukaryotic orthologous groups or KOGs (Koonin
et al., 2004)), to classify the genes in the model in order to better high-
light those that were or were not homologous to genes in S. cerevisiae and
to visualize the metabolic capabilities of the model. Fig. 1 summarizes
the final KOG classifications for model iIsor850, as well as the overall
coverage of the model of the classifications. Genes that are homologous
to those in S. cerevisiae are not evenly distributed in the various functional
categories. The categories with the highest fraction of homologous genes
include nucleotide transport andmetabolism; inorganic ion transport and
metabolism; cell wall/membrane/envelope biogenesis; and coenzyme
transport and metabolism. The model iIsor850 includes a number of
genes without homology to genes in S. cerevisiaewhich are also dispersed
in many categories, including energy production and conversion; car-
bohydrate transport and metabolism; secondary metabolite biosynthesis,
transport and catabolism; and amino acid transport and metabolism. For
example, unlike S. cerevisiae, I. orientalis encodes for the complete Com-
plex I NADH dehydrogenase whose 8 subunits are incorporated into
iIsor850. In general, these non-homologous genes were included into the
model via KBase, the genome annotations and the Conserved Domain
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Database at NCBI to incorporate pathways, and information on reactions
not present in Yeast 8.3.4, such as a heptadecenoyl-CoA synthesis (fatty
acid C17:1) reaction. This process was driven by experimental mea-
surements. Unlike S. cerevisiae, I. orientalis contains an ergosterol syn-
thase variant which intrinsically has decreased susceptibility to
fluconazole, an anti-fungal drug (Morio et al., 2017; Orozco et al., 1998).
The model also uncovered that I. orientalis has genes encoding enzymes
that catalyze the entry reactions in biotin formation, which are not pre-
sent in Yeast 7.6, as many strains of S. cerevisiae do not have corre-
sponding functional genes. We note that 14 genes, including 5 with no
homology to genes in S. cerevisiae, were placed in the unassigned cate-
gory, reflecting the challenge inherent in KOG assignment for non-model
organisms. Analysis also revealed as many as 45 reactions for which the
number of associated (putative) paralogs is greater in iIsor850 than in
Yeast 8.3.4 (Supplementary Materials 1). For instance, 4-aminobutyrate
aminotransferase activity is predicted to be encoded by JL09_g1205 or
JL09_g1354, whereas Yeast 8.3.4 only has YGR019W associated with this
reaction.

3.2. Biomass composition and experimentally estimated ATP maintenance
requirements

We experimentally determined the macromolecular composition of
I. orientalis SD108 under carbon limitation (see Methods 4.2). Briefly,
protein, carbohydrate, DNA, RNA, and lipid composition were measured
for cells growing on glucose in a chemostat at a dilution rate of 0.1 hr�1,
as normalized and reported in Table 2 for each category. The corre-
sponding values used in Yeast 7.6 model are listed. Notably, both the
protein and lipid fractions in the biomass composition of I. orientalis
SD108 are higher than in Yeast 7.6 (i.e., 45.18% vs. 35.71% and 5.00%
vs. 0.74%, respectively) whereas the carbohydrate fraction is lower (i.e.,
36.80% vs. 52.27%). We also experimentally quantified the relative
abundance of acyl groups and free fatty acids in the lipid fraction of the
cells (see Methods 4.2). Specifically, these compounds were incorporated
into the model replacing the universal free fatty acid metabolite used in
Yeast 7.6 for the six free fatty acid compounds found to have an abun-
dance of >1% by weight in the measurement of saponified fatty acids
using LC-MS, viz. palmitate (C16:0), palmitoleate (C16:1), 10Z-heptade-
cenoate (C17:1), oleate (C18:1), linoleate (C18:2) and linolenate (C18:3).
The fractional on a per mole basis compositions of these free fatty acids
differ substantially from those measured for S. cerevisiae (see Supple-
mentary Materials 2). Three of these free fatty acids (i.e., C17:1, C18:2,
and C18:3) have an abundance of <1% in S. cerevisiae. In particular, the
inclusion of odd-chain fatty acid C17:1 in the biomass description

https://github.com/SysBioChalmers/yeast-GEM
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Fig. 1. Classification of I. orientalis SD108 genes contained in iIsor850. Eukaryotic orthologous groups (KOG) annotations (see https://genome.jgi.doe.gov/Tutorial
/tutorial/kog.html for details) were generated by analyzing the complete annotated genome of I. orientalis SD108 and then assigned to the genes in the model.
Corresponding standard group abbreviations are given in parentheses for each KOG. The group marked Other compiles groups with abbreviations A, B, D, J, K, L, O, S,
T, U, V, W, Y, and Z. Genes with multiple KOG assignments were added to all indicated groups. Genes without KOG assignments are not shown. Light blue bars
represent genes in iIsor850 that have homologous genes in Yeast 8.3.4, as indicated by the annotations generated during the construction of iIsor850. Similarly, any
genes for which the annotations indicated homologous genes in S. cerevisiae but not are contained in Yeast 8.3.4 are shown in dark blue bars. The remaining genes in
iIsor850 are indicated in red bars. The percent coverage of iIsor850 of the I. orientalis SD108 genome is indicated by the numbers to the right of each bar. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Table 2
Summary of iIsor850’s biomass composition.

