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Abstract: Cities are areas featuring a concentrated population and economy and are major sources
of carbon emissions (CEs). The spatial differences and influential factors of urban carbon emissions
(UCEs) need to be examined to reduce CEs and achieve the target of carbon neutrality. This paper
selected 264 cities at the prefecture level in China from 2008 to 2018 as research objects. Their
UCEs were calculated by the CE coefficient, and the spatial differences in them were analyzed
using exploratory spatial data analysis (ESDA). The influential factors of UCEs were studied with
Geodetector. The results are as follows: (1) The UCEs were increasing gradually. Cities with the
highest CEs over the study period were located in the urban agglomerations of Beijing–Tianjin–Hebei,
Yangtze River Delta, Pearl River Delta, middle reaches of the Yangtze River, and Chengdu–Chongqing.
(2) The UCEs exhibited certain global and local spatial autocorrelations. (3) The industrial structure
was the dominant factor influencing UCEs.

Keywords: urban carbon emissions; carbon neutrality; spatial differences; influential factors; ex-
ploratory spatial data analysis; Geodetector

1. Introduction

Humankind is facing a global crisis in the form of climate change that has seriously
threatened sustainable economic growth and public health [1,2]. Increased carbon emissions
(CEs) owing to human activity have been the main cause of climate change since the 20th
century [3–5]. China has been the world’s largest carbon emitter since 2006 [6,7]. In the near
future, CEs are expected to continue to increase in China [8]. Under this situation, China,
as a major and responsible member of the world community, is actively participating in
the global governance system. The Chinese government is committed to achieving its
carbon peak by 2030 and carbon neutrality by 2060 (http://www.gov.cn/xinwen/2021-09/
22/content_5638597.htm, accessed on 6 May 2022).

Cities have a high population density and high intensity of energy consumption,
because of which they are a major source of CEs. A total of 85% of direct CEs in China
come from cities [9]. The concentration of urban carbon emissions (UCEs) is relatively
high in them, with the top 10% of the cities contributing 50% of the total CEs [10–12]. The
urbanization rate of China exceeded 64% in 2021 and will continue to increase in the future
along with CEs. The city is the basic unit used to make policies on reducing CEs and
achieving carbon neutrality, and effective response to global climate change requires the
comprehensive participation of the city [13,14]. Because of their stage of development,
population size, and resource endowments, there are significant differences among cities
in China in terms of UCEs [15–18]. For China, controlling UCEs is critical to achieving its
carbon neutrality. Exploring the spatial differences in UCEs and the factors influencing
them is crucial to making policies on low-carbon development to achieve carbon neutrality.
That is to say, it is necessary to develop differentiated emission reduction policies for cities
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with different agglomeration types of CEs and targeted policies for the critical factors
influencing them.

Previous studies have analyzed the spatial differences in CEs at different regional
levels. First, at the international level, Ding and Zhang [19] analyzed the CEs of major
countries in the world from multiple perspectives and found that China, the United States,
Russia, and Canada were the largest emitters. Qiao et al. [20] forecasted CEs in the countries
of the Asia–Pacific Economic Cooperation and concluded that the CEs of 13 countries
were rising, whereas those of four countries were falling. Second, at the national level,
Li et al. [21] calculated production-based emissions, consumption-based emissions, and
emissions transfer at the provincial level in China from 2005 to 2015. Xiong et al. [22]
reported that the CEs in China’s regional tourism were growing significantly with marked
differences across its regions. Liu et al. [23] found that the intensity of carbon emissions
showed a downward trend and was low in the southeast and high in the northwest of
China. Yang et al. [24] measured the efficiency of industrial carbon emissions and revealed
significant regional differences and varying spatial agglomeration among the provinces of
China. Third, in strategic regions, Zhou et al. [25] noted that Macao, Shenzhen, and Hong
Kong had the highest intensity of CEs, and cities such as Hong Kong, Shenzhen, Foshan,
and Huizhou in the Guangdong–Hong Kong–Macao Greater Bay Area had reached peak
emissions. Zhang et al. [26] unraveled the remarkable clustering characteristics of CEs in
the Yellow River Economic Belt. Lv et al. [27] posited that Shanghai, Suzhou, and their
surrounding cities remain CE hotspots in the Yangtze River Delta urban agglomeration.

Existing studies have also analyzed the effects of relevant factors on CEs. First, the
relationship between economic growth and CEs has long been a focus of research. Whether
the environmental Kuznets curve (EKC) [28] is applicable to the relationship between
them has been an important subject of research. Hundie [29] and Alharthi et al. [30]
confirmed the applicability of EKC to their respective issues. Some studies demonstrated M-
shaped, N-shaped, U-shaped, and inverted M-shaped patterns in the relationship between
economic growth and CEs [31–33]. Second, the impact of urbanization on regional CEs
has also warranted scholarly attention, and a significant two-way relationship between
them has been identified [34,35]. Third, international trade and foreign investment are
important channels for economically backward regions to learn advanced production
technologies and gain management experience [36]. When foreign investment brings
low-carbon technologies and the service industry, it can contribute to the reduction in
local emissions [37]. In addition to these factors, land-use efficiency [38], environmental
regulation [39], technological progress [40], household income [41], urban morphology [42],
and artificial intelligence [43] have also been studied as the influential factors of CEs.

Systematic and in-depth studies have been carried out on the spatial differences and
influential factors of CEs at the national and provincial levels. Although some studies have
taken cities as the basic unit, most of them have considered specific urban agglomerations
and river basins as research objects, which could not be generalized to the entire country.
This significantly reduces the reference value of such research for policymaking. If we
choose cities as the basic research unit, what are the spatial differences among them in
terms of UCEs in China? What are the factors affecting them? To answer these questions,
we selected 264 cities at the prefecture level in China as research objects. We used the
calculated UCEs from 2008 to 2018 along with exploratory spatial data analysis (ESDA) to
explore the spatial differences in UCEs. We also employed Geodetector to examine factors
affecting them.

The contributions of this study to the existing research are three-fold: First, most
existing studies focused on national and provincial areas, whereas this study takes 264 cities
at the prefecture level as the research unit across the country. Second, this study explores the
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spatial differences in UCEs using ESDA and contributes to revealing the characteristics
of spatial correlation. Third, this study also delves into the factors influencing UCEs
with Geodetector, which can provide a reference for making policies on urban emission
reduction to achieve carbon neutrality.

The remainder of this paper is arranged as follows: Section 2 details the sources of data
and the methods used, including the calculation of CEs, ESDA, and Geodetector. Section 3
presents the results of spatial differences and influential factors of UCEs. The conclusions
of this study and specific policy implications are provided in Section 4.

2. Data Sources and Methods
2.1. Data Sources

The consumption of fossil energy is the primary source of CEs in Chinese cities.
Drawing on previous studies [44,45], we used the consumption data of 15 energy resources
from 264 cities at the prefecture level to calculate the CEs. The data on energy consumption
by cities were derived from the statistical yearbook of each city (https://data.cnki.net/,
accessed on 17 January 2022), which Chinese government departments provide with
authority and credibility. In case data were missing or unavailable, they were collected from
the statistical yearbook of the province to which the city belongs (https://data.cnki.net/,
accessed on 17 January 2022). The standard energy conversion coefficient (SECC) for
coal and the carbon emission coefficient (CEC) for alternative energy resources used in
this research referred to the China Energy Statistical Yearbook (https://data.cnki.net/,
accessed on 17 January 2022), General Rules for Calculation of the Comprehensive Energy
Consumption (GB/T 2589-2020) (http://openstd.samr.gov.cn/, accessed on 17 January
2022), and Guidelines for Compilation of Provincial Greenhouse Gas Inventories (http:
//www.cbcsd.org.cn/, accessed on 17 January 2022). Table 1 shows the SECC and CEC of
different energy resources. The urban economic and social data used to analyze the factors
influencing UCEs stemmed from the China City Statistical Yearbook and the China Urban
Construction Statistical Yearbook (https://data.cnki.net/, accessed on 17 January 2022).

Table 1. The SECC and CEC of different energy resources.

Energy SECC CEC Energy SECC CEC

Raw coal 0. 7143 2. 492 Fuel oil 1. 4286 2. 219
Cleaned coal 0. 9000 2. 631 Liquified petroleum gas 1. 7143 1. 828

Coal products 0. 6000 2. 631 Natural gas 1. 2143 2. 162
Coke 0. 9714 2. 977 Liquified natural gas 1. 7572 2. 660

Crude oil 1. 4286 2. 104 Refinery gas 1. 5714 1. 654
Gasoline 1. 4714 1. 988 Coke oven gas 0. 6143 kgce /m3 1. 288
Kerosene 1. 4714 2. 051 Blast furnace gas 0. 1286 kgce /m3 7. 523
Diesel oil 1. 4571 2. 167

2.2. Methods
2.2.1. Calculation of UCEs

The SECC and CEC were used to calculate the UCEs, as shown in Equation (1):

UCEs =
n

∑
i=1

(Ki × Ei) (1)

UCEs express CEs in a city; Ei denotes the consumption of energy i after converted to
standard coal; Ki refers to the CEC of energy i. This calculation method for carbon emissions
features broad applicability, convenient data acquisition, and consistent statistical caliber [46].

https://data.cnki.net/
https://data.cnki.net/
https://data.cnki.net/
http://openstd.samr.gov.cn/
http://www.cbcsd.org.cn/
http://www.cbcsd.org.cn/
https://data.cnki.net/
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It applies to comparing spatial differences between cities at the prefecture-level in the
present study. This method is also widely used in EU countries. In addition to this method,
carbon emissions can also be calculated by life cycle assessment and input-output [47],
which do not lend themselves to large-scale and continuous comparison.

2.2.2. ESDA

ESDA, proposed by Messner et al. [48], is a method to analyze the spatial structure,
spatial form, spatial trend, and outliers contained in data. It is advantageous is exploring
the spatial agglomeration and autocorrelation of the given research sample [49,50]. It
includes the Global Moran’s I and Local Moran’s I. The Global Moran’s I was used to
explore the spatial distribution of UCEs in the entire region. If it is >0, the UCEs have
a positive spatial autocorrelation. If it is <0, the research object has a negative spatial
autocorrelation. The equations are as follows:

I =
∑n

i=1 ∑n
j=1 Wij(xi − x)

(
xj − x

)
S2 ∑n

i=1 ∑n
j=1 Wij

(2)

S =
1
n

n

∑
i=1

(xi − x)2 (3)

xi and xj represent the CEs of cities i and j, respectively; x expresses the average value
of UCEs; Wij denotes the spatial weight matrix of cities i and j. If the two cities have a
common boundary, Wij is 1; otherwise, it equals 0. The standardized statistic was used to
test the significance as follows:

Z(I) =
[1 − E(I)]√

Var(I)
(4)

Z(I), E(I), and Var(I) express the significance, mathematical expectation, and variance of
Global Moran’s I, respectively.

To explore the heterogeneity of UCEs in sub-regions, we resorted to Local Moran’ I.
The LISA clustering map combined with the Moran scatterplot, and Local Moran’s I can
reflect the agglomeration types of UCEs. Local Moran’ I was defined as:

Ii =
∑n

i=1 ∑n
j=1 Wij(xi − x)

(
xj − x

)
S2 (5)

Its significance was also tested by Equation (5). By comparing the signs of Z(I) and
the significance of Ii, the spatial units whose significance levels reach a certain threshold
(p = 0.05) could be divided into four types, as shown in Table 2.

Table 2. Four types of local spatial autocorrelation.

Type Z(I) Ii Explanation

High−high >0 Significantly positive The CEs of this city and its adjacent cities are relatively high; that is, it is a hotspot.
Low−low <0 Significantly positive The CEs of this city and its adjacent cities are relatively low; that is, it is a cold spot.
High−low >0 Significantly negative Cities with high CEs are surrounded by cities with low emissions.
Low−high <0 Significantly negative Cities with low CEs are surrounded by those with high emissions.

2.2.3. Geodetector

Geodetector, proposed by Wang [51], is a statistical analysis method with geographical
characteristics and can be used to reveal the factors affecting a given research object [52].
Its biggest advantage lies in that the calculation process and results will not be affected
by multivariable collinearity. Suppose the research region consists of sub-regions, and if
the variance of the region is greater than its sum in the sub-regions, this accounts for the
spatial differentiation between sub-regions. The two variables are spatially connected in
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case the spatial distribution is consistent. Geodetector can reflect the interaction between
different factors and variables and can be used to explore the factors influencing resources
and the environment [53,54]. In this paper, Geodetector was used to simulate the factors
influencing UCEs. The model was as follows:

PD,UCEs = 1 − 1
nσ2

UCEs

m

∑
i=1

nD,iσ
2
UCEsD,i

(6)

PD,UCEs expresses the effect of a factor on UCEs. Its range is [0, 1]. If its value is
large, this factor has a significant effect. If the value of PD,UCEs is zero, this factor has no
relationship with UCEs. A value of 1 indicates that the factor can fully account for the
UCEs. D refers to the factor affecting UCEs; n and σ2 denote the number and variance of
cities; m stands for the number of categories of an influential factor; nD,i represents the
number of influential factor D in class i.

3. Results
3.1. UCEs

The results showed two significant characteristics of the UCEs in China. First, cities with
the highest UCEs over the years were all located in the Beijing–Tianjin–Hebei, Yangtze River
Delta, Pearl River Delta, middle reaches of the Yangtze River, and Chengdu–Chongqing urban
agglomerations (UA). Figure 1 shows the results of UCEs in China for 2008–2018. The
dark colors represent cities with high CEs, whereas light colors represent cities with low
CEs. Cities with the largest CEs were all located in the five large UAs mentioned above.
These are the most important UAs in China and have strong economic growth and ability,
innovation, and a high degree of openness. They are the growth poles that drive China’s
economic growth and play a leading role in the national economic system. However,
they are also areas with the highest CEs in China and face daunting work for green and
low-carbon development.

Moreover, the UCEs showed a trend of gradually increasing. To make the represen-
tation more direct and concise, the average values of UCEs in China and its four regions
(Table 3) are used for illustration (Figure 2). From 2008 to 2018, the average value of UCEs in
the entire country, and in Eastern, Central, and Western China showed a trend of gradually
increasing; only cities in Northeastern China showed a trend of increase from 2008 to 2014
and then decrease in 2015 and 2017. A comparison of the average values of the four regions
showed that Eastern China had a much higher value than the other three regions, indicating
that it was the key region that requires low-carbon development and emission reduction.

Figure 1. Cont.
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Figure 1. The UCEs in China between 2008 and 2018. (a) 2008; (b) 2010; (c) 2012; (d) 2014; (e) 2016;
(f) 2018. Note: This figure shows only the results of even years, and the results of odd years can be
seen in Supplementary Materials.

Figure 2. The average values of UCEs in China and its four regions between 2008 and 2018.
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Table 3. The four regions in China.

Regions Provinces (Municipality Directly under the Central
Government, Autonomous Region)

Eastern China Beijing, Tianjin, Hebei, Shanghai, Jiangsu, Zhejiang, Fujian,
Shandong, Guangdong, and Hainan.

Central China Shanxi, Anhui, Jiangxi, Henan, Hubei, and Hunan.

Western China Inner Mongolia, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan,
Tibet, Shaanxi, Gansu, Qinghai, Ningxia, and Xinjiang.

Northeastern China Liaoning, Jilin, and Heilongjiang.

3.2. Spatial Differences in UCEs

The global spatial autocorrelation of UCEs in China between 2008 and 2018 was tested
using ArcGIS 10.2 software. The results (Table 4) demonstrated that the Global Moran’s I
was positive every year and passed the 1% significance test. This illustrates that the UCEs
in China had similar spatial characteristics of agglomeration. However, the Global Moran’s
I was not large—its highest value was only 0.2602—which indicates that the global spatial
autocorrelation of UCEs in China was not very significant.

Table 4. The global spatial autocorrelation of UCEs in China between 2008 and 2018.

Year Moran’s I Z p-Value

2008 0.2400 5.8676 0.001
2009 0.2400 5.8426 0.001
2010 0.2165 5.2357 0.001
2011 0.2321 5.6237 0.001
2012 0.2355 5.6809 0.001
2013 0.2540 6.1822 0.001
2014 0.2562 6.2269 0.001
2015 0.2602 6.2882 0.001
2016 0.2483 5.9471 0.001
2017 0.2497 5.9488 0.001
2018 0.2502 5.9493 0.001

The local spatial autocorrelation of UCEs in China between 2008 and 2018 was also
tested by ArcGIS 10.2 software. The UCEs showed some local spatial autocorrelation,
which could be divided into four types (Figure 3): High-high, high-low, low-low, and
low-high. However, compared with the number of cities with insignificant local spatial
autocorrelation, the proportion of these four types of cities was not high. In 2017, the
number of these four types of cities was the highest, accounting for only 27% of the total.
They were the fewest, accounting for only 20.5% in 2010. The number of cities in each type
was stable. The low-low type had the largest number of cities, and the high-low type had
the least. Low-low-type cities were mainly distributed in Guangdong, Fujian, Gansu, and
Jiangxi provinces. High-high-type cities were mainly distributed in Shandong Province,
Hebei Province, around Shanghai, and Guangdong Province. Both low-low-type and
high-high-type cities were identified in Guangdong Province, which showed prominent
differences in UCEs.

Previous studies on spatial differences of CEs in China concluded that the carbon
emissions in China showed spatial autocorrelation [21,22]. The hot spot area was located in
the North China Plain, and the cold spot area was located in the northwest [23]. However,
our research is specific to the city level, which can unravel which city belongs to the hot
spot area and which city belongs to the cold spot area, thereby providing more accurate
information for policymaking in emission reduction.
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Figure 3. The local spatial autocorrelation of UCEs in China between 2008 and 2018. (a) 2008; (b) 2010;
(c) 2012; (d) 2014; (e) 2016; (f) 2018. Note: This figure shows only the results of even years, and the
results of odd years can be seen in Supplementary Materials.

3.3. Influential Factors of UCEs

With reference to the previous studies [55,56] and the characteristics of urban de-
velopment in China, nine indicators—economic scale, industrial structure, population
urbanization, land urbanization, resident income, technological progress, energy structure,
openness, and environmental regulation—were considered as the factors influencing UCEs.
The reasons are as follows:

(1) Economic scale. It is expressed by urban GDP. The expansion of economic scale
increases the output of products, whereas the expansion of output may increase CEs at the
same technological level. When economic growth reaches a certain stage, that is, after the
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turning point of the EKC, the expansion of the economic scale may lead to a reduction in
CE changes in the technology level and production model [57].

(2) Industrial structure. It is expressed by the proportion of the added value of
the secondary industry. The industrial structure upgrading is an important indicator of
economic growth. Different industrial structures have different effects on CEs [58]. A
stage dominated by the secondary industry is inevitable in the evolution of the industrial
structure. The industrial and transportation sectors in the secondary industry are important
sources of CEs. With the development of the industry, the expansion in the production
scale brings about more CEs.

(3) and (4) Population urbanization and land urbanization. They are expressed by
the proportions of urban population and land for construction, respectively. The urban
population is growing, and the land for urban construction is expanding. The demand for
energy will continue to increase with rising urbanization and may lead to a corresponding
increase in CEs. When the urbanization rate exceeds a certain level, the application of
new environmental protection technology and improvements in energy efficiency will be
conducive to reducing CEs [59].

(5) Resident income. It is expressed by the average wage of urban workers. The
awareness of energy conservation and emission reduction among residents and enterprises
improves with the increase in the urban resident income, which is conducive to reducing
CEs [60]. However, after the increase in urban resident income, local demand increases to
scale up the manufacture of products, which increases CEs.

(6) Technological progress. It is expressed by the expenditure on science and technol-
ogy. On the one hand, environmentally friendly technological progress can improve energy
efficiency in the production process. On the other hand, technological progress may not
be environmentally friendly, and the expansion of the production scale accompanied by
technological progress may increase CEs [61].

(7) Energy structure. It is expressed by the proportion of coal consumption. It can
directly determine the intensity of CEs. When the proportion of clean and new energy is
high, CEs at the same level of energy consumption are lower. While the chemical energy
dominated by coal is the main source of CEs, the high proportion of coal is not conducive
to reducing CEs [62].

(8) Openness. It is expressed by the amount of foreign capital used. Opening up is
conducive to attracting foreign enterprises that can help save energy and reduce emissions
to carry out more green production, thus reducing CEs [63]. At the same time, foreign
capital can flow in owing to low environmental standards and intensity of environmental
regulation in developing countries, which can lead to the pollution haven effect and
problem of growing CEs.

(9) Environmental regulation. It is expressed by the investment in environmental pollution
control. A higher intensity of regulation forces enterprises to reduce emissions [64,65]. There-
fore, the intensity of environmental regulation is an important factor restraining CEs by
enterprises.

Figure 4 shows the Geodetector results for UCEs in China between 2008 and 2018.
The contribution of the industrial structure to UCEs was higher than other factors every
year. The industrial structure dominated by the secondary industry was the dominant
factor affecting UCEs in China. The economic scale and energy structure also had a
relatively significant effect on UCEs. The impact of land urbanization, resident income, and
environmental regulation on UCEs was not significant. From the evolution of the industrial
structure in China, industrialization has entered a stage of rapid development; the total
industrial output has continued to rise; a complete industrial system has been established;
China has become a manufacturer for the world. China has now entered the late stage of
industrialization, which brings about the problems of high energy consumption and CEs.
In 2017, for example, the energy consumption per unit GDP in China was 152 g of standard
oil per US dollar, 25 g/US dollars higher than the world’s average and more than twice
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that of the UK. Therefore, of all influential factors, the industrial structure was the leading
driver of UCEs in China.

Figure 4. The influential factors of UCEs in China from 2008 to 2018. (a) 2008; (b) 2010; (c) 2012;
(d) 2014; (e) 2016; (f) 2018. Note: All the results passed the 1% significance test. This figure shows
only the results of even years, and the results of odd years can be seen in Supplementary Materials.

Some studies have found that the population size or economic scale is the main factor
affecting carbon emissions [16,22]. This is not consistent with our findings that different
research objects may cause this difference.

4. Conclusions and Policy Implications
4.1. Conclusions

This study attempted to explore the spatial differences and influential factors of UCEs
in China. In total, 264 cities at the prefecture level in China from 2008 to 2018 were
taken as research objects. ESDA was used to analyze the spatial differences in UCEs, and
Geodetector was employed to analyze the factors affecting UCEs. The conclusions were
as follows: (1) The UCEs showed a gradual upward trend, and cities with the highest
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emissions were located in the Beijing–Tianjin–Hebei, Yangtze River Delta, Pearl River Delta,
middle reaches of the Yangtze River, and Chengdu–Chongqing UAs. (2) The UCEs had
significant spatial differences with certain global and local spatial autocorrelations. (3) The
industrial structure had become the most dominant factor affecting UCEs.

We used ESDA alone to analyze the spatial differences of UCEs. In the future, it is
necessary to further study the spatial differences of UCEs using Dagum’s decomposition
of the Gini coefficient, kernel density estimation, and standard deviational ellipse. Our
analysis of the influential factors of CEs focused on the macro socio-economic aspect. How
micro factors such as individual heat sources and communication affect CEs merits more
attention in the future.

4.2. Policy Implications

(1) Due to spatial differences in the UCEs in China, cities with the highest CEs are
from the five national UAs. UAs should thus be the key areas for China to make policies on
emissions reduction. China has five national UAs, nine medium UAs, and six small UAs.
These twenty UAs are regions with the most concentrated economies and populations
and the highest level of industrialization and urbanization in China. They have thus
become regions with the most concentrated CEs. The UAs have established a relatively
sound infrastructure and an integrated mechanism of market and basic public services.
They also need a cooperative mechanism of low-carbon development. This can improve
their threshold of industrial access, restrict industries with high energy consumption and
emissions, and help build an integrated mechanism of low-carbon governance. The UAs
are also the most developed areas in science and technology. These advantages need to
be used to develop technologies that can save energy and provide technical support for
reducing CEs.

(2) Due to the spatial autocorrelation of the UCEs in China, an “urban carbon reduction
community” should be established. First, a community of all high-high-type cities should
be established. These are cities with large and concentrated CEs that need to control the
expansion of their industries that are high emitters, formulate emissions standards for
these industries, and require them to implement the relevant standards. In addition, such
cities need to optimize their industrial spatial layout and encourage their high-carbon
industries to reduce emissions through orderly regional transfer, clustering development,
transformation, and upgrades while conforming to national industrial policies. For low-
low-type cities that emit carbon, it is necessary to establish a low-carbon mode of industry,
construction, transportation, and energy system and advocate a green and low-carbon
lifestyle and mode of consumption. Low-carbon industrial demonstration parks can be
built in such cities to support the construction of a low-carbon city.

(3) As the industrial structure has become the dominant factor affecting UCEs, its
continual optimization should be promoted. All cities need to use the development of
ecological civilization and green development as the basic guidance and promote low-
carbon technology and modes of clean production in various industries and sectors. Energy
conservation and environmental protection have the advantages of a long industrial chain,
driving employment, energy conservation, and emission reduction. Cities with such pre-
requisites need to develop energy conservation and environmental protection. For cities
dominated by the secondary industry, advanced technologies need to be used to improve
the traditional manufacturing industry, formulate emissions reduction targets for high-
emission industries, and control CEs. For energy conservation, a system for the control and
evaluation of energy consumption should be established to promote energy conservation in
power, steel, building materials, nonferrous materials, and chemical industries while pro-
moting energy saving in new buildings and transportation. For cities in which the tertiary
industry is the leading industry, it is necessary to develop strategic emerging industries
and service industries and use representative commercial institutions such as shops and
hotels as pilot projects to implement supply chain management to reduce emissions.
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