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The 3q29 deletion (3g29Del) confers high risk for schizophrenia and other neurodevelopmental and psychiatric disorders. However,
no single gene in this interval is definitively associated with disease, prompting the hypothesis that neuropsychiatric sequelae
emerge upon loss of multiple functionally-connected genes. 3929 genes are unevenly annotated and the impact of 3q29Del on the
human neural transcriptome is unknown. To systematically formulate unbiased hypotheses about molecular mechanisms linking
3g29Del to neuropsychiatric illness, we conducted a systems-level network analysis of the non-pathological adult human cortical
transcriptome and generated evidence-based predictions that relate 3929 genes to novel functions and disease associations. The
21 protein-coding genes located in the interval segregated into seven clusters of highly co-expressed genes, demonstrating both
convergent and distributed effects of 3g29Del across the interrogated transcriptomic landscape. Pathway analysis of these clusters
indicated involvement in nervous-system functions, including synaptic signaling and organization, as well as core cellular functions,
including transcriptional regulation, posttranslational modifications, chromatin remodeling, and mitochondrial metabolism. Top
network-neighbors of 3929 genes showed significant overlap with known schizophrenia, autism, and intellectual disability-risk
genes, suggesting that 3g29Del biology is relevant to idiopathic disease. Leveraging “guilt by association”, we propose nine 3929
genes, including one hub gene, as prioritized drivers of neuropsychiatric risk. These results provide testable hypotheses for
experimental analysis on causal drivers and mechanisms of the largest known genetic risk factor for schizophrenia and highlight
the study of normal function in non-pathological postmortem tissue to further our understanding of psychiatric genetics, especially

for rare syndromes like 3g29Del, where access to neural tissue from carriers is unavailable or limited.
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INTRODUCTION

Copy number variants (CNVs) offer tractable entry points to
investigate the genetic contributions to complex neuropsychiatric
diseases. The recurrent 1.6Mb deletion of the 329 interval
(3929Del) is robustly associated with schizophrenia spectrum and
other non-affective psychotic disorders (SZ) [1-4] and is the
strongest known risk allele for the disease with an estimated odds
ratio >40 [5]. The associated syndrome is a rare (~1 in 30,000) and
typically de novo genomic disorder that is often accompanied by
reduced birth weight, failure to thrive, dysmorphic craniofacial
features, and varied medical manifestations, including congenital
heart defects [6-8]. Autism spectrum disorders (ASD) and intellectual
disability/developmental delay (IDD) are also enriched in 3g29Del
carriers [7,9,10,]. However, it is not currently known which genes
within the interval are responsible for the increased neuropsychiatric
risk. No single 3929 interval gene has been definitively associated
with SZ, ASD, or IDD, prompting the hypothesis that haploinsuffi-
ciency of more than one gene is required [11]. The paucity of
information regarding the functional roles of most 3929 interval
genes hampers the development of evidence-based hypotheses for
deciphering this link. No transcriptomic investigation of 3g29Del in

humans has been reported, and it is unclear what impact
hemizygous loss of these genes might have in the nervous system.

Among the 21 protein-coding genes of the 3g29Del locus,
several have been proposed as drivers of the behavioral
phenotypes [12], yet the evidence for their individual association
with neuropsychiatric disease remains suggestive. DLGT produces
a synaptic scaffold protein that interacts with AMPA and NMDA-
type glutamate receptors [13-16], the latter of which is
hypothesized to be involved in SZ pathogenesis [17]. A DLG1
polymorphism has been genetically linked to SZ [18,19,]. However,
the mouse-specific phenotypes of 3q29Del are not recapitulated
by haploinsufficiency of DIgl alone [20]. Another prominent
candidate, PAK2 encodes a brain-expressed protein kinase
involved in cytoskeletal dynamics [21] and dendritic spine
morphology [22]. Both DLGT and PAK2 are homologous to genes
linked to IDD [23,24,] and evidence from Drosophila indicates that
joint haploinsufficiency of both genes simultaneously may be
required for synaptic defects rather than either gene individually
[25]. A recent study generated select combinatorial knockdowns
of 3929 gene homologs in Drosophila and Xenopus laevis and
proposed that a component of the nuclear cap-binding complex,
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NCBP2 [26], mediates neurodevelopmental defects in 3g29Del
syndrome [11]. However, in the 3q29Del mouse model, Ncbp2 is
not decreased at the protein level in brain tissue [20], dampening
enthusiasm for this gene as a causal element. It remains unclear
which genes and their potential interactions are responsible for
3g29-associated phenotypes.

To avoid annotation bias [27] and address the knowledge gap
for 3929 genes, we employed a gene co-expression network
analysis approach that is rooted in systems biology [28-31], and
generated evidence-based predictions that relate individual 3929
genes to novel functions and disease phenotypes. Accumulating
evidence indicates that genes work in conjunction, rather than in
isolation, to realize most cellular functions [11,25,32,]. Genes
participating in the same molecular and biological pathways tend
to show positively correlated expression with each other (co-
expression), as they are often expressed under the control of a
coordinated transcriptional regulatory system [33,34,]. In this
holistic context, well-characterized genes can be leveraged to infer
the functions of understudied genes by studying network patterns
that emerge by means of co-expression [35-37]. This in silico
approach to investigating unknown biology extends the “guilt by
association” paradigm [38] that is extensively used for inductive
reasoning in other domains to gene-gene interactions in complex
biological systems [39-41]. Weighted gene co-expression network
analysis (WGCNA) [29,42,] has been successfully deployed to study
how genes embedded in network structures jointly affect complex
human diseases [43-53]. We employed this paradigm to glean
new biological insights into the 3g29Del syndrome.

METHODS AND MATERIALS
The reference dataset
To uncover the network-level operations of genes located in the recurrent
3929Del locus, we employed WGCNA [29,42] and organized the non-
pathological adult human cortical transcriptome into modules of highly co-
expressed genes (Fig. 1a). Given the strong genetic link between 3g29Del and
risk for SZ [5], we focused the present network analysis on revealing the
clustering patterns of 3929 interval genes as a function of their expression
similarity during adulthood: a period when SZ typically manifests diagnos-
tically, with peak onset in late adolescence and early adulthood [54], and a
substantial proportion of patients becoming ill during middle adulthood [55].
A prior study has shown that only 0.7% of genes detected in the neocortex
show a temporally regulated profile of differential expression during
adulthood (between ages 20-60 years); [56] hence, gene expression data
were pooled across adulthood to derive the present dataset. We further
focused our analysis spatially on gene-gene relationships in the prefrontal
cortex (PFC): a brain region that subserves a diverse range of cognitive and
emotional operations, is implicated in the etiology of SZ and may be
particularly vulnerable to the effects of genetic disruption due to its
protracted development [57]. For these reasons, the network was constructed
on publicly available transcriptomic data from the Genotype Tissue
Expression Project (GTEx) [58], using PFC (Brodmann Area 9) samples from
male and female adults (age range = 20-79, 68.2% male) with no known
history of psychiatric or neurological disorder (Fig. S1 and Table S1.1).
Transcriptome profiling was performed by RNA-Seq as described in [58].
Protein-coding transcripts were extracted from the dataset, normalized
expression values were log, transformed and summarized at the gene-
level, and outlier samples were removed (Fig. S2). The data were corrected
for covariance mediated by age, sex, death classification, postmortem
interval (PMI) and batch effect [59,60,] (Fig. 1b and Fig. S1). Genes with zero
variance and genes and samples with greater than 50% missing entries
(default) were removed [29,42,]. The normalized, outlier-removed, residua-
lized expression values of 18,410 protein-coding genes from 107 samples
constituted the final dataset.