Constituentsa Composition (%)

iIsor850 Yeast7.6
Proteinb 45.18 35.71
L-Alanine L-Arginine L-Asparagine
L-Aspartate L-Cysteine L-Glutamine
L-Glutamate Glycine L-Histidine
L-Isoleucine L-Leucine L-Lysine
L-Methionine L-Phenylalanine L-Proline
L-Serine L-Threonine L-Tryptophan
L-Tyrosine L-Valine
Carbohydrate 36.80 52.27
1,3-beta-d-Glucan 1,6-beta-d-Glucan Chitin
N-Glycanc O-Glycanc GPI-anchorc

Lipid 5.0 0.74
Episterol Free fatty acids (6 species)d Inositol-P-ceramide
Phosphatidylcholine Phosphatidylethanolamine Phosphatidylinositol
Phosphatidylserine TAG
RNAe 8.63 5.85
ATP CTP GTP
UTP
DNAe 0.48 0.34
dATP dCTP dGTP
dTTP
Cofactors and prosthetic groups 0.06 0.03
S-Adenosyl-L-methionine Biotin Coenzyme-A
FAD Heme A NAD
NADP Riboflavin Spermidine
Tetrahydrofolate Thiamine diphosphate
Inorganic ions 3.85 5.06
Calcium Copper Iron
Magnesium Manganese Phosphate
Potassium Sulfate Zinc

a Biomass constituents absent from Yeast 7.6 are underlined. Different representations of Yeast 7.6 biomass constituents are noted below.
b Identical to those in yeast 7.6, amino acids in the biomass objective function are in charged-tRNA form, but are listed here as the uncharged amino acids.
c The generic mannan (mannose-containing) metabolite in Yeast 7.6 was replaced with three specific essential cell wall components.
d Six free fatty acid species were abundant (>1% weight) in growth experiments: palmitate (C16:0), palmitoleate (C16:1), 10Z-heptadecenoate (C17:1), oleate

(C18:1), linoleate (C18:2) and linolenate (C18:3).
e Monophosphate ribonucleic and deoxyribonucleic acids present in Yeast 7.6 were replaced with the corresponding triphosphate ones in iIsor850.
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necessitated the addition of the pathway for producing odd-chain fatty
acids, which begins with the use of propionyl-CoA instead of acetyl-CoA
used for even-chain fatty acids. Odd-chain fatty acids have an abundance
of less than 1% in S. cerevisiae, whereas C17:1 has an abundance of 6% in
I. orientalis SD108. Odd-chain fatty acid abundances in iIsor850 are one of
the most metabolically unique aspects of I. orientalis. In addition, it uses
ubiquinone-7 (Kurtzman et al., 1980) as opposed to ubiquinone-6 used
by S. cerevisiae or ubiquinone-9 used by R. toruloides.
6

Overall, a total of 66 metabolites were included in the biomass
component list for iIsor850. Overlaps and differences between the model
and Yeast 7.6 are summarized in Table 2. The “generic” free fatty acid
designation in Yeast 7.6 was replaced with the distinct free fatty acid
compounds mentioned above. Eight nucleotide monophosphates were
replaced in iIsor850 by the corresponding nucleotide triphosphates and
pyrophosphate in order to directly account for DNA and RNA polymer-
ization. Beyond the substitutions detailed above, nine cofactors and

https://genome.jgi.doe.gov/Tutorial/tutorial/kog.html
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Table 3
List of strains and plasmids used in this study.

Strains/
Plasmids

Description Sources

Strains
E. coli DH5α Cloning host NEB
I. orientalis
SD108

Wild type Xiao et al.,
2014

SD108ΔUra URA3Δ, host for plasmids in this study Xiao et al.,
2014

SD108Δ2223 SD108 with disruption of JL09_g2223 This study
SD108Δ850 SD108 with disruption of JL09_g850 This study
SD108Δ2279 SD108 with disruption of JL09_g2279 This study
SD108Δ1386 SD108 with disruption of JL09_g1386 This study
SD108Δ1702 SD108 with disruption of JL09_g1702 This study
SD108Δ4163 SD108 with disruption of JL09_g4163 This study
SD108Δ4262 SD108 with disruption of JL09_g4262 This study
SD108Δ3351 SD108 with disruption of JL09_g3351 This study
SD108Δ3078 SD108 with disruption of JL09_g3078 This study
Plasmids
pVT15b-epi CRISPR/Cas9 plasmid, containing ScARS, IoURA3,

iCas9, RPR1 promoter, and sgRNA scaffold. Used
for cloning of guide RNA and homology arm

Tran et al.,
2019

pVT15b-XYZ pVT15b plasmid carrying the homology arm and
guide RNA against any one of these genes: g2223,
g850, g2279,
g1386, g1702, g4163, g4262, g3351, or g3078

This study

Fig. 2. ATP maintenance costs. I. orientalis SD108 was grown in a chemostat at
various dilution rates and measurements of glucose uptake (A) and cell density
(B) were collected. Using these data to set constraints on the glucose uptake rate
and the specific growth rate, we used FBA to compute the maximal ATP pro-
duction rate for each dilution rate using modified version of iIsor850 having a
biomass reaction that had the coefficients of the maintenance constants set to
zero (C). The resulting slope was used to estimate the growth associated ATP
maintenance value in the final curated model.
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prosthetic groups (Coradetti et al., 2018) were added to the list of
biomass constituents to bring the model in closer alignment with Yeast
8.3.4. Seven new inorganic ions (i.e., calcium, copper, iron, manganese,
magnesium, potassium and zinc) were also included in the biomass re-
action following the measurements for S. cerevisiae (Lange and Heijnen,
2001) as these ions are known to be essential (see Supplementary Ma-
terials 3). In the absence of direct measurement, the total inorganic ions
composition were ported from S. cerevisiae (Lange and Heijnen, 2001),
which was the approach earlier considered for another non-model yeast,
R. toruloides (Dinh et al., 2019). The cofactor and prosthetic group frac-
tions in the biomass reaction are set to small values (i.e., 10�4 each)
which imposes a biosynthesis requirement on the model but keeps their
total amount to only 0.06% of the total biomass by weight. We stan-
dardized the biomass composition such that the combined
coefficient-weighted molecular weight of all constituents is 1 g mmol�1

in order to ensure the consistency of growth yield predictions (Chan
et al., 2017). The specifics of the biomass composition used for the model
can be found in Supplementary Materials 3. Although the biomass re-
action in iIsor850 is customized, most of the list of biomass constituents
are not unique to this model – thereby applicable for other yeasts – and
could serve as a starting point for other models’ specific biomass re-
actions by following similar methodologies.

