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Susceptibility loci for metabolic syndrome and metabolic
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genome-wide association study
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Abstract

Metabolic syndrome (MetS), a cluster of metabolic disturbances that increase the risk for cardiovascular disease and diabetes, was because of
genetic susceptibility and environmental risk factors. To identify the genetic variants associated with MetS and metabolic components, we con-
ducted a genome-wide association study followed by replications in totally 12,720 participants from the north, north-eastern and eastern China.
In combined analyses, independent of the top known signal at rs651821 on APOAS, we newly identified a secondary triglyceride-associated sig-
nal at rs180326 on BUD13 (Psombines = 2.4 x 1078). Notably, by an integrated analysis of the genotypes and the serum levels of APOAS,
BUD13 and triglyceride, we observed that BUD13 was another potential mediator, besides APOAS, of the association between rs651821 and
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serum triglyceride. rs671 (ALDHZ), an east Asian-specific common variant, was found to be associated with MetS (Peompined = 9.7 x 10*22) in
Han Chinese. The effects of rs671 on metabolic components were more prominent in drinkers than in non-drinkers. The replicated loci provided
information on the genetic basis and mechanisms of MetS and metabolic components in Han Chinese.

Keywords: metabolic syndrome e genome-wide association study e single-nucleotide polymorphism e secondary
signal @ gene—environment interaction

Introduction

Metabolic syndrome (MetS) is characterized by a cluster of meta-
bolic disorders including obesity, dyslipidemia, elevated fasting
plasma glucose and elevated blood pressure [1]. MetS increases
the risks for diabetes mellitus, cardiovascular diseases and can-
cers as well as increased mortality from all causes [2-5]. The
prevalence of MetS (as defined by the International Diabetes Fed-
eration consensus in 2005) was reported to be 16.5% from a
cross-sectional study in Chinese adults aged 35-74 years in
2000-2001 [6]. The estimated prevalence had increased to 18.2%
according to the China Health and Nutrition Survey in 2009 [7].
Given that the prevalence of MetS is high and increasing quickly
in the Chinese population, strategies for its early detection and
effective intervention are urgently needed.

Both environmental and genetic factors, as well as their interac-
tions, contribute to the incidence of MetS. The heritability has been
estimated to be up to 50% for some metabolic components and 13—
30% for MetS [8-12]. Efforts have been made to map the metabolic-
associated single-nucleotide polymorphisms (SNPs) using a single
component as the quantitative outcome [13-19]. Consider MetS as a
binary outcome, several genome-wide association studies (GWAS)
attempted to find susceptible genetic loci affecting multiple metabolic
outcome [20-24]. From these studies, tagSNPs mainly including
rs9939609 on FTO, rs629301 on SORTT, rs12678919 near LPL,
rs1532085 on LIPC, rs651821 on APOA5, rs7412 on APOE,
rs1532624 on CETP, rs671 on ALDHZ, rs4607517 on GCK and other
variants had been reported as metabolic-associated loci. Among
these tagSNPs, some casual variants had been located at functional
regions of APOA5 (rs2266788, 3'UTR), ALDHZ (rs671, exon) in fur-
ther studies [25, 26]. However, the known genetic variations only
explain a small part of the heritability and many potential genetic
biomarkers of susceptibility remain to be discovered [27, 28].

It is generally accepted that the current criteria of MetS are inte-
grated assessment strategies with only a binary outcome rather than
precise levels of metabolic components. Screening for genetic sus-
ceptibility loci using these simplified definitions is based on the com-
mon phenomenon of pleiotropy in which one gene or one variant
affects multiple phenotypes. Pleiotropy has been reported in genetic
variations to be associated with high-density lipoprotein cholesterol
(HDL-C), triglyceride (TG) and low-density lipoprotein cholesterol
(LDL-C) [29]. A systematic review of pleiotropy from a broader view-
point suggested that a large number of genes and SNPs show pleio-
tropic effects in common complex diseases and traits [30]. These
findings suggested that the combined analysis of metabolic compo-
nents as a whole is a critical supplement to metabolic component-
specific screening.