Weighted and signed gene co-expression network
construction

The single-block pipeline implemented in the WGCNA R package was
employed for network construction [29,42,]. Co-expression similarity was
defined by biweight midcorrelation [61,62,]. To capture the continuous
nature of interactions and accentuate strong positive correlations, co-
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expression similarity was transformed into a signed and weighted
adjacency matrix by a soft-thresholding procedure that yielded approx-
imate scale-free topology [63-66] (Fig. 1c and Fig. S3). Topological overlap
measures (TOM) were calculated from the resulting adjacency matrix to
capture not only the univariate correlational relationship between gene
pairs but also the large-scale connections among “neighborhoods” of
genes [67,68,] (Fig. 1a). Hence, we measure the interconnectedness of gene
pairs in relation to the commonality of the nodes they connect to.

The modular structure of the data was revealed by average linkage
hierarchical clustering on TOM following its transformation into a
dissimilarity metric (Fig. 1d). Module definitions used in this study do
not use a priori knowledge of functionally defined gene sets. Instead,
modules were detected in a data-driven fashion through adaptively
pruning the branches of the resulting dendrogram by the dynamic hybrid
tree-cut method [69]. The expression profile of each identified module was
subsequently summarized by a module eigengene (ME) [70], defined as its
first principal component. Calculation of MEs amounted to a data
reduction method used for effectively correlating entire modules to one
another and for establishing the eigengene-based module connectivity
measure (kME) of individual genes [42]. To eliminate spurious assignment
of genes into separate modules, modules with strongly correlated MEs
were amalgamated (Pearson’s r> 0.8, P < 0.05, cut height =0.2) (Fig. 1d).

Module preservation and quality analyses

To validate the reproducibility of the network modules derived from the
GTEx dataset (considered the reference dataset/network), we evaluated
module preservation in an independently-ascertained, demographically-
comparable transcriptomic dataset, referred to as the test dataset/network
(Fig. S4a). For this purpose, publicly available transcriptomic data was
obtained from the BrainSpan Developmental Transcriptome Project [56].
Thirty non-pathological postmortem samples from the PFC of male and
female adults (age range = 18-37, 50% male) with no known neurological
or psychiatric disorder comprised the test dataset (Fig. S4b and S1.1).
Transcriptome profiling was performed by RNA-Seq as described in [71].

The preprocessed test dataset consisted of normalized and residualized
expression values for 18,339 protein-coding genes from 30 samples that were
pooled from four subregions of the PFC to test whether the co-expression
patterns derived from Brodmann Area 9 of the PFC in the reference dataset
could be commonly found and robustly defined in broader sampling of tissue
across the PFC. Prior to preservation analysis, a sample-level hierarchical
clustering of the test dataset was conducted, which revealed no distribution
bias associated with PFC sub-region, ruling out tissue of origin as a potential
confound in test network construction. (Fig. S4c).

To determine whether properties of within-module topology were
preserved in the test network, we calculated a composite, network-based
preservation statistic for each module (Zsymmarypres) by using the
modulePreservation function of the WGCNA package in R [72]. Zymmary.
pres IS @ summary statistic that encompasses multiple density-based and
connectivity-based preservation statistics, which are equally important for
establishing the overall preservation of a module. To determine whether
the observed preservation statistics were higher than expected by chance,
we randomly permuted the module assignments in the test dataset (200
times) and derived a standardized Zsymmary.pres Score for each module. To
account for this metric’s dependence on module-size, we reduced large
modules by randomly sampling 1000 intra-modular nodes. The resulting
scores were evaluated according to established thresholds: Zsymmary.pres <
2, no evidence for preservation; 2 < Zsymmary.pres < 10, moderate evidence
for preservation; Zsummary.pres > 10, strong evidence for preservation.

In addition to testing preservation, we measured the quality of the
modules that were defined in the reference network by employing a
resampling technique that applied the preservation statistics outlined
above to repeated random splits of the reference dataset. We assessed the
robustness of the identified modules (i.e., how distinct a module is from
the background) by calculating a standardized, composite quality statistic
(Zsummary.qual), @s described in [72]. The same Zsummarypres thresholds
outlined above were used to evaluate Zy,mmary.qua- The code written for
WGCNA implementation in the current paper is available from authors
upon request.

Functional characterization of network modules harboring
3929 genes

Pathway analyses of individual modules found to harbor 329 genes were
performed by g:Profiler (http://biit.cs.ut.ee/gprofiler), using annotations
from the Gene Ontology (GO), Reactome, and Kyoto Encyclopedia of Genes
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and Genomes (KEGG) databases. Enriched terms surpassing the adjusted g:
SCS significance threshold of P <0.05 were filtered for size and semantic
similarity [73].

To further interrogate whether the gene co-expression modules identified
in this study represent biologically meaningful units with shared member-
ship of the same molecular complex or functional pathway, we also
investigated whether the genes co-clustering in the same transcriptomic
module tend to interact at the protein level. First, we queried the known
protein interactors of 3q29 interval genes based on the Human Reference
Protein Interactome Mapping Project (HuRI; http:/interactome-atlas.org/)
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Module quality (Zsummary.qual)