We performed additional chemostat studies under carbon limitation
in order to determine the growth-associated ATP maintenance (GAM)
and non-growth-associated ATP maintenance (NGAM) for I. orientalis
SD108. Correctly assessing both of these maintenance values is vital
when quantifying the energetic needs and growth yields properly, with
GAM quantifying energetic costs that are not otherwise reflected in the
biomass reaction. For this reason, I. orientalis SD108 was cultivated under
carbon limitation with dilution rates ranging from 0.02 h�1 to 0.65 h�1;
results for the glucose uptake rates and optical density are shown in Fig. 2
Panels A and B, respectively, and listed in Supplementary Materials 4. As
observed in Fig. 2A, the glucose consumption in the chemostat is
essentially constant with the dilution rate (h�1) over this range except for
the highest dilution rates. We then calculated the specific glucose uptake
rates (g glucose⋅g cell mass�1⋅h�1) and simulated the maximum ATP
production for the model for each dilution rate, whilst imposing the
corresponding measured biomass production, as shown in Fig. 2C and
tabulated in Supplementary Materials 4. Although Yeast 7.6 does not
contain an NGAM value, the earlier S. cerevisiae model iMM904 (Mo
et al., 2009) uses a value of 1, and this value has recently been adopted
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into Yeast 8.3.4 as well. Assuming that the intercept (i.e., NGAM) has a
value of 1 as in Yeast 8.3.4, we estimated GAM to be 66.37 mmol gDW�1,
similar to that in Yeast 7.6 (59.28 mmol gDW�1). Estimated NGAM and
GAM values for another non-model yeast, R. toruloides IFO0880, under
carbon-limited conditions are 1.01 mmol gDW�1 hr�1 and 140.98 mmol
gDW�1, respectively (Dinh et al., 2019). The much larger value for
R. toruloides likely reflects that its model has more energy-requiring
pathways in metabolism yet to be detailed.

3.3. Model standardization, annotations, and network analysis

Internal and external consistency are crucial for the quality of
genome-scale models (Thiele and Palsson, 2010; Lieven et al., 2020). As
mentioned earlier, details such as correctly setting the
coefficient-weighted molecular weights in the biomass composition can
adversely impact growth yield predictions. We subjected iIsor850 to the
MEMOTE suite of tests (Lieven et al., 2020) to evaluate biochemical
annotation and network consistency. These tests examined annotations
of the model content with regard to standard databases, mass and charge
balances, gaps, cycles, among others. After updating iIsor850 to resolve
any flagged deficiencies, the model scored an overall 84% on the
biochemical annotation and network consistency tests. All metabolites,
reactions and genes have at least one annotation to a widely used data-
base including PubChem (Kim et al., 2019), KEGG (Kanehisa et al.,
2017), ModelSEED (Henry et al., 2010), ChEBI (Hastings et al., 2016),
BioCyc (Karp et al., 2019), UniProt (2019) and NCBI Protein (Sayers
et al., 2020), and all conform to MIRIAM guidelines (Nov�ere et al., 2005).
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The deficiencies in the MEMOTE score lie in the breadth of annotations,
as MEMOTE penalizes not using all listed databases (e.g., we do not have
annotations to reactome (Jassal et al., 2020), MetaNetX (Moretti et al.,
2016), or BRENDA (Jeske et al., 2019)). All items in the model were
assigned Systems Biology Ontology (SBO) terms (Courtot et al., 2011).
The model was already mass and charge balanced during the initial
construction phases, although MEMOTE did assist in detecting 21 me-
tabolites that had inconsistent charges when ignoring compartmentali-
zation. Although reactions were locally charge balanced, in a few edge
cases the charges were not identical for the same metabolite species
occurring in different compartments. These localized differences arose
when combining information from disparate databases, which do not all
use the same reference pH value, and were updated. For the purposes of
this model, we have used the reference of pH 7.2.

Although as part of the earlier curation we had already removed cy-
cles that led to unbounded fluxes, MEMOTE identified an additional 12
thermodynamically infeasible cycles. Such cycles can adversely affect
flux ranges. We resolved these issues by updating the directionality of the
reactions and/or transporters, with constraining the latter being the
preferred option when available. For example, MEMOTE identified that
cycles could arise for 11 amino acids that could transport in and out of the
vacuole to the cytosol without any driving force via the corresponding
importer, exporter, and efflux transporter, respectively. Such efflux from
the vacuole would likely only occur during stress of pathological condi-
tions which trigger autophagy as a survival mechanism (Yang et al.,
2006). To address this finding, we made these reactions irreversible in
iIsor850 so that each of the corresponding efflux transporters were
permitted to only import the amino acid into the vacuole.

MEMOTE also reported that as many as 639 reactions are blocked,
with 81 metabolites that can only be consumed and 102 metabolites that
can only be produced. These results are not surprising inasmuch as we
were conservative when employing GapFill to bridge network gaps
through the addition of reactions, inclusion of transport pathways, and
relaxation of irreversibility of reactions already present in the model.
Specifically, we only reconnected metabolites with non-gene associated
reactions that would ensure that iIsor850 was capable of producing
biomass under all appropriate conditions. After correcting for these
network gaps which impaired biomass formation, we obtained the model
statistics summarized in Table 1. A visualization of the core part of the
Fig. 3. Escher map of core pathways in iIsor850. An Escher map consists of metab
allowable fluxes (arrows). The core components of iIsor850 were drawn and placed
tabolites are shown, and some metabolites occur more than once (i.e., cofactors). Am
biosynthesis is purple, cell wall biosynthesis is green, fatty acid biosynthesis and el
metabolism is uncolored in the middle-top of the figure. (For interpretation of the ref
this article.)

8

model using Escher software (King et al., 2015) is shown in Fig. 3.
Under aerobic glucose minimal media conditions, model simulations

indicate that there are 237 essential genes in the model (i.e., 28% of the
included genes). These essential genes correspond to 374 essential re-
actions in the model (i.e., 21.2% of the reactions). The proportion of
genes and reactions classified as computationally essential for Yeast 8.3.4
under the same growth conditions is lower (i.e., 13%). Unlike
S. cerevisiae, however, extensive and comprehensive gene deletion
studies and in vivo essentiality data do not exist for I. orientalis, and so
classification into true and false positives and negatives cannot currently
be determined for the essentiality predictions. We did however perform
some selected gene knockouts during model validation (see below).

Using constraints corresponding to aerobic glucose minimal media
conditions, we examined coupled reaction sets using the Flux Coupling
Finder (FCF) (Burgard et al., 2004). For any two fluxes in a fully coupled
reaction set, a non-zero flux for a given one implies a fixed non-zero value
for the other member, and vice versa. Reaction flux coupling information
can be helpful when designing strain optimization strategies (Reimers
et al., 2015). We found that there were 81 fully coupled reaction sets
spanning 352 reactions. The majority (i.e., 44) were sets that only had
two members, and the bulk of these two-member sets were adjacent re-
actions in a linear pathway. The largest fully coupled set contained 94
reactions, including biomass. The second largest set of 28 reactions
included reactions such as acetyl-CoA C-acyltransferase (octanoyl-CoA)
involved in fatty acid metabolism. Other sets included three of size 9, 8,
and 6 that contained stretches of linear subpathways involved in histi-
dine metabolism, ergosterol biosynthesis, and chorismite metabolism,
respectively. The remainder of the fully coupled sets (i.e., 32) had fewer
than 5 reactions each. Only 7 partially coupled reaction sets occur, for
which a non-zero flux for one member implies a non-zero, though vari-
able, flux for another, and vice versa. These sets were all small, with 3
containing 3 members and 5 containing only 2 members. The reactions in
these sets were involved in pathways such as fatty acid degradation in the
peroxisome, pyrimidine metabolism in the cytosol, and glycer-
ophospholipid biosynthesis in the endoplasmic reticulum membrane.
The complete list of all fully, partially, and directionally coupled re-
actions can be found in Supplementary Materials 7. We use this reaction
coupling information to streamline subsequent analyses, including
designing metabolic engineering interventions to select reactions for
olites (circles) connected via reactions (lines) which indicate directionality of
according to relevant classifications. For clarity, not all reactions for the me-

ino acid biosynthesis is indicated in blue, nucleotide biosynthesis is brown, lipid
ongation is yellow, cofactors and prosthetic groups biosynthesis is red. Central
erences to color in this figure legend, the reader is referred to the Web version of
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elimination, as described below.
3.4. Substrate utilization and growth phenotype predictions for gene
knockouts

Substrate utilization data are somewhat scarce for I. orientalis, espe-
cially for substrates other than glucose (Abbott et al., 2009) or ethanol
(Okuma et al., 1986). Growth/no growth have previously been tested on
34 carbon substrates and glucose with 5 nitrogen substrates (Hisamatsu
et al., 2006) as well as a separate study of 26 carbon-only substrates (Seo
et al., 2007). However, different strains could have differences in sub-
strate utilization preferences (as evidenced by the differences between
the results from (Hisamatsu et al., 2006) and (Seo et al., 2007)). In the
former study (Hisamatsu et al., 2006), seven of the carbon substrates
Fig. 4. Carbon substrate utilization. In panel A, growth of I. orientalis SD108 in batch
show in red bars and rich medium (YNB), shown in blue bars each supplemented with
for growth. Data shown here are for the two time points used to score overall growth,
48 h. Higher resolution time-course batch cultures (see Supplemental Materials 4) w
substrate combination (panel B), with SC medium in red bars and YNB medium in blu
indicated as circles in panel B, using experimentally determined specific consumption
the reader is referred to the Web version of this article.)
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scored positive (i.e., glucose, lactose, glycerol, lactate, succinate, citrate,
and ethanol), four were delayed (i.e., xylose, sucrose, xylitol, and
glucuono-1,5-lactone), and three were weak (i.e., raffinose, melezitose,
and propane 1,2-diol). In the latter study (Seo et al., 2007), six scored
positive (i.e., same as the positives in study (Hisamatsu et al., 2006),
except for lactose). Quantitative growth rates are more informative in
assessing the model predicted substrate-dependent biomass yields.
Therefore, we performed shake flask experiments for growth on 15 car-
bon substrates (see Supplementary Materials 5), using both the earlier
qualitative I. orientalis data (Seo et al., 2007; Hisamatsu et al., 2006) and
the predictions of iIsor850 as guides. Fig. 4A shows summary results for
each substrate that exhibited growth (see Supplementary Materials 5 for
data) at two of the time points for two of the basal growth media used.
We approximated the maximal growth rate on each carbon substrate for
culture are shown for two different base media: a synthetic defined medium (SC)
different carbon sources as indicated, using optical density as the measurement
with the lighter bars indicating 24 h after inoculation and darker bars indicating
ere used to estimate the specific growth rate for each base medium and carbon
e. Model predictions for growth rate on SC for the different carbon substrates are
rates (panel C). (For interpretation of the references to color in this figure legend,
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the two growth basal media, shown in Fig. 4B, as the mid-log exponential
growth rate. We compared these values to those generated by the model
using the corresponding substrate uptake rate estimates shown in
Figure 4C. The model correctly predicted positive growth for the same
seven carbon substrates that could be used for growth in vivo (i.e., glyc-
erol, ethanol, succinic acid, citric acid, fructose, glucose, and lactic acid),
and correctly predicted no growth for the remaining substrates tested
other than D-xylose. Interestingly, fructose was not tested in the previous
studies but both the model and experiments demonstrated growth. The
test of lactose scored negative for growth, which is in agreement with
previously reported data (Seo et al., 2007) (data not shown). Quantita-
tively, the model reasonably matched the growth rate for five of these
seven carbon substrates with notable exceptions of underpredicting the
growth on ethanol and overpredicting succinic acid (see Figure 4B). The
model was also unable to explain the low growth on citrate in YNB me-
dium. We furthermore found that I. orientalis SD108 was unable to grow
on D-xylose as a sole carbon source, despite the model’s prediction of
growth which were consistent with the presence in its genome of all
genes needed for D-xylose conversion to D-xylose-5-P and funneling to
pentose phosphate pathway (same as in the draft genome of
P. kudriavzevii M12 (Chan et al., 2012)). However, we found that when
using glucose and xylose together as the carbon source, after complete
utilization of glucose I. orientalis SD108 starts utilizing xylose but at a
very slow rate; approximately 10 mol% of the xylose consumed was
converted into xylitol found in the media (see Supplementary Materials 5
for time-course media concentrations and OD measurements). We note
that P. kudriavzevii VTT-C-75010 can consume D-xylose, enabling its
conversion into D-xylonic acid upon the recombinant expression of
D-xylose dehydrogenase and initial growth on glucose to maintain
biomass production (Toivari et al., 2013).

As mentioned when presenting network connectivity results above,
genome-wide gene essentiality data are not currently available for
I. orientalis. In lieu of such data, we identified differences in predictions in
I. orientalis and corresponding homologs in S. cerevisiae. In particular, two
genes that are predicted by iIsor850 to be essential in I. orientalis have
homologs in S. cerevisiae that are non-essential in vivo and according to
the model Yeast 8.3.4. Both of these genes, JL09_g1956 (YLR342W; 1,3-
beta-glucan synthase) and JL09_g1840 (YBR161W; mannosylinositol
phosphorylceramide (MIPC) synthase) have isozymes/paralogs present
in S. cerevisiae that were not found in I. orientalis (i.e., YGR032W and
YPL057C, respectively), thus resulting in the essentiality of these genes.
An additional 11 genes are essential in I. orientalis, but without homologs
in S. cerevisiae with which to compare. An additional six genes in
I. orientalis have essential homologs in S. cerevisiae but are predicted by
iIsor850 to be non-essential in I. orientalis. For four of these (i.e.,
JL09_g5079 (YKL001C; adenylyl-sulfate kinase), JL09_g4689
(YNL220W; adenylosuccinate synthase), JL09_g4696 (YOR303W;
carbamoyl-phosphate synthase (glutamine-hydrolyzing)), and
JL09_g5138 (YNR050C; saccharopine dehydrogenase (NADP, L-gluta-
mate forming)) involved with the synthesis of methionine, adenine,
arginine and lysine, respectively, two nearly identical isozymes (i.e.,
sequence identity > 99%) were classified by BLAST searches during the
model construction. I. orientalis SD108 is diploid (Xiao et al., 2014),
suggesting that these putative isozymes could in fact be alleles of the
same gene on the homologous chromosomes. Examining sequences
before and after the ORFs (i.e., JL09_g2650 and JL09_g5079, JL09_g4686
and JL09_g4689, JL09_g4693 and JL09_g4696, and JL09_g5105 and
JL09_g5138, respectively) revealed similar high sequence identity, thus
lending credence to this hypothesis. We attempted to knock out
adenylyl-sulfate kinase in I. orientalis SD108 but were unable to target
only one of the sequences, and the simultaneous knockout of both was
auxotrophic for methionine (data not shown), thus confirming the
essential nature of the associated reaction. For the fifth case of YER026C
(phosphatidylserine synthase), the protein sequences of the putative
isozymes (i.e., JL09_g964 and JL09_g5170) were 83% identical. We were
able to target independently the sequence with the higher identity to
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YER026C in S. cerevisiae, but the secondary isozyme was unable to rescue
this knock out. It is possible that the isozyme is not expressed under the
tested conditions or perhaps typically catalyzes a different reaction and
its secondary catalytic activity as phosphatidylserine synthase is insuf-
ficient for growth. For the sixth gene JL09_g4419 (YFL017C; N-acetyl-
glucosamine-6-phosphate synthase) which is involved in chitin
formation, iIsor850 predicted that it is non-essential if N-acetylglucosa-
mine-6-phosphate deacetylase is reversible. We were unable to knock out
JL09_g4419 suggesting that the deacetylase is probably not reversible
under the examined conditions. Indeed, we note that the reverse direc-
tion of N-acetylglucosamine-6-phosphate deacetylase purified from
E. coli is reported to be kinetically unfavorable (Souza et al., 1997).

We also examined predicted non-essential genes whose deletion in
iIsor850 leads to an impact on biomass yield. Upon inspection, we found
that the deletion of most of these genes only had a minor effect (i.e., max
growth rate was predicted to be within 98% that of the wild type).
However, for four enzymatic activities the model predicted a substantial
reduction, but not an elimination, of growth upon their individual
deletion. These enzymes were cytochrome reductase, ATP synthase,
complex I NADH dehydrogenase, and phosphoglycerate kinase. The first
three are multi-subunit enzyme complexes with 8, 14, and 8 gene
products, respectively, predicted to be subunits. The associated genes for
these four enzymatic activities are given within Supplementary Materials
7. We individually targeted three subunits of cytochrome reductase (i.e.,
JL09_g850, JL09_g2223, and JL09_g2279) for deletion in vivo but only
saw a reduction of cell growth rate to as low as 86% that of wild-type for
the three mutants, as opposed to the 23% of the wild-type growth rate
predicted by the model. When we targeted JL09_g1386 encoding one of
the subunits of ATP synthase, we saw a substantial reduction in growth
rate in vivo to 35% that of wild-type, which compared favorably to the
40% reduction predicted by the model. When examining the impact on
NADH dehydrogenase, we targeted in vivo JL09_g1702 and JL09_g4151.
We observed a reduction in growth to 87% that of wild-type for the
mutants, which was only slightly higher than the 76% predicted by the
model. We were unsuccessful in achieving a viable deletion of JL09_g220
which encodes phosphoglycerate kinase, despite the fact that the pre-
dicted reduction in growth rate was only slight, to 91%. This result is
consistent with observations for S. cerevisiae, in that the enzyme is
essential in vivo, yet Yeast 8.3.4 also predicts viability of the knockout.

Transketolase (TKL) carries out both reactions transketolase 1 (TKT1)
and transketolase 2 (TKT2). Unlike S. cerevisiae, which has two paralogs
TKL1 (YPR074C) and TKL2 (YBR117C), the only homolog we identified
in I. orientalis SD108 is locus JL09_g3308. When knocking out
JL09_g3308, FBA results indicated no growth on glucose, which is
consistent with the results in S. cerevisiae for the tkl1 tkl2 double null
mutant that is auxotrophic for aromatic amino acids. Using the succinic
acid producing mutant strain described in (Xiao et al., 2014), we
attempted the construction of knockout mutant for JL09_g4514 (GND),
however we were unable to create the null GND mutant in vivo. In
S. cerevisiae, unlike I. orientalis, there are paralogs of this gene, GND1
(YHR183W) and GND2 (YGR256W). Although in S. cerevisiae gnd1 or
gnd2 null mutants are viable, the double mutant gnd1 gnd2 is not viable,
possibly because of the accumulation of 6-O-phosphono-D-glucono-1,
5-lactone. We were also unable to create an ENO deletion mutant by
knocking out JL09_g3824. As with GND, in S. cerevisiae, there are
paralogs ENO1 and ENO2 for enolase which are absent in I. orientalis.
Although in S. cerevisiae eno1 or eno2 null mutants are viable, the double
mutant eno1 eno2 is inviable (i.e., synthetic lethal). FBA on the model
results indicated no growth on glucose for both the GND and ENO
eliminations. We note that Yeast 8.3.4 also incorrectly predicts viability
of the GND knockout as well as tolerance of all four lower glycolysis
reaction elimination, including ENO knockout. We were able to construct
a malate dehydrogenase knockout (JL09_g238, YKL085W) in I. orientalis
SD108 and confirmed its viable growth in YPD medium.

The model also predicted that I. orientalis SD108 may contain a
complete pathway to produce biotin (vitamin H), unlike many strains of



Fig. 5. Succinic acid production envelopes for growth on glucose. A) Aerobic
conditions for both wild type (dotted) and with heterologous expression of
fumarate reductase (frd) (solid). The increased production capacity enabled by
frd expression is shaded. B) Microaerobic conditions for both wild type (dotted)
and with heterologous expression of fumarate reductase (frd) (solid). The
increased production capacity enabled by frd expression is shaded. For both the
maximum growth rate is lower than aerobic conditions (cf. panel A), whereas
the absolute maximum succinic acid conversion possible is lower for only the
wild type (cf. panel A). C) Microaerobic production of succinic acid from glucose
with heterologous frd expression with a set of 5 OptKnock suggested simulta-
neous reaction eliminations (green shaded), and with a subset of 3 OptKnock
suggested simultaneous reaction eliminations (purple shaded), indicating the
impact of successive eliminations. The same conditions without the reaction
eliminations is shown for comparison (orange shaded). (For interpretation of the
references to color in this figure legend, the reader is referred to the Web version
of this article.)
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S. cerevisiae, including the reference genome strain S288c. Specifically,
we found loci that correspond to BIO1 and BIO6 (i.e., JL09_g2082 and
JL09_g2083, respectively). Both genes were found to be expressed by
qPCR and I. orientalis SD108 was able to grow on modified YPD medium
without biotin supplementation with no observed differences in medium
supplemented with or without biotin (see Supplementary Materials 6).
We were unable to knockout either gene and rescue with biotin
supplementation.

