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ABSTRACT The genome sequence of the acidophile Rhodovastum atsumiense was
determined for comparison with that of Rhodopila globiformis. Both genomes are
unusually large for purple bacteria (7.10 Mb and 7.25 Mb, respectively), and they
have an average nucleotide identity of 72%. This value is remarkably similar to the
average nucleotide identity values for Acidisphaera, Elioraea, and Paracraurococcus,
all aerobic anoxygenic phototrophs.

Acidophilic purple photosynthetic bacteria are relatively unusual. There are two
groups, which are only distantly related, i.e., those in the Bradyrhizobiaceae family,

including Rhodoblastus acidophilus (1) and Rhodoblastus sphagnicola (2), and those in
the Acetobacteraceae family, including Rhodopila globiformis (3) and Rhodovastum
atsumiense (4). One of the most important characteristics of these bacteria is the
optimal growth pH, which is 4.8 to 5.0 for R. globiformis and 6.0 to 6.5 for R. atsumiense
(3, 4). The redox potentials of cytochrome c2 and high-potential iron-sulfur protein
(HiPIP) are surprisingly high, in the region of 400 mV (5–7), but the reason for this
observation remains unknown. If nothing else, it suggests that R. globiformis lives in a
highly aerobic environment. Another observation is that cells die immediately if they
are overgrown, which is generally not the case with other purple bacteria (8, 9).
Acidisphaera rubrifaciens is an aerobic anoxygenic phototroph (AAP), whose rRNA is
relatively closely related to that of R. globiformis (94.4% identity) and R. atsumiense
(95.5% identity) (10). The genome sequence of R. globiformis was determined previ-
ously (11), and we now report the genome sequence of R. atsumiense.

Rhodovastum atsumiense was originally isolated from submerged paddy soil from
the Atsumi Peninsula in Japan (4). Genomic DNA of R. atsumiense (strain DSM 21279)
was obtained from DSMZ. DNA analysis using Qubit and NanoDrop instruments
showed an A260/A280 ratio of 1.79. The sequencing library was prepared using the
Illumina Nextera DNA Flex library preparation kit. The genome was sequenced with an
Illumina MiniSeq system using 500 �l of a 1.8 pM library. Paired-end (2 � 150-bp)
sequencing generated 2,592,590 reads and 202.3 Mbp (35� coverage). Quality control
of the reads was performed using FastQC within BaseSpace (version 1.0.0; Illumina),
using a k-mer size of 5 and contamination filtering. We assembled the genome de novo
using SPAdes (version 3.10.0) (12) through PATRIC (13). This assembly yielded 226
contigs (�300 bp), with the largest being 264,348 bp; the N50 was 104,226 bp. The
genome had a GC content of 68.7% and was 7,097,890 bp long, which is larger than the
average size of purple bacterial genomes (2.5 to 5.5 Mbp) (14) but similar to the size of
the Rhodopila globiformis genome (7.25 Mb) (11). The genome was annotated using the
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RAST tool kit (15) within PATRIC (13), and this showed our strain to have 6,942 coding
sequences and 50 tRNAs.

A JSpeciesWS comparison (16) of the average nucleotide identity (ANI) of the
Rhodovastum atsumiense genome indicated 72.0% identity to the R. globiformis ge-
nome and 72.5% to Acidisphaera rubrifaciens DSM 16009. Other AAPs, namely, Elioraea
tepidiphila DSM 17972 and Paracraurococcus ruber, both demonstrated ANI values of
70.5%. The ANI values for Rhodovastum atsumiense are clearly below the proposed 95%
cutoff value for genome definition of a species (16). ANI analysis also showed that R.
atsumiense and the AAPs mentioned above are not very closely related (�72% identity).
Phylogenetic analysis of the R. atsumiense genome using RAxML within PATRIC (17, 18)
showed R. globiformis as the closest relative, followed by Acidisphaera and, more
distantly, Paracraurococcus and Elioraea (Fig. 1).

R. atsumiense has both cytochrome c2 and HiPIP, and the HiPIP gene is located in the
same place as in R. globiformis, downstream of PuhA and the cytochromes c2 that
donate electrons to the photosynthetic reaction center in other species of purple
bacteria. This finding suggests that HiPIP, rather than cytochrome c2, is the electron
donor in these two species, although the proteins could react interchangeably.

Data availability. This whole-genome shotgun project has been deposited in
DDBJ/ENA/GenBank under accession number VWPK00000000; the version described in
this paper is version VWPK01000000. The raw sequencing reads have been submitted
to SRA under accession number SRR10679485.
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