(see [74]). We identified qualitative overlaps between these known protein
interactors and gene co-expression partners of 3g29 interval genes at
module and meta-module levels of network organization. Second, we tested
the co-expression modules harboring 3929 interval genes for enrichment of
known and predicted protein-protein interactions (PPls) curated from the
STRING database (v.11, https://string-db.org/). The STRING enrichment
analysis tool was used to test whether the observed number of protein
interactions (edges) in each interrogated module is significantly higher than
the number of edges expected if the nodes were to be selected from the
genome at random (see [75]). See Supplemental Methods for details.
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Fig. 1 Unbiased weighted gene co-expression network analysis (WGCNA) of the human transcriptome in the healthy adult prefrontal
cortex (PFC). a A schematic of the data analysis workflow underlying WGCNA-derived predictions for functional interrogation of the 3q29Del
interval. The reference dataset was obtained from the GTEx Project to construct a systems-level network representation of coordinated gene
expression patterns across 107 non-pathological postmortem samples collected from the Brodmann Area 9 (BA9) of male and female adults
with no known history of psychiatric or neurological disorder. Modules of highly co-expressed genes were identified based on their
topological overlap measure (TOM). The TOM between two genes is high if the genes have many overlapping network connections, yielding
an interconnectedness measure that is proportional to the number of shared neighbors between pairs of genes. The resulting network was
screened for modules harboring 3929 interval genes (3g29 modules), which were then interrogated for biological function and hub genes. A
test dataset obtained from the BrainSpan Project was used to validate the reproducibility of this network in an independent sample of 30 non-
pathological postmortem specimens collected from four subregions of the PFC from adult males and females with no known history of
psychiatric or neurological disorder. These subregions are the OFC orbital frontal cortex, DLPFC dorsolateral PFC, VLPFC ventrolateral PFC, and
MPFC medial PFC. b Sample-level dendrogram and trait heatmaps of the reference dataset. The dendrogram was yielded by hierarchical
clustering of 107 GTEx samples using normalized, outlier-removed, and residualized gene expression values for 18,410 protein-coding genes.
Color bars represent trait heatmaps for sex, age-group (range = 20-79 years), death-classification based on the Hardy scale (range = 0-4),
postmortem interval (PMI), and batch id. The color intensity (from light yellow to red) is proportional to continuous or categorical values (in
increasing order) of each variable. For sex, yellow and orange indicate female and male, respectively. Transcriptomic data were corrected for
covariance mediated by these variables prior to network construction. Adjusted data reveal no distribution bias associated with the
interrogated confounds in sample-level clustering patterns. ¢ Determination of the soft-thresholding power (8) used for WGCNA. A 8 of 8
(black arrow) was identified as the lowest possible power yielding a degree distribution that results in approximate scale-free network
topology (SFT R? fit index = 0.8; red line). d Clustering dendrogram and module assignments of genes, with dissimilarity based on TOM. 18,410
protein coding genes (leaves = genes) clustered into 19 final modules (bottom color bar), detected by the dynamic hybrid tree cut method.
Modules with strongly correlated eigengenes (Pearson’s r> 0.8, P < 0.05) were amalgamated to eliminate spurious assignment of highly co-
expressed genes into separate modules. Color bars reflect module assignments before and after the merging of close modules. e Composite
Zsummary scores for module-preservation (how well-defined modules are in an independent test dataset) and module-quality (how well-
defined modules are in repeated random splits of the reference dataset). Permutation tests were performed to adjust the observed
preservation and quality statistics of each module for random chance by defining Z statistics. All modules (labeled by color) identified in the
reference network were preserved (reproducible) in the test network (Zsummary > 2; blue line). Overall, 15 out of 18 modules, including all
3929 modules (red arrows), exhibited strong preservation (Zsummary > 10; green line). 3/18 modules exhibited moderate preservation (2 <
Zsummary < 10). All modules demonstrated strong evidence for high quality (Zsummary > 10), confirming that the modules identified in the

reference network were well-defined and nonrandom.

Identification of prioritized driver genes and biological
mechanisms

Disease-associated genes are often more closely connected to each other
than random gene pairs in a biological network; this nonrandom network
characteristic has enabled the identification of novel genetic risk loci for
many diseases [76-80]. To generate data-driven hypotheses about which
3929 genes are causally linked to the major neuropsychiatric phenotypes
of 3g29Del, we tested the overlap between “top neighbors” of individual
3929 genes and known risk genes for SZ and related disorders. A top
neighbor was defined as any node whose gene expression profile has a
moderate-to-high correlation (Spearman’s rho (p) =0.5), P <0.05) with a
given 3929 gene (considered a “seed”) within the same module. Hence,
top neighbors were identified by a hard-thresholding method applied only
to intramodular edges of a seed that were initially defined by the
topological overlap principle. Hypergeometric tests were conducted to
gauge the probability of the overlap between curated gene sets and top
neighbors, as implemented in the GeneOverlap package in R [81], followed
by Benjamini-Hochberg multiple testing correction.

Lastly, to formulate testable hypotheses about key biological mechan-
isms that link the 3929 locus to neuropsychiatric disease, we interrogated
the functional enrichment of prioritized driver genes, using the same
pathway analysis approach applied to modules. See Supplemental
Methods for details.

Proof of concept for testing the validity of WGCNA-based
predictions

A necessary step in determining the utility of network-based predictions is
a proof of concept of their validity in an experimental system. To this end,
we assessed the validity of our WGCNA-derived predictions by testing the
enrichment of co-expression network-partners of 3g29 interval genes for
differential expression in a mouse model of 3q29Del [20].

Mice harboring a heterozygous deletion of 1.26 Mb (Del16™/8¢"'T) that
is homologous to the human 3g29Del locus were generated by CRISPR/
Cas9 technology previously [20]. At postnatal day seven, five mutant and
five wild-type (WT) male pups were anesthetized under isoflurane and
rapidly decapitated. The bilateral cortical sheet was dissected, chopped
with a scalpel, and homogenized in QIAzol (Qiagen) in a Bullet Blender
Tissue Homogenizer (Next Advance, Inc., Troy, NY). Total RNA was isolated
using the miRNeasy Mini Kit (Qiagen) with on-column DNAse | treatment
(Qiagen). RNA-sequencing libraries were generated using the SMART-Seq
Stranded Kit (Takara Bio, Mountain View, CA). 50 M paired-end 150 bp read
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sequencing was performed on an lllumina platform. Sequences were
quality-checked and aligned to the mm10 reference genome. Gene
quantification was conducted using HTSeg-count [82]. We used two
analysis tools (DESeq2 [83] and edgeR [84]) to identify differentially
expressed genes (DEGs). Only the protein-coding consensus DEGs with
nominal significance (P < 0.05) were carried into downstream analysis.

The statistical significance of the overlap between identified DEGs and
the network co-expression partners of 3q29 interval genes was tested via
hypergeometric tests, using the GeneOverlap package in R [81]. All
compared gene sets were filtered for mouse-human homology based on
the HomoloGene database of the National Center for Biotechnology
Information (NCBI) [85]. All procedures were performed under guidelines
approved by the Emory University IACUC. See Supplemental Methods for
details.