© 2017 The Authors.

In the current study, we searched for genetic susceptibility loci for
MetS and metabolic components using a multistage GWAS and aimed
to understand the mechanism behind the associations in Han
Chinese.

Materials and methods

Participants

In the genome-wide discovery stage, 998 participants with MetS and
996 healthy controls were recruited from a community-based survey in
2010-2011 in Linpu town, Xiaoshan District, Hangzhou, Zhejiang Pro-
vince, China. For replication, seven independent cohorts with a total of
5514 cases and 5464 healthy controls were recruited from north-east-
ern China (Shenyang cohort), northern China (Beijing cohort) and east-
ern China (Hangzhou, Daicun, Wenzhou, Zhoushan, and Zhejiang
cohorts) (see Table S1 for further details). All participants were of Han
Chinese ethnicity. Individuals were excluded if they had metabolic-
related interventions or had cancer, or serious chronic liver, lung, heart
or kidney disorders. The study protocol was approved by the Research
Ethics Committee at the School of Medicine, Zhejiang University. Each
participant gave informed consent.

Anthropometric measurements and
epidemiological investigation

Anthropometric indices (weight, height, waist circumference and hip cir-
cumference) and blood pressure were measured following standard pro-
tocols. Body mass index (BMI) was calculated as the bodyweight in
kilograms divided by the square of the height in metres. Waist-to-hip
ratio (WHR) was calculated as waist circumference divided by hip cir-
cumference in centimetres. Serum biochemical parameters including
fasting blood glucose (FBG), TG, HDL-C and LDL-C were measured after
overnight fasting. The serum levels of APOA5 and BUD13 were mea-
sured using enzyme-linked immunosorbent assay (ELISA) kits from
Cusabio (Wuhan, Hubei, China, code: CSB-E11901h, CSB-EL002885HU).
Alcohol consumption (classified as non-drinker, light drinker or heavy
drinker) was assessed in face-to-face interviews.

Phenotypes and definitions

MetS was defined according to the criteria of the Metabolic Syndrome
Study Cooperation Group of the Chinese Diabetes Society (CDS2004)
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requiring the presence of three or more of the following: BMI >25 kg/
m?  systolic/diastolic blood pressure (SBP/DBP) > 140/90 mmHg;
FBG > 6.1 mmol/l; TG > 1.7 mmol/l; HDL-C < 0.9 mmol/l (men) or
<1.0 mmol/l (women) [31]. Healthy controls were free of the above
metabolic disorders. BMI, WHR, FBG, TG, HDL-C and LDL-C were trea-

ted as continuous variables in analyses.

Genotyping, imputation and quality controls

Genomic DNA was isolated from whole blood using a TACO automatic
nucleic acid extraction apparatus (GeneReach Biotechnology Corp., Tai-
chung, Taiwan). Genotyping of the GWAS samples was conducted using
lllumina Human-OmniExpress 760k chips (lllumina, San Diego, CA,
USA) in the Bio-X Center, Shanghai Jiao Tong University, according to
the manufacturer’s protocol. Nineteen randomly selected samples were
genotyped repeatedly, and the results showed ~99.9% concordance
with corresponding samples in the discovery stage. The case and con-
trol samples were distributed evenly in each plate. Negative controls
(without DNA template) were included on every plate.

Systematic quality control was conducted in the discovery stage
(Fig. S1). SNPs were excluded if (/) they did not map to autosomal
chromosomes, (i) they had a minor allele frequency (MAF) <0.05 in
current samples, (i) the distribution in controls deviated from the
Hardy-Weinberg equilibrium (P < 1.0 x 10~%) or (iv) the call rate was
<95%. Samples were excluded from analyses if they (/) had overall suc-
cessful genotyping call rates <95%, (i) were population outliers accord-
ing to the smartPCA program from EIGENSOFT [32] or (/i) had
probable relatives (PI_hat > 0.25). After the quality control procedure, a
total of 862 participants with MetS, 880 healthy controls and 533,059
SNPs were included in the discovery stage analyses.