3.5. Model-guided metabolic engineering strategies for succinic acid
production

We evaluated the applicability of the model for guiding metabolic
engineering strategies for the industrial production of organic acids, by
using the OptKnock framework (Burgard et al., 2003). OptKnock iden-
tifies reaction deletions, upon which gene deletions can be suggested
based on model’s GPR associations, that lead to the targeted over-
production of a desired metabolite by ensuring that the target metabolite
production is coupled to growth. Specifically, as proof of concept we
applied the OptKnock framework using iIsor850 for growth on glucose
with the target of succinic acid production. For all OptKnock analyses in
this section, we excluded transporters and reactions without assigned
GPR associations from being selected as targets, and also excluded all but
one representative member of each fully coupled reaction set described
above. Reactions are located in the cytoplasm unless indicated otherwise
with a compartment denotation appended (e.g., with _m for
mitochondrion).

As found by FBA, the minimal oxygen uptake that does not impact the
maximum growth rate is 18.18 mol on a 10 mol glucose basis, and so we
set a constraint that limits oxygen uptake to no greater than this amount,
which we refer to hereafter as aerobic conditions. Initially, under aerobic
growth we identified as many as 105 distinct solutions involving com-
binations of 1–3 of 36 sets of reactions, as listed in Supplementary Ma-
terials 6, that enforce coupling of growth with succinic acid production
(i.e., production occurs to maximize biomass production). The growth
coupling requirement of succinic acid production eliminated an addi-
tional 11 solutions that had a lower bound of zero for succinic acid
production at maximum biomass flux (identified using flux variability
analysis (FVA) (Mahadevan and Schilling, 2003)). Notably, reaction
succinate dehydrogenase (ubiquinone-7) (SUCDq7_m) occurred in every
solution. Succinate dehydrogenase is the electron transport chain known
as Complex II and occurs in the mitochondria via the involvement of
multiple subunits. The GPR association for this reaction in iIsor850 is
“SDH1 and SDH2 and SMI1 and (TIM18 or SDH4) and (SDH5 or SDH8)”.
In the only single reaction (i.e., SUCDq7_m) elimination solution iden-
tified by OptKnock, at least 0.15 mol succinic acid are produced using a
basis of 10.0 mol glucose with a corresponding reduction in growth rate
of only 2% compared to wild-type. Upon deleting of both JL09_g265
(SDH1) and JL09_g3504 (SDH2) in vivo we observed a slight increase in
succinic acid production consistent with the OptKnock predictions. The
knockout in the corresponding succinate dehydrogenase enzyme com-
plex in S. cerevisiae (i.e., a sdh3 null mutant) has been shown to have
improved both succinic acid titer and yield (Otero et al., 2013).

Two concerns with the industrial applicability arose of the solutions
found for the wild type strain under aerobic glucose growth. The first is
the ability to implement the solution in vivo. Because OptKnock operates
on the reaction level, we examined the GPR associations for these re-
actions and evaluated the feasibility of the associated gene knockouts.
Filtering out all reaction eliminations from the solution sets reported to
be inviable in vivo in S. cerevisiae reduces the number of solutions to 35
that have exactly three reaction eliminations in each. The second is that
most these solutions (i.e., 30) had just greater than 25% carbon yield of
succinic acid, and the top remaining solution involved a guaranteed
succinic acid yield of just 38.7% carbon yield and 62% of biomass yield
compared to wild-type. In fact, flux variability analysis (FVA) revealed
that the maximal conversion of glucose into succinic acid for the wild
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type network is 1:1 and occurs when cells are not growing (i.e., no
glucose is converted into biomass). This condition, however, still causes
the loss of 2 of the 6 carbons in glucose, resulting in a maximum of 66.7%
carbon yield for succinic acid. Heterologous expression of a fumarate
reductase (frd) gene codon optimized for S. cerevisiae has been shown in
vivo to result in increased succinic acid productivity (Xiao et al., 2014).
By adding the reaction fumarate reductase to the network, along with a
reaction to regenerate its co-factor, FVA indicated that all 6 carbons of
glucose could be routed into succinic acid for the maximum theoretical
yield of 15.0 mol succinic acid using a basis of 10.0 mol glucose (i.e., a
carbon yield of 100%). Production envelopes for succinic acid for both
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the wild-type and þfrd are shown in Fig. 5A.
FVA further uncovered that high oxygen uptake rates would in

principle allow the cell to divert most glucose to biomass rather than
succinic acid, as indicated by the rightmost parts of Fig. 5A, thus reducing
carbon yield of succinic acid. We examined the impact of setting an
additional constraint to simulate microaerobic condition as a model-
testable strategy to improve succinic acid production. Introducing
microaerobic conditions during the shift from aerobic (growth phase) to
anaerobic (production phase) conditions has been observed in vivo to
improve succinic acid production in E. coli (Martinez et al., 2010). Also,
an engineered Corynebacterium glutamicum exhibited increased produc-
tion of acetate and succinic acid under microaerobic conditions
(Yamauchi et al., 2014). Using the glucose uptake basis used previously
(i.e. 10 mol glucose), we found that a minimal amount of 3.17 mol ox-
ygen is required for the maximal theoretical succinic acid yield. Such
uptake amount was used in our simulation for microaerobic conditions,
and the resulting maximum growth rate is 31.7% of that in aerobic
conditions. Production envelopes showing carbon yield for succinic acid
under these microaerobic conditions is shown in Fig. 5B. We note that
even under minimal oxygen uptake levels (e.g., 0.057mol, which permits
10% of the maximum aerobic biomass flux rate) the maximum carbon
yield for succinic acid is 83.1%. These results underscore the impact
operational conditions can have on production.