RESULTS
Unbiased gene co-expression network analysis reveals
convergent and distributed effects of 3q29 interval genes
across the adult human cortical transcriptome
Applying an unsupervised WGCNA approach [29,42,] to publicly
available data from the GTEx Project [58] revealed that the
protein-coding transcriptome of the healthy adult human PFC can
be organized into a gene co-expression network of 19 modules
(labeled by color) (Fig. 1d and Table S1.2). The identified modules
group genes with highly similar expression profiles and likely
represent shared function and/or co-regulation. The resulting
module sizes ranged from 43 (steel-blue module) to 4746 (green
module) genes, with an average module size of 1014 genes. To
obtain high-quality module definitions, one module (gray module)
was reserved for genes that could not be unequivocally assigned
to any module. Thus, the gray module was excluded from
downstream analysis. The resulting set of modules was screened
for membership of 3929 genes; modules that were found to
harbor at least one 3929 gene are referred to as “3g29 modules”.
Refer to Table S1.3 for gene ids and full names of 3qg29
interval genes.

To ensure the reproducibility and robustness of our network
analysis results, we tested the preservation and quality of the
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identified modules in an independent dataset obtained from the
BrainSpan Developmental Transcriptome Project [56] (Fig. S4) and
in repeated random splits of the reference dataset. All identified
modules, except for the gray module (unassigned genes), were
found to be successfully preserved in the test network (Zsummary.
pres > 2) (Fig. 1e, Fig. S5 and Table S1.4). Specifically, 3/18 modules
exhibited moderate evidence of preservation (2 < Zsymmary.pres <
10), and 15/18 modules, including all 3g29 modules, exhibited
strong evidence of preservation (Zsummary.pres > 10). In addition to
preservation statistics, we calculated multiple module quality
statistics that measure how well-defined or robust the boundaries
of individual modules are in the reference network. All 18 modules
showed strong evidence for high cluster quality (Zsummary.qual >
10), revealing robust module definitions (Fig. 1e, Fig. S5, and Table
51.4). Specifically, all 3929 modules had a Zy,mmary.qual SCOre =20.
These analyses revealed the replicable, well-defined, and nonran-
dom nature of the identified network modules. For extended
results, see Supplemental Results.

The 21 protein-coding genes located in the 3929 interval
clustered into seven modules (Fig. 2a—c): black (one 3929 gene),
brown (four 329 genes), dark-turquoise (one 3929 gene), green
(six 3929 genes), magenta (one 3929 gene), midnight-blue (three
3929 genes), and turquoise (five 3g29 genes). Within this network,
18 (86%) of the 3929 interval genes concentrate into just four
modules (Fig. 2a), suggesting that the haploinsufficiency of sets of
genes within the locus may perturb the same biological processes
via multiple hits, cumulatively disrupting redundancy and
compensatory resiliency in the normative regulation of cellular
functions.

To evaluate whether modules further clustered within larger
meta-modules that represent the higher-order organization of the
transcriptome, we identified meta-modules as tight clusters of
positively correlated MEs, detectable as major branches of the
eigengene dendrogram [86] (Fig. 2a, b). Meta-modules were
screened to identify the grouping patterns among 3929 modules,
allowing exploration of extra-modular interactions. This analysis
revealed that the 3g29 modules further cluster into three higher
level meta-modules (Fig. 2b), which likely reflect dependencies
and interactions between pathways involving 3929 genes.
Simultaneously, leading presumptive candidates DLG1 and PAK2
(Fig. S6) were found in opposite branches of the network,
demonstrating the distributed effects of this CNV across the
transcriptomic landscape.

Pathway analysis points to functional involvement of the
3929 locus in nervous-system functions and core aspects of
cell biology

Since highly co-expressed genes often share similar functions
[33,34,], biological processes and pathways that are enriched in a
co-expression module can be used to infer functional information
for poorly annotated genes of that module. Functional enrichment
analysis of 329 modules showed that their constituent genes
converge onto canonical biological processes and known/
predicted PPI networks at proportions greater than expected by
chance, indicating that these modules are biologically relevant
units (Fig. 2d, Fig. S7-59, and Tables $1.5-51.8).

The turquoise and green modules showed overrepresentation
of roles specific to the neuronal system and implicate involve-
ment in multiple synaptic properties. Other 3gq29 modules point
to biological pathways that may also underlie neuropsychiatric
pathology in 3q29Del. The magenta module was predominantly
enriched for protein modification, turnover, and localization.
Additionally, a link was identified between the magenta module
and the initiation of major histocompatibility complex class-I
(MHC-l)-dependent immune responses, driven by a genomic
locus implicated in the etiology of SZ [87,88,]. On the other hand,
overrepresented pathways in the black module encompass
regulation of gene expression and maintenance of the integrity
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of the cellular genome, including DNA repair, and the metabolism
and processing of RNA. The midnight-blue module shared
enriched roles with the black module, validating their shared
meta-module structure, yet it was set apart by its involvement in
cell cycle regulation. The brown module revealed primary
enrichment for cellular metabolism and mitochondrial function,
whereas the dark-turquoise module coalesced genes involved in
epigenetic mechanisms and in signal transduction pathways
mediated by Rho GTPases. This latter function may be
attributable to PAK2, which encodes a known Rho GTPase
effector. Intriguingly, this module was also enriched for estrogen
receptor-mediated signaling, suggesting a potential mechanism
for sex-specific effects. Taken together, functional characteriza-
tion of the 3g29 modules point to novel mechanisms of shared or
synchronized action for co-clustering 3q29 interval genes (Fig. 2d
and Fig. S9).

Simultaneously, PPl network enrichment analysis revealed that all
3929 modules show significant enrichment for PPIs that were
systematically curated from the STRING protein interactome
database (Fig. S8 and Table S1.8), augmenting confidence in our
RNA-Seq based network predictions with proteomic evidence
(midnight blue, black, brown, and magenta modules: P value
<1.00e-16; dark turquoise module: P value=1.11e-16; green
module: P value = 8.62e-08; turquoise module: P value = 4.30e-09).

Additionally, we identified qualitative overlaps between the
transcriptomic co-expression partners of 3929 interval genes
identified via WGCNA and known protein partners of 3q29 interval
genes curated from the HuRI database (Fig. S7 and Table S1.7).
Notably, of the 21 protein coding genes located in the 3929
interval, only 14 were found to have an entry on HuRl, 50% of
which had less than eight known proteome-wide interactors. For
reference, in the yeast proteome, an average of five interactors are
estimated per protein [89]. Given that the average domain content
of human proteins is higher than that of yeast [90], a much higher
number of PPIs per protein is expected in humans. This finding is
consistent with prior studies reporting that technological limita-
tions in measuring the proteome with enough coverage results in
a high rate of missing entries, which leads to significant bias and
loss of information on human PPIs that may be disease relevant
[91-93]. The missing PPI data for over one fourth of the genes
located in the 3929 interval corroborate the paucity of information
regarding the functional roles of most 3929 interval genes, and
further reveal the need for novel approaches that are free of
annotation bias [27]. The full list of PPIs curated from HuRI and
STRING, and brief statistics and visual illustrations of the resulting
PPI networks can be found in Fig. S7-S8 and Tables $1.7-51.8. For
extended results, see Supplemental Results.

UBXN?7 is a highly connected cortical hub-gene predicted to
play a crucial role in the neuropsychiatric sequela of 3q29Del
Targeted disruption of a highly-connected “hub” gene produces a
more deleterious effect on network function and yields a larger
number of phenotypic outcomes than randomly selected or less
connected genes [94,95,]. Hence, we sought to measure how
strongly connected individual 3g29 genes are to their modules by
evaluating their intramodular kME (Fig. 2c and Table S1.3), defined
as the Pearson’s correlation between the expression profile of a
gene and the eigengene of its assigned module [29,42,70,].
Genes with high intramodular kME are considered hub genes
that are predicted to be critical components of the overall
function of their module [29]. Nodes with high intramodular kME
often have high intramodular connectivity (kIM), which reflects
sum of adjacencies to other nodes [42]. However, an advantage of
using kME over other connectivity metrics, is its defined P value
and values that lie between —1 and 1, allowing comparison across
modules that differ in size. To generate rigorous predictions about
which 3929 genes, if any, are intramodular hub genes, we
adopted a conservative criterion that defines hub genes as nodes
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with kME >0.8 (P<0.05). Only one 3929 interval gene was
identified as a hub gene: UBXN7 (kME = 0.84, P = 8.33E-30), which
encodes a ubiquitin ligase-substrate adapter [96,97,].

SMCO1, SLC51A, and MFI2 had non-significant kMEs (P < 0.05) for
their module, suggesting low kIM. These 3929 genes are detected
but display very low abundance in the human cerebral cortex [98]
(Table S1.6), which may relate to their peripheral network
assignments in our analysis. Consequently, SMCO1, SLC51A, and
MFI2 were excluded from downstream analysis to derive the most
parsimonious prioritization of driver genes based on tight network
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-logso adjusted p-value -logio adjusted p-value

connections. A complete list of gene sets for each module and
kME values are provided in Tables $1.2-51.3.

Nine 3q29 interval genes form transcriptomic subnetworks
enriched for known SZ, ASD, and IDD-risk genes

We next identified a refined subset of target genes (top
neighbors) that not only co-cluster based on TOM but also have
a strong pairwise correlation with 3929 genes (Fig. 3a). Several
3929 genes were found to be top neighbors of one another.
FBX0O45 (p = 0.5, P = 5.43E-09) and PIGX (p = 0.6, P = 1.24E-10) are

Translational Psychiatry (2021)11:357
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Fig.2 Network-based inference of the functional impact of 3q29Del on the adult human prefrontal cortex (PFC). a Hierarchical clustering of
module eigengenes (ME) that summarize the 19 modules identified by WGCNA. The 21 protein-coding genes located in the recurrent 3q29Del
locus were found to be distributed into seven co-expression modules (3929 modules; framed), The numbers next to dendrogram branches
indicate the total number of 3929 interval genes found in each 329 module. b Heatmap representing the strength of Pearson’s correlation (r)
between ME-pairs. The seven 3q29 modules (arrows) further clustered into three higher-level meta-modules, corresponding to squares of blue
color (high positive correlation) along the diagonal, also detected as major dendrogram branches in (a). ¢ Eigengene-based connectivity
strength (KME; y-axis) of 3929 interval genes (x-axis; in chromosomal order) within their respective modules. kME is defined as the Pearson’s
correlation between a query gene and a given ME. The line graph indicates the —logo(P value) of the plotted correlation coefficients (z-axis);
the asterisks above the graph indicate P < 0.05. kME >0.8 (P < 0.05; dotted line) indicates hub (highly connected) gene status. UBXN7 (red frame)
was found to be the only hub gene (kME >0.8, P = 8.33E-30) within the 3q29Del locus. SMCO1 (kME = 0.11, P =0.25), SLC51A (kKME=0.17, P =
0.09), and MFI2 (kME = 0.09, P = 0.35) were found to have non-significant kMEs (P > 0.05) for their respective modules, suggesting peripheral
membership. Color indicates module label. d Top ten biological pathways (Reactome database) significantly enriched in 3g29 modules
(adjusted-P < 0.05; capped at —log;o (adjusted-P = 10)). The g:SCS method was used for multiple testing correction. The observed enrichment
profile of the queried modules for known biological processes and pathways indicates that genes co-clustering in 39q29 modules show
coordinated expression and converge upon overlapping biological functions, more than expected by chance. The functional associations of
gene sets comprising individual 3929 modules were leveraged to infer likely molecular consequences of 3q29Del in the adult human PFC.

top-neighbors of CEP19, while SENP5 and WDR53 are top-
neighbors of each other (o =0.5, P=1.05E-07) (Table S2.1). On
the other hand, intramodular connections of TM4SF19 and
ZDHHC19 did not meet top neighborhood criteria; hence they
were not included in downstream analysis. Similar to SMCO1,
SLC51A, and MFI2, their mRNA expression profiles indicate low
abundance in the cerebral cortex (Table S1.6), which likely reflects
their lack of strong network connections.

The human transcriptome is theorized to demonstrate nonran-
dom topological characteristics, where disease genes interact with
other disease genes that underlie a common pathophenotype
[99]. Concordant with this prediction, within the top neighbors of
3929 genes, we found several genes that have been extensively
implicated in neuropsychiatric disease (Table S2.1). These include
MECP2, NRXN1, GRIN2A, GRIN2B, CHDS8, SATB2, CNTNAP2, FOXPI1,
PTEN, and SCN2A. Motivated by this observation, we asked
whether top neighbors of individual 3929 genes significantly
overlap with known SZ, ASD, or IDD-risk genes (Fig. 3a). We
curated six evidence-based lists of SZ [100-104], ASD [105,106,],
and IDD-risk genes [107], which span loci across a wide range of
the allele frequency spectrum and include postmortem findings
from case-control gene expression studies (Table S2.2). 3g29
genes whose top neighbors showed an overrepresentation of SZ,
ASD, and/or IDD risk genes (adjusted P < 0.05) were subsequently
prioritized as likely genetic drivers of neuropsychiatric risk in
3g29Del syndrome, along with their SZ, ASD, and/or IDD-related
top neighbors from the enrichment findings (Fig. 3a). We found
overrepresentation of one or more established risk gene sets
among the top neighbors of nine 329 genes
(Benjamini-Hochberg adjusted P < 0.05) (Fig. 3b and Table 52.3).

To evaluate the specificity of the identified patterns of
polygenic disease burden, we also tested these top neighbors
for overlap with known Parkinson’s disease (PD) [108], late-onset
Alzheimer’s disease (AD) [109], and inflammatory bowel disease
(IBD) risk genes [110] (Table S2.2). These phenotypes have no
known link to 3g29Del, thus, their risk loci were considered
negative controls. Common variants associated with height [111]
(Table S2.2) were included as a fourth negative control to rule out
a potential bias associated with large differences in the sizes of
curated gene sets.

Concurrently, we found no statistically significant evidence for
overrepresentation of AD or IBD-risk genes among the inter-
rogated top neighbors (Fig. 3b). Only the top neighbors of SENP5
showed a significant overlap with height-associated genes
(adjusted P =2.36E-02), and the top neighbors of NRROS, which
did not show an enrichment for known IDD, ASD, or SZ risk genes,
exhibited a small but significant overlap with known PD-risk genes
(adjusted P=2.00E-02) (Fig. 3b). Overall, 19 out of 96 hypergeo-
metric tests (20%) revealed a significant overrepresentation of SZ,
ASD, and/or IDD-risk gene sets among the top neighbors of 3g29

Translational Psychiatry (2021)11:357

genes. By contrast, only 2 out of 64 (3%) hypergeometric tests
indicated a significant overlap with the negative control gene sets.
The substantial margin between these two enrichment ratios
supports the high specificity of our network-derived inferences for
uncovering biology relevant to 3g29Del. By leveraging guilt by
association, we prioritize BDH1, CEP19, DLGI1, FBX045, PIGZ,
RNF168, SENP5, UBXN7, and WDR53, along with their 284 unique
SZ, ASD, and/or IDD-related top neighbors from significant overlap
tests as likely drivers of the neuropsychiatric consequences of
3g29Del (Fig. 4a and Table S2.3).

Disease-relevant driver genes prioritized by network analysis
load onto key biological pathways linked to neuropsychiatric
disorders

To formulate testable hypotheses about the biological mechanisms
linking the 3929 locus to neuropsychiatric phenotypes, we
interrogated whether the prioritized driver genes identified in our
network analysis assemble into known biological pathways.
Functional enrichment analysis on the union of 293 prioritized
driver genes (including nine 3929 genes) revealed significant
overrepresentation of eight biological pathways annotated by the
Reactome and KEGG databases (Fig. 4b and Table S2.4). These
include axon guidance (adjusted P = 3.64E-03), long-term potentia-
tion (adjusted P=7.29E-03), and regulation of actin cytoskeleton
(adjusted P = 1.17E-02). Additionally, several GO biological processes
(GO:BP), including chromosome organization (adjusted P=3.81E-
09), histone modification (adjusted P=3.31E-08), neuron differen-
tiation (adjusted P = 1.88E-04), neurogenesis (adjusted P = 1.89E-
03), and excitatory postsynaptic potential (adjusted P=8.97E-03)
were overrepresented among the predicted drivers (Fig. 4b, c and
Table S2.4). We hypothesize that the disruption of one or more of
these biological pathways and processes, some of which have been
demonstrated to be altered in idiopathic SZ and ASD [2,112)], lie on
the causal pathway to neuropsychopathology in 3q29Del syndrome.
For extended results, see Supplemental Results.

Network-derived targets predict differentially expressed
genes in the mouse model of 3q29Del

Perturbation of 3929 gene dosage in neural tissue is expected to
lead to the differential expression of the true transcriptomic
network partners of 3g29 genes. Following this premise, we tested
the enrichment of the network taz%ets identified in this study for
differential expression in Del16™/8"'"T™ mice compared with WT
littermates. RNA-Seq analysis revealed 290 protein-coding DEGs
with known human homologs (P<0.05), 17 of which were
identified as 3929 interval genes (Bdhi, Cep19, Digl, Fbxo45,
MAf2, Ncbp2, Nrros, Pak2, Pcytla, Pigx, Pigz, Rnf168, Senp5, Tctex1d2,
Tfrc, Ubxn7, and Wdr53) (Fig. 5a, b and Table S2.5). The scaled
expression of these 3q29 genes showed a consistent reduction
proportional to gene copy number (Fig. 5a and Table S2.5).
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Fig. 3 3q29 interval genes form transcriptomic subnetworks enriched for known schizophrenia, autism, and intellectual/developmental
disability-risk genes. a Schematic of strategy to test the neuropsychiatric disease burden associated with top network neighbors of 3q29
interval genes and to refine a list of prioritized driver genes. To minimize false positives, 3q29 modules were reduced to strongly connected
top neighbors (yellow nodes) of individual 3g29 genes, which were then screened for a significant overlap with known risk genes (red nodes)
for schizophrenia (SZ), autism spectrum disorders (ASD), and intellectual/developmental disability (IDD), spanning known associations over a
wide spectrum of allele frequencies. A top neighbor was defined as any node whose gene expression profile had a moderate-to-high pairwise
correlation (Spearman’s rho (p) > 0.5, P <0.05) with a 3929 interval gene within the same module. By leveraging the guilt by association
principle, the 3929 interval genes that showed a significant enrichment of known SZ, ASD, and/or IDD risk genes among their respective top
neighbors were prioritized as likely drivers of the neurodevelopmental and psychiatric consequences of 3g29Del, along with their SZ, ASD,
and/or IDD-related top neighbors from significant overlap tests. b Adjusted p values from hypergeometric tests identifying the significance of
the overlap between top neighbors of individual 3g29 genes and known risk genes for SZ, ASD, and IDD. Risk gene sets for three traits with no
known association to the 3g29Del syndrome were also tested for overrepresentation as negative controls. Common variants associated with
height were included as another negative control to rule out a potential bias introduced by gene-set size. Nine protein-coding genes from the
3929 interval formed transcriptomic subnetworks that are significantly enriched for known SZ, ASD, and/or IDD risk genes (orange highlight,
adjusted P < 0.05). The proportion of hypergeometric tests with significant overrepresentation of SZ, ASD, and IDD gene sets (19/96) was
found to be an order of magnitude larger than that of the negative control tests (2/64), demonstrating the high specificity of the identified

enrichment patterns for reported 3q29Del-associated phenotypes.

All 290 DEGs were tested for enrichment of network-derived
targets identified via WGCNA at three scales of network inter-
connectedness: (i) broad 3929 network (11,924 genes), (ii) top-
neighbor-based 3929 subnetwork (5087 genes), and (iii) prioritized
drivers (280 genes). Hypergeometric tests revealed significant
enrichment of the interrogated DEGs for network-derived ties at
all three levels of this analysis (P < 0.05; Fig. 5b). The list of DEGs,
including the subsets intersecting WGCNA-derived targets, and the
list of genes corresponding to the three levels of network
interconnectedness interrogated in this analysis are provided in
Table S2.5. See Supplemental Results for extended results.

DISCUSSION

The 3g29Del has been reliably associated with extraordinary risk
for serious neuropsychiatric illness and therefore may offer key
insights to advance our understanding of the biological basis of
these complex disorders. Currently, the driver genes and affected
biological pathways that link 3g29Del to neuropsychiatric
pathology remain unknown. To avoid bias introduced by
annotation-based criteria in the formulation of mechanistic
hypotheses, we engaged a system-level vantage point and
interrogated the collective behavior of 3929 interval genes with
the global protein-coding transcriptome of the healthy human

SPRINGER NATURE

brain. We leveraged publicly available transcriptomic data from
the GTEx Project [58] to perform WGCNA [29,42,] on postmortem
cortical samples from donors with no known history of psychiatric
or neurological disease. We focused our analysis on the adult PFC
and analyzed the resulting network to identify the modular
properties and undirected connectivity patterns of the 3929
interval, which yielded key predictions into interrelated functions
and disease associations. Finally, we assessed the validity of our
graph-based predictions in an experimental system by conducting
RNA-sequencing in mice harboring a homologous deletion to the
human 3qg29Del locus [20]. Our findings provide foundational
information to formulate rigorous, targeted, and testable hypoth-
eses on the causal drivers and mechanisms underlying the largest
known single genetic risk factor for SZ.

Genomic studies have identified several recurrent CNVs that
confer high risk for neuropsychiatric disorders [2,10,]. The current
challenge is to understand which genes within these loci are the
major drivers of risk. In the 3929 locus, DLGT and PAK2 have been
most often proposed as candidate drivers of neuropsychiatric
phenotypes [12,25,113)]. Indeed, a recent literature search
revealed more publications related to these genes than of all
other 3g29Del genes combined (Fig. S6). Consistent with previous
reports of an association between DLG1 and SZ [18,19)], the
current study presents network-level evidence for prioritizing

Translational Psychiatry (2021)11:357
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Fig. 4 Network of prioritized drivers predicted to contribute to the neuropsychiatric sequelae of 3q29Del. a Nine protein-coding genes
from the 3929 interval formed top-neighbor-based transcriptomic subnetworks that were significantly enriched for known schizophrenia (52),
autism spectrum disorder (ASD), and intellectual/developmental disability (IDD)-risk genes (adjusted P < 0.05). Black and red nodes illustrated
in this network diagram represent these nine 3929 genes and their 284 top neighbors with known SZ, ASD, and/or IDD-association,
respectively. The union of these prioritized genes constitute 293 genetic drivers predicted to contribute to the neurodevelopmental and
psychiatric phenotypes of 3q29Del. The color of network edges that connect node-pairs represents module assignment. b Top 20 biological
processes and pathways with significant enrichment among prioritized drivers (adjusted P < 0.05). The identified Gene Ontology biological
processes (GO: BP) and Reactome and KEGG biological pathways point to key mechanisms through which select genes within the 3g29Del
locus and their likely partners outside the interval are predicted to influence susceptibility to SZ, ASD, and IDD. ¢ Organization of all
statistically significant biological processes enriched in prioritized drivers into a network of related functional annotation categories. GO:BP
terms are connected if they have a high overlap (share many genes); edge width represents magnitude of the overlap.

DLG1 as a neuropsychiatric disease-linked gene. Surprisingly,
however, our analysis does not support inclusion of PAK2 as a
predicted driver of neuropsychiatric risk. Instead, our results lend
support to DLGT and eight other 329 genes, most of which are
largely understudied, as key players in 3g29Del syndrome. Our
unbiased approach prioritizes BDH1, CEP19, DLG1, FBXO45, PIGZ,
RNF168, SENP5, UBXN7, and WDR53 as primary drivers.

Translational Psychiatry (2021)11:357

It is currently unknown whether the biological basis of
neuropsychiatric risk associated with recurrent CNVs overlaps with
that of individuals who share the same clinical diagnosis but do not
share the same rare genetic variant. Our findings suggest that
molecular perturbations caused by the hemizygous deletion of select
3929 genes may overlap with the genetic etiologies contributing to
idiopathic forms of SZ, ASD, and IDD. Disease-relevant driver genes
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Fig. 5 WGCNA network predicts differentially expressed genes in the mouse model of 3q29Del. a Gene-scaled expression of all detected
protein-coding genes within the homologous 3g29 interval shows a consistent reduction in Del16"/84" T mice relative to wild-type (WT)
littermates, proportional to gene copy number. Genes in gray were not detected by RNA-Seq. Asterisks indicate level of significance (***P <
0.0001, **P < 0.001). b 290 protein-coding genes with known mouse-human homologs were found to be differentially expressed (P < 0.05) in

De|16+/Bdh1-Tfrc

mice relative to wild-type (WT) littermates. These DEGs were tested for enrichment of genes found in the broad 3g29 network

(all genes in 3929 modules), top-neighbor based 3q29 subnetwork, and disease-associated prioritized drivers. A significant enrichment was
found at each level of network interconnectedness (P < 0.05). Upregulated genes are in blue and downregulated genes are in red.

prioritized by our network analysis are enriched for canonical
biological pathways, such as neurogenesis, neuron differentiation,
synapse organization, excitatory postsynaptic potential, long-term
potentiation, axon guidance, regulation of actin cytoskeleton, signal
transduction, posttranslational protein modifications, chromatin
organization, and histone modification. We hypothesize that the
disruption of one or more of these biological processes, some of

SPRINGER NATURE

which are altered in idiopathic SZ and ASD [2,112)], lie on the causal
pathway to neuropsychopathology in 3q29Del syndrome.

No single gene within the interval has been definitively
associated with neuropsychiatric disease, prompting the hypoth-
esis that neuropathology in 3q29Del emerges upon loss of
multiple genes that are functionally connected. While a single
nucleotide polymorphism in DLG1 has been associated with SZ in
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a case-control study [18,19,], the risk associated with this variant
does not approach that of 3qg29Del, suggesting that the
neuropsychiatric risk associated with this CNV is distributed across
more than one gene in the locus. To investigate functional
connections across multiple 3929 genes, we conducted an
unsupervised analysis of the modular organization of the adult
human PFC. We found the 21 3929 genes distributed into three
meta-modules and seven modules, with 18 genes converging into
just four modules. Hence, 3929 genes display both distributed and
convergent effects in the adult human cortical transcriptome.
Rather than functioning as independent agents, sets of 3g29
genes may have shared and/or synchronized function and
constitute interacting sources of pathology. It is conceivable that
the consequences of the haploinsufficiency arise through the
weakening of multiple distinct pathways that normally provide
protective redundancies (distributed model), and/or through
multiple insults to a functionally connected module that
cumulatively disrupt resiliency (convergent biology model). These
hypotheses warrant further testing.