The post-quality control GWAS data were used for imputation. We
imputed ungenotyped SNPs via IMPUTE2 [33] with the haplotype refer-
ence data of 1092 individuals from the 1000 Genomes Project Phase |
Integrated Variant Set Release (v3, March 2012) in NCBI build 37
(hg19) coordinates. SNPs with info score quality estimates of <0.8 were
excluded from analyses. Finally, 4,642,479 SNPs were used for fine
mapping and SNP function prediction.

In replication stage I, genotyping was performed with SNPscan™
(Genesky Biotechnologies Inc., Shanghai, China). The TagMan genotyp-
ing platform (ABI 7900HT Real Time PCR system, Applied Biosystems,
Foster City, CA, USA) was used in replication stages Il and Ill. To evalu-
ate the accuracy of SNPscan and the TagMan platform, an additional
5% of samples was genotyped by Sanger sequencing. Genotyping call
rate control (more than 95%) and Hardy-Weinberg equilibrium control
(P> 1.0 x 10~%) were implemented in the replication stages.

Strategies for signal selection, replication and
statistical analyses

We considered MetS as a binary outcome and performed the Cochran—
Armitage trend test in a logistic regression model with age, gender and
the first two principal components as covariates using PLINK 1.07 [34]
in the discovery stage. Signals with a P-value <5.0 x 107° were
selected for replication. Metabolic components [BMI, WHR, FBG, TG
(log-transformed), HDL-C and LDL-C] were also considered as quantita-
tive outcome for screening. Multiple linear regressions were performed
for quantitative variables with age, sex and the first two principal
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components as covariates. BMI was considered as an additional covari-
ant for screening SNPs affecting FBG, TG, HDL-C and LDL-C. Compo-
nent-associated signals with a P-value <1.0 x 107° in the discovery
phase were selected for replication.

To prune candidate SNPs sharing the same potential biological effects,
the conditional analysis was performed with any two candidate SNPs
within ~1 Mb. We kept only one of the statistically significant SNP if the
other SNP had a P-value > 0.05 in conditional analyses. As a result, 39
SNPs with independent effects were selected (Fig. S2). Thirty-two of the
39 SNPs were successfully designed in replication phase I. Analyses were
conducted in the replication stages with age and gender as covariates
using PLINK 1.07 (the same as in the discovery stage). Combined effects
were calculated with meta-analyses using Stata 12.0 (STATA Corp, Col-
lege Station, TX, USA) for the SNPs with P-values <0.05 in the replication
stage and a consistent direction of effect with discovery stage. SNPs with
a combined P-value <5.0 x 10~ were regarded as significant at the gen-
ome-wide level. Replications I and 11l were conducted if the P-value of an
SNP was <0.05 while the combined P-value did not reach genome-wide
significant level (5.0 x 107%) (Fig. S2). Meta-analyses were applied to
combine the results from different cohorts and stages with fixed-effect
models.

Linear regressions were conducted for the associations among
tagSNPs (in the additive model), lifestyle (alcohol consumption) and
serum levels of APOA5, BUD13, TG and HDL-C using SAS for Windows
(version 9.2, SAS Institute Inc., Cary, NC, USA).

The manhattan plots and quantile-quantile (Q-Q) plots were drawn
using R package ‘gap’. The genetic inflation factors were calculated
using PLINK 1.07. The significant genome-wide regions were plotted
using the online tool LocusZoom based on the ASN population in hg19
coordinates [35]. SNP function predictions were conducted after impu-
tation-based fine mapping. The genetic architectures surrounding repli-
cated SNPs were assessed using the ENCODE database from the UCSC
genome browser [36].

Results

After quality control, 1742 participants (862 MetS cases and 880
healthy controls) and 533,059 genotyped SNPs were included for
analyses in the discovery stage. Replication samples consisted of 656
cases and 933 controls for phase I, 709 cases and 1921 controls for
phase II, and 4149 cases and 2610 controls for phase 1. The charac-
teristics of these participants in each stage are shown in Table S2.
The inflation factors ranged from 1.01 to 1.02 for MetS and metabolic
components, suggesting little evidence of population stratification
after quality control.

Association analyses for MetS and metabolic
components

To screen MetS-associated variants, logistic regressions were per-
formed for each SNP adjusted for age, gender and the first two princi-
pal components (Fig. S3) in the discovery stage. The genetic inflation
factor was 1.02. The Q-Q and manhattan plots are shown in Figure 1.
Sixteen independent SNPs were found to be associated with MetS
(P<5.0 x 1075 in the discovery stage. Then, these SNPs were
genotyped in replication stage I. Two SNPs (rs651821 and rs671)

© 2017 The Authors.
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Fig. 1 The manhattan (A) and quantile—quantile (Q-Q) plots (B) of genome-wide association study of metabolic syndrome. Manhattan and Q-Q plots
were constructed using the P-values of SNPs that passed the quality control filters via logistic regression for metabolic syndrome adjusting for age,
gender and the first two principal components in the genome-wide discovery stage. Manhattan plot Y-axis: —logso (P-value) of each SNP; X-axis:
chromosomes labelled with different colours. Q-Q plot: observed (Y-axis) versus expected (X-axis) P-values of SNPs; genetic inflation factor = 1.02.

were associated with MetS (P < 0.05, Table S3), and their effects
were consistent with the results in the discovery stage. rs651821 and
rs671 were further genotyped in replication stages (Table 1). The
combined analyses presented that the C allele of rs651821 increases
the risk of MetS with an odds ratio (OR) and 95% confidence interval
(Cl) of 1.28 (1.20, 1.36), with a combined P=4.2 x 1077, The A
allele of rs671 decreased the risk of MetS with an OR and 95% Cl of
0.71 (0.67, 0.76), combined P =9.7 x 10722 The effect sizes in
each stage are presented in Table 1 and Table S3. Considering the
age difference between cases and controls in some cohorts, we also
classified the samples into three age groups (< 30, 31-60 and
>60 years) and then performed age-stratified analyses for the MetS-
associated SNPs. The effects of rs651821 and rs671 were stable
among different age groups, and the results were consistent with the
overall analyses (Table S4).

In order to screen the SNPs associated with metabolic compo-
nents, linear regressions were conducted using BMI, WHR, FBG, TG
(log-transformed), HDL-C and LDL-C as dependent variables. Q-Q
plots and manhattan plots are shown in Fig. S4. The genetic inflation
factors ranged from 1.01 to 1.02 for these quantitative outcome. In
the discovery stage, 24 SNPs had independent effects on the meta-
bolic components with P-value < 1.0 x 10~° after conditional analy-
ses. In replication stage |, rs1506525, rs4532958 and rs445925 were
associated with BMI, WHR and LDL-C (P < 0.05), respectively. A
marginally significant association was found between rs180326 and
TG after controlling for the top signal of rs651821 (P = 0.063). Com-
bining the results of discovery and replication stage I, the association
of rs445925 with LDL-C reached significance at the genome-wide
level (Peompines = 1.1 x 107'). The A allele of rs445925 was associ-
ated with a decreased level of LDL-C [beta 95% Cl = —0.22 (—0.28,
—0.16)]. rs1506525, rs4532958 and rs180326 were further replicated
as the combined P-values did not reach the genome-wide threshold
for significance. We further genotyped rs651821 in replication stages
II'and Il to determine whether the signal at rs180326 was indepen-
dent of rs651821.

© 2017 The Authors.

In replication stage I, rs180326 was associated with TG after con-
trolling for the signal at rs651821 in replication stages Il (P = 0.043)
and Il (P=1.5 x 107%). The combined effect size of the C allele of
rs180326 and its 95% Cl was —0.04 (—0.05, —0.03), Peom-
bined — 2.4 10 in conditional analysis. For rs4532958, heterogene-
ity of the effect across stages was observed (Phgterogencity < 0.05).
The combined effect of rs4532958 (effect allele = C) was —0.008
(95% Cl = —0.013, —0.004, P.ombineg = 5.1 x 107%), estimated
using random-effect model. No significant effect of rs1506525 was
found in replication stage Il (Table S5).