We thus decided to explore the ramifications of modifying both the
network and operational conditions. We subsequently reapplied Opt-
Knock using 1) the network augmented with fumarate reductase, 2) an
additional constraint on oxygen uptake to not exceed the microaerobic
value, 3) coupled-sets of reactions to reduce the set of reactions allowed
to be selected, and 4) the prevention of selecting reactions associated
with inviable in vivomutants in S. cerevisiae. The results were not simply a
recapitulation of the previous aerobic results. We identified as many as
336 different solutions that enforce coupling of growth with succinic acid
production (i.e., non-zero required production of succinic acid for a
biomass yield of at least 10% of the microaerobic maximum value. These
solutions contained between 1 and 6 from a list of 78 different reactions.
Unlike under aerobic conditions, succinate dehydrogenase (ubiquinone-
7) (SUCDq7_m) only occurred in a few the solutions (i.e., less than 10%).
Examination of solutions containing SUCDq7_m revealed that these were
a subset of the aerobic solutions and were below the median micro-
aerobic solution; the best only guaranteed a 18.8% carbon yield, accen-
tuating the difference that operating conditions can make. Furthermore,
no single reaction occurred in every solution, and the triple knockout
solutions were not all supersets of the double knockout solutions. Fig. 5C
illustrates the production envelope of one of the top solutions, which
involves the simultaneous elimination of 1) pyruvate decarboxylase, 2)
aspartate transaminase, 3) valine transaminase, 4) glucose 6-phosphate
dehydrogenase, and 5) homoserine dehydrogenase. This solution re-
sults in 66% carbon yield of succinic acid at maximal growth, which is
69% of that for the þfrd strain with no reaction eliminations under
microaerobic conditions. A subset of this solution, consisting of the first 3
reaction eliminations (i.e., pyruvate decarboxylase, aspartate trans-
aminase, and valine transaminase) was also identified as a potential so-
lution, albeit with an inferior predicted conversion, as indicated in
Fig. 5C. Among the reactions present in some solutions we found thre-
onine aldolase, GLY1 (YEL046C), which has been identified elsewhere as
a potential knockout target, based on gene expression data for an evolved
strain of S. cerevisiae that had deletions in both succinate dehydrogenase
and 3-phosphoglycerate dehydrogenase and exhibited improved succinic
acid titers (Otero et al., 2013). We also found PGL (6-phosphoglucono-
lactonase), the elimination of which results in no flux through the
pentose phosphate pathway (PPP). We note that a strategy for increasing
succinic acid production by disrupting PPP via a G6PD (glucose-6--
phosphate dehydrogenase) knockout was described in S. cerevisiae (Patil
et al., 2005).
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4. Conclusion

In this work, we introduced the genome-scale metabolic model
iIsor850 which encapsulates the metabolic capabilities of I. orientalis
SD108. To improve the predictive capabilities of the model we derived its
biomass composition based in part on our biomass composition mea-
surements and estimated ATP maintenance requirements using chemo-
stats growth data collected for the present study. We generated in vivo
carbon substrate utilization data and captured in silico all seven of the 15
which enabled positive growth phenotypes. By predicting and testing in
vivo gene essentiality and growth defects resulting from gene deletions,
we were able to validate and improve the model GPR association as-
signments. In general, the modeling and validation stages revealed some
of the complexities that can occur when working with non-model or-
ganisms, especially those that are not monoploid. We envision that
iIsor850 will facilitate the metabolic engineering of I. orientalis for
organic acid production.

Previous studies have examined the impact of extracellular pH has on
S. cerevisiae and found increased activity of the plasma membrane
ATPase, at the expense of ATP (Pampulha and Loureirodias, 1989). In
particular, incubating S. cerevisiae in acetic acid dissipates the proton
motive force across the plasma membrane (Guldfeldt and Arneborg,
1998). Such effects might impact I. orientalis SD108, especially at higher
titers of organic acid production and could necessitate reevaluating the
ATP maintenance costs associated with the production environment.

Looking to the future, we note that subsequent iterations of metabolic
reconstructions of I. orientalis can incorporate additional biochemical
information in order to address aspects of iIsor850, such as reactions
without associated genes or reconnecting blocked metabolites. For
instance, the remaining blocked metabolites identified by MEMOTE are
targets for further verification (for instance by probing the occurrence of
these metabolites in vivo) or hypotheses generation for possible reaction
functionalities involving these metabolites which could be experimen-
tally examined, thereby resulting in subsequent updates to the model. In
addition, genome-wide single gene deletion data is necessary to improve
the GPR association assignments (Thiele and Palsson, 2010); such ex-
periments for I. orientalis could prove insightful for refining iIsor850.
Additionally, continued efforts on genetic tools in I. orientalis will
streamline efforts to perform interventions predicted to achieve meta-
bolic engineering targets. Although the phylum to which I. orientalis
belongs (i.e., Ascomycota) contains other genome-scale network re-
constructions (Monk et al., 2014), iIsor850 provides a more exact meta-
bolic reconstruction for simulation and expands the coverage of fungal
genomes.

Availability of data and material

The model is provided in Supplementary Materials 8 in JSON and
SBML (version 3, level 1) versions. A list of putative paralogs is in Sup-
plementary Materials 1. The data for biomass composition for free fatty
acids are provided in Supplementary Materials 2. The formulation of the
biomass reaction is available in Supplementary Materials 3. The data for
glucose uptake rates under carbon limited conditions in a chemostat are
in Supplementary Materials 4. The carbon substrate growth data and
growth phenotype data for the gene deletion strains are provided in
Supplementary Materials 5. qtPCR data for biotin experiments are in
Supplementary Materials 6. The Flux Coupling Finder results and Opt-
Knock strain redesign suggestions are provided in Supplementary Ma-
terials 7.
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