A major goal of this study was to infer unknown functions for
understudied 3929 genes by leveraging well-studied co-clustering
genes. Pathway analysis of modules harboring 3929 genes
revealed likely functional involvement of the 3929 locus in not
only nervous-system specific functions, but also in core aspects of
cell biology that are nonspecific to an organ system. The closely-
related black and midnight-blue modules were significantly
associated with regulation of gene expression, chromatin organi-
zation, and DNA repair. The green and turquoise modules were
both associated with nervous system development and function,
and in particular, regulation and organization of synaptic signaling
and components. This finding is surprising because most of the
3929 genes located in these latter two modules have not been
identified as synaptic genes. Similarly, the 3929 genes in the black
and midnight-blue modules have not been implicated in gene
regulatory pathways or DNA repair. We maintain that biological
functions of poorly annotated genes can be inferred through the
graph-based modeling of inter-gene relationships. Thereby, we
predict novel roles for individual 3g29 genes in functions related
to synaptic transmission, modulation of neurotransmission,
synapse structure and function, mitochondrial metabolism,
transcriptional and translational regulation, chromatin remodeling,
cell cycle regulation, and protein modification, localization and
turnover. We propose that the subset of predicted functions that
are nonspecific to an organ system likely contribute to global
developmental outcomes in 3q29Del.

Analysis of eigengene-based connectivity revealed that UBXN7
is a hub gene, with top neighbors enriched for known association
with all three major neuropsychiatric phenotypes of 3q29Del. Hub
nodes of biological networks are often associated with human
disease [114,115,]. Disease-genes, identified from OMIM’s Morbid
Map of the Human Genome, disproportionately exhibit hub-gene
characteristics, with protein products participating in more known
PPIs than that of non-disease genes [116]. Supported by this
literature, we predict that (1) UBXN7 exerts critical influence on a
large network of co-expressed genes, and (2) loss-of-function (LoF)
mutations in UBXN7 can cause major dysfunction in affiliated
biological pathways (indeed, its pLl score =0.99, i.e., extremely
intolerant to LoF [117]). We prioritize UBXN7 as a major driver in
3g29Del syndrome. UBXN7 has not been previously linked to
neuropsychiatric disorders or proposed as a candidate driver of
3g29Del syndrome. However, UBXN7 has been reported to
regulate the ASD-associated E3 ubiquitin ligase Cullin-3 (CUL3)
[118], an interaction that deserves more attention in light of our
findings [97]. In fact, UBXN7 is one of three genes involved in the
ubiquitin-proteasome system (UPS)—along with RNF168 and
FBXO45—that were prioritized in our analysis. Accumulating
evidence indicates multiple links between the UPS and SZ,
though the causal relationship is still unclear (reviewed by [119]).
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Our analysis indicates that the UPS may be disrupted at multiple
levels by haploinsufficiency of these three genes in 3q29Del.

The network described here was built from adult human PFC
gene expression data, while the experimental system used to test
the validity of the identified network targets was the mouse
model of 3g29Del at postnatal day 7 [20], which most closely
matches the perinatal stage of brain development in humans
[120]. Notwithstanding this considerable difference in develop-
mental phase, we found significant enrichment of network-
derived targets among DEGs identified in this model, presenting
proof of concept for the validity of our network analysis approach
for uncovering biologically meaningful associations. These results
also indicate that a significant fraction of transcriptomic network
connections formed by the 3929 locus may be relatively stable
through development and are evolutionarily conserved in mice.

One limitation of the current study is its singular focus on
protein-coding elements. How the noncoding elements of the
interval, along with splice variants, integrate into the predictions
formulated in this study is ripe for future investigation. Overall, the
transcriptomic network identified in this study is predicted to
connect 3929 interval genes with gene sets outside the interval
that participate in the same or overlapping biological process and
associate with similar disease phenotypes. Perturbation of 3g29
interval gene dosage is expected to also perturb the functioning
of network-partners outside the recurrent 3q29Del locus. How-
ever, note that the underlying structure of weighted gene co-
expression networks is agnostic to the mechanistic order of
cellular and molecular events. The information necessary to derive
the order of biological interactions is not an explicit outcome of
gene co-expression itself, since such inferences require time-
dependent analysis of combinatorial interactions between nodes.
As a result, some of the network partners identified in this study
are expected to function upstream of their co-expressed 3929
gene partner and would likely not be affected by 3q29Del.
Simultaneously, this direction-agnostic property also suggests that
network-based predictions formulated in this study are likely
relevant to biological pathways and processes implicated in 329
duplication syndrome [121], which was recently shown to
manifest phenotypic concordance with 3g29Del syndrome in
multiple clinical areas, similar to relationships identified in other
reciprocal CNV disorders [122].

Moreover, the complex interactions between molecules can be
dynamic across time and space [56]. Hence, a future direction will
be to ask whether the network connections formed by 3qg29
interval genes in the adult PFC show differential expression in the
neural tissue of 3q29Del carriers and whether they show temporal
and/or spatial variation.

Finally, our analysis does not preclude the possibility that other
3929 interval genes moderate phenotypic expressivity. For
example, while the dark turquoise module (including PAK2) did
not harbor prioritized driver genes, it was significantly associated
with estrogen receptor-mediated signaling. An intriguing emer-
ging feature of 3g29Del syndrome is the markedly reduced sex
bias in risk for ASD [9]. Additional studies will be required to assess
the drivers of sex-specific phenotypes of 3q29Del syndrome.

Now that recurrent, highly penetrant CNV loci have been
identified as important risk factors for neuropsychiatric disorders,
determination of the component genes driving this risk is the next
step toward deciphering mechanisms. We used an unbiased
systems biology approach that leveraged the power of open data
to infer unknown functions for understudied 3g29 interval genes,
and to refine the 3929 locus to nine prioritized driver genes,
including one hub gene. Importantly, this approach can partially
overcome barriers to formulation of relevant hypotheses that are
introduced by poor annotation of interval genes, without
requiring laborious, expensive, and time-consuming experiments
to functionally characterize all genes within the interval. Our
results reveal the power of this approach for prioritization of
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putative drivers. Ongoing and future studies will be directed at
understanding how these genes work in concert and how multiple
haploinsufficiencies confer risk for neuropsychiatric disease.
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