A novel secondary TG-associated signal at
rs180326 on BUD13

The top knew TG-associated signal of rs651821 was localized in the
5UTR of APOA5, which belongs to the apolipoprotein gene cluster on
chromosome 11023 (Figure 2). A novel secondary TG-associated sig-
nal at rs180326 on BUD13 was replicated after controlling for the
effect of rs651821. The combined effect size of the minor allele of
rs180326 was —0.04 (95% Cl: —0.05, —0.03 P = 2.4 x 1078) with
and 0.06 (95% Cl: 0.05, 0.06 P =1.9 x 10~*) without controlling
for the top signal of rs651821. The opposite effects of rs180326 were
stable in different stages (Table 2).

To uncover the mechanism behind the opposite effects of the
novel secondary signal, we measured the serum levels of APOAS5 and
BUD13 using ELISA kits as discribed in method. As shown in Fig-
ure 3, we observed that the minor allele C of rs651821 was associ-
ated with a lower level of APOAS than the T allele (P = 7.4 x 107°).
The serum level of APOAS was associated with TG (beta = —0.35,
P =133 x 107"2). The minor allele C of rs180326 was associated
with a decreased serum level of BUD13 (P = 0.07). The serum level
of BUD13 was associated with an increased level of serum TG
(beta = 0.10, P=7.6 x 1073) and explained 14.2% of the serum
TG variance. From the associations observed above, we speculated
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Fig. 2 The regional plots of the top signal at rs651821 and the secondary signal at rs180326 for triglyceride. The regional plots were plotted via the
online tool LocusZoom using ASN population as reference for LD calculations in hg19 coordinates. P-values used for the regional plot were esti-
mated from the discovery stage. The combined P-values were given for the two signals. For rs180326, the conditional analysis was performed

adjusting the top signal at rs651821.

that the association between rs180326 and serum TG was masked by
the LD between rs180326 and rs651821 before adjusting the top sig-
nal. Therefore, the combined effect of the minor allele C of rs180326
was inconsistent with and without controlling for the top signal at
rs651821. Additionally, to determine whether APOA5 and BUD13
mediate the associations between rs651821 and metabolic compo-
nents, we performed linear regressions and found that the associa-
tion between rs651821 and TG was partly independent of the
mediator APOA5 (P < 0.05 after controlling for the serum level of
APOQA5). No statistical association between rs651821 and TG was
found when we added serum level of BUD13 as a covariate in the
regression model (P = 0.259).

Associations among rs671 (on ALDH2), alcohol
consumption and MetS

rs671 is known to be a non-synonymous mutation on ALDH2. As
shown in Table S6, the minor allele frequency of rs671 is much higher
in Asians (0.20), especially in the Han Chinese population (0.29) than
in European (<0.01). Results showed that rs671 was strongly

© 2017 The Authors.

associated with alcohol consumption (Psombineg = 1.7 x 107%8) in
4295 participants from the Beijing, Shenyang, Xiaoshan and Hang-
zhou cohorts. The interaction between the genotypes of rs671 and
alcohol consumption status was found for MetS (P = 0.014). Stratifi-
cation analysis showed that rs671 was significantly associated with
MetS in drinkers (P=7.5 x 1075). Whereas only marginal signifi-
cance in non-drinkers (P = 0.097) was observed. Similar results were
obtained in the associations with obesity and the other metabolic-
related components BMI, WHR, SBP and TG (Table 3). Then, we
adjusted the alcohol consumption levels in drinkers in regression
models. Our results suggested that these associations were partly
independent of the alcohol consumption levels.

Discussion

In this multistage GWAS, using samples from north, north-eastern
and eastern China, we identified two SNPs (rs651821 on APOA5 and
rs671 on ALDHZ) associated with MetS. Independent of the top signal
at rs651821 in APOA cluster, rs180326 on BUD13 was observed as a
novel secondary signal associated with serum TG.
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Beta=0.139, se =0.015, P=3.5X10"18
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P=0.259

*Adjust for serum APOAS
#Adjust for serum APOA5and BUD13
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Fig. 3rs651821 and rs180326 were associated with serum levels of TG via variations in serum APOA5 and BUD13. Linear regression models were
used to test the association between tagSNPs and serum level of APOA5, BUD13 and TG. An example is shown in the dashed box. We controlled
for the serum levels of APOA5 and BUD13 in the model (* and #) to test the association of rs651821 and TG.

The top TG-associated signal was located at rs651821 on APOAS5.
This result was consistent with previous studies [37-39] as shown in
Table S7. Recently, rs2266788, which was highly correlated with
rs651821 (LD 7> = 0.83), was demonstrated as a functional point
mutation [25]. In this study, it was proposed that the effect of
rs2266788 (localized at the 3’UTR of APOA5) was mediated by the
microRNA miR-485-5p expressed in the human liver. We performed
conditional analyses in the discovery and replication stages and found
a novel secondary signal at rs180326 on BUD13 in this region. From
the associations among rs651821, rs180326, serum levels of APOAS,
BUD13 and TG, our results confirmed that the effect of rs180326 was
masked by the strong LD between rs180326 and rs651821 before con-
trolling the top signal in this region, which means that a false effect of
rs180326 would be found without conditional analysis. Additionally,
our results suggested that BUD13 was another potential mediator
besides APOAS5 for the association between the top signal at rs651821
and TG. Integrated with previous clues, the signal at rs651821 affects
lipid metabolism via at least two causal variants. One of the causal
mutations is the rs2266788 (on APOA5) which has been reported [25].
Another causal variant (rs180326 or other loci) probably affects serum
TG level viaBUD13. BUD13is located in the APOC3/A4/A5 gene cluster
on chromosome11q23.3. Genetic variants within this region are known
to be associated with serum lipid components. A significant association
between serum BUD13 and TG levels was observed in current study,
whereas the role of BUD13 and the molecular mechanisms for these
effects remained to be determined.

The non-silence variant rs671 was localized in exon 12 of ALDHZ, a
key enzyme of alcohol metabolism. Mutation of rs671 from glutamate

© 2017 The Authors.

to lysine in ALDHZ results in an enzyme that is rendered essentially
inactive in vivo [26]. Recent GWAS indicated that rs671 is associated
with daily alcohol consumption [40, 41]. Our results were consistent
with the previous findings. The possible mechanism is that carriers of
the A allele have a reduced capacity to catalyse acetaldehyde, and this
leads to immediate and unpleasant symptoms, such as the flushing
response and nausea, which probably result in reduced alcohol con-
sumption. In addition, a significant interaction between alcohol con-
sumption status and rs671 was found in the current study. In the
stratified analysis of alcohol consumption status, a significant associa-
tion between rs671 and MetS in drinkers was found. For drinkers, the
Aallele of rs671 was significantly associated with reduced risk of devel-
oping MetS. However, for non-drinkers, there was no significant differ-
ence in the genotype frequency of rs671 between MetS and healthy
controls. Furthermore, apart from influencing the alcohol consump-
tions, additional effects of rs671 were found for the associations
between rs671 and metabolic components. Interactions between rs671
and alcohol consumption had been reported previously for serum TG
[37] and other phenotypes including oesophageal cancer and an acute-
phase inflammation marker alpha-1 antitrypsin [42, 43].

In conclusion, we performed a multiple-stage GWAS for MetS and
metabolic components in Han Chinese. A novel secondary TG-asso-
ciated signal at rs180326 on BUD13 was replicated. rs651821 on
APOA5 was validated as a pleiotropic locus associated with MetS. In
addition, evidence showing that, besides APOA5, BUD13 was another
potential mediator for the association between rs651821 and serum
TG. Interactions between rs671 and alcohol consumption status were
found for MetS and metabolic components. The results of the current
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study provide novel evidence for the mechanisms underlying the
development of MetS and metabolic components.
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