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A B S T R A C T   

The acid β-glucocerebrosidase (GCase) enzyme cleaves glucosylceramide into glucose and ceramide. Loss of 
function variants in the gene encoding for GCase can lead to Gaucher disease and Parkinson’s disease. Thera-
peutic strategies aimed at increasing GCase activity by targeting a modulating factor are attractive and poorly 
explored. To identify genetic modifiers, we measured hepatic GCase activity in 27 inbred mouse strains. A 
genome-wide association study (GWAS) using GCase activity as a trait identified several candidate modifier 
genes, including Dmrtc2 and Arhgef1 (p=2.1x10− 7), and Grik5 (p=2.1x10− 7). Bayesian integration of the gene 
mapping with transcriptomics was used to build integrative networks. The analysis uncovered additional 
candidate GCase regulators, highlighting modules of the acute phase response (p=1.01x10− 8), acute inflam-
matory response (p=1.01x10− 8), fatty acid beta-oxidation (p=7.43x10− 5), among others. Our study revealed 
previously unknown candidate modulators of GCase activity, which may facilitate the design of therapies for 
diseases with GCase dysfunction.   

1. Introduction 

Hydrolytic enzymes are abundant in the lysosome; more than 60 
acidic hydrolases have been described to date [1]. In addition to its 
digestive and recycling functions, the lysosome orchestrates metabolic 
adaptations to external cues [2]. The acidic lysosomal β-glucocere-
brosidase (GCase) enzyme degrades glucosylceramide into glucose and 
ceramide [3]. GCase is encoded by the GBA1 gene. Loss-of-function 
variants in this gene cause the rare lysosomal storage disorder 
Gaucher disease (GD) [4]. GBA1 variants also significantly increase the 
risk of developing Parkinsonism and Parkinson’s disease (PD) [5]. In 
addition to other mechanistic data, this observation highlights the role 
of lysosomal dysfunction as a risk factor for PD [6]. Therefore, an 
exogenous increase of GCase activity and other related enzymes is an 
attractive therapeutic strategy that has not yet been thoroughly 
explored. 

Although treatments for Gaucher disease are available, they have 

clinical limitations [7]. Studying how GCase is modulated can allow us 
to i) learn about its regulation and possibly ii) develop new targeted 
therapies to treat these diseases which diseases be more specific. One 
attractive approach to identify new therapeutic targets to modulate 
GCase is to use the natural genetic diversity present in populations of 
individuals (i.e., model organisms) to identify genetic modifiers that 
control a given trait [8]. By integrating gene mapping with other sets of 
-omics, it is possible to find regulatory elements underlying the variation 
in a given trait [9]. This holistic population-based approach is called 
systems genetics [10]. 

Inbred mouse strains arise from crossing siblings for at least 20 
generations [11]. The Hybrid Mouse Diversity Panel (HMDP) [8] cor-
responds to a panel of genotyped inbred strains where other -omics data 
are also available [8,12]. The HMDP panel has been used to perform 
association studies and find modifier genes for a variety of complex 
traits [13,14]. 

Here, we used a systems genetics approach to identify putative 
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modifier genes/networks of GCase activity in mice. To this end, we 
measured hepatic GCase activity in 27 strains of mice. A genome-wide 
association (GWAS) analysis identified putative modifier genes. We 
used Mergeomics analysis to integrate GCase activity, gene mapping, 
and available liver transcriptomic data. Our study revealed genes, net-
works, and biological processes that might regulate GCase function. 

2. Materials and methods 

2.1. Mouse tissues 

We used 8 weeks-old mice livers derived from 27 inbred mouse 
strains which were kindly donated by Dr. Aldons Lusis (University of 
California, Los Angeles). (i) 129X1/SvJ (n=5), (ii) A/J (n=5), (iii) AKR/ 
J (n=5), (iv) BALB/cJ (n=5), (v) BTBR T<+> tf/J (n=5), (vi) BUB/BnJ 
(n=3), (vii) C3H/HeJ (n=3), (viii) C57BL/6J (n=5), (ix) C58/J (n=5), 
(x) CAST/EiJ (n=3), (xi) CBA/J (n=5), (xii) CE/J (n=5), (xiii) DBA/2J 
(n=5), (xiv) FVB/NJ (n=3), (xv) KK/HlJ (n=3), (xvi) LG/J (n=4), (xvii) 
LP/J (n=3), (xviii) MA/MyJ (n=3), (xix) NOD/ShiLtJ (n=5), (xx) NON/ 
ShiLtJ (n=5), (xxi) NZB/BlNJ (n=5), (xxii) NZW/LacJ (n=5), xxiii) PL/J 
(n=5), xxiv) RIIIS/J (n=3), xxv) SEA/GnJ (n=5), xxvi) SM/J (n=5), 
xxvii) SWR/J (n=5). Tissues were homogenized and adjusted to 50 mg 
tissue/ml in H2O, with a Potter-Elvehjem tissue homogenizer (Omni 
International, USA) and then stored at − 80 ◦C until further use. This 
liver was selected because of its high relevance in the generation of 
pathophysiological phenotypes in GD [4]. 

2.2. GCase activity assays 

GCase activity was determined using an artificial fluorescent sub-
strate based on 4-methylumbelliferone (4-MU) [15]. For this purpose, 
liver homogenates were diluted 1/10 with GCase buffer (200 mM 
citrate-phosphate buffer, pH 5.2, containing 0.25% Triton X-100, 1.25 
mM EDTA, 4 mM 2-mercaptoethanol, all these reagents from Calbio-
chem, Merck KGaA, Darmstadt, Germany). Three cycles of freezing and 
thawing with liquid nitrogen were performed to disrupt the cell mem-
branes. Subsequently, 10 μl of the diluted homogenates (5 μg of total 
protein from each sample) were mixed with and without 10 μl of 0.3 mM 
N-butyldeoxydeoxynojirimycin (NB-DGJ) for 30 min on ice. NB-DGJ is a 
β-glucocerebrosidase 2 (GBA2; non-lysosomal enzyme) inhibitor that 
does not inhibit GCase [16] (Toronto Research Chemicals, North York, 
Ontario, Canada). Thereafter, the tubes were placed in a 37 ◦C water 
bath, and 40 μl of the substrate 4-methylumbellifer-
yl-β-D-glucopyranoside (4.5 mM 4-MU-β-D-Glc in GCase buffer) (Sigma, 
Dorset, England) was added. The reaction was stopped after 30 min of 
incubation by the addition of 400 μl cold 0.5 M Na2CO3 at pH 10.7 
(Panreac Applichem, Barcelona, Spain). Fluorescence was measured at 
340 nm excitation and 460 nm emission with a gain of 40 in a semi-
automated plate reader (Synergy HT, BioTek, Winooski, USA). Fluo-
rescence values were normalized to protein content in each sample as 
obtained by a BSA assay (Pierce BCA Protein Assay Kit; Thermo Fisher 
Scientific, Illinois, USA). To calculate GCase specific activity, a 4-MU 
standard curve was constructed, and the final value was adjusted to 1 
h of enzymatic reaction. For each biological sample, at least three 
technical replicates were performed. 

2.3. Phylogenetic tree and GWAS using an efficient mixed model 
association (EMMA) 

We used the average GCase activity per mouse strain as a phenotype 
to perform the GWAS using an Efficient Mixed Model Association Study 
(EMMA v.1.1.2) [17]. In addition, we included in the analysis the mouse 
HapMap reference panel, consisting of 4 million SNVs downloaded from 
http://mouse.cs.ucla.edu/mousehapmap/full.html [18]. The R package 
for EMMA was downloaded from http://mouse.cs.ucla.edu/emma/ 
[19]. P-value was recorded as the strength of the genotype-phenotype 

associations. To build to phylogenetic tree we used the EMMA uses a 
kinship matrix to run hierarchical clustering using R [19]. 

2.4. Gene expression array 

The hepatic transcript levels of inbred mouse strains were down-
loaded from the repository GSE16780 UCLA Mouse MDP Liver Affy HT 
M430A MDP Liver [20]. If there was more than one probe quantifying 
the same gene, the values were averaged. 

2.5. Functional impact of gene variants 

We downloaded the genomes of three strains with low and high 
GCase activity respectively (CBA/J, A/J, FVB/NJ, CAST/EiJ, BUB/BnJ, 
and C58/J) from the Mouse Phenome Database (MPD) (RRID: 
SCR_003212) of Jackson Laboratory (https://phenome.jax.org/) and 
Mouse Genomes Project of Sanger Institute [21]. The Impact of variants 
was assessed using SIFT (sorting intolerant from tolerant) [22] and 
SnpEff [23]. 

2.6. Integrative networks of genomic and transcriptomic data 

To study how genomic and liver transcriptomic variation contributes 
to hepatic GCase activity variability in the 27 HMDP strains, we 
employed Mergeomics v1.18 [24]. To build Bayesian networks of inte-
grative omics underlying GCase activity, two modules of Mergeomics 
are required: a) marker set enrichment analysis (MSEA) and b) weighted 
key driver analysis (wKDA). MSEA requires the following data inputs: 1) 
EMMA GWAS results: i) marker-GCase activity association (marker--
value) and ii) gene-marker mapping file (gene-marker); 2) functionally 
related gene sets (module-gene), which are preloaded in Mergeomics. 
These results are integrated through the package algorithm to find sets 
of genes associated with GCase activity. The parameter settings of the 
MSEA module included: i) type of permutation at the gene level. ii) 
minimum (10) and maximum (500) number of genes in the sets. iii) the 
minimum and maximum overlap ratio between sets of genes associated 
with disease/trait = 0.33 (33% overlap). iv) the number of gene or 
marker permutations = 2000 and finally v) the MSEA FDR cutoff was 
≤25% [25], this analysis calculates the Benjamini-Hochberg FDR [26]. 

To identify key driver (KD) genes, which are defined as the gene hubs 
most significantly associated with other genes in the network, we used 
wKDA [24]. The wKDA module takes input data from the MSEA results 
generated in the previous step and a defined liver tissue Bayesian 
network corresponding to human and rodent expression datasets of 
earlier studies [27]. The parameters for running wKDA included i) 
Search depth of wKDA = 1, which means that we search for key-drivers 
whose immediate neighborhood is enriched for MSEA significant genes, 
ii) the edge type of wKDA = incoming and outgoing directionality, iii) 
the minimum overlap, is the threshold above which hubs will be 
designated as co-hubs, of wKDA = 0.33, and iv) the edge factor of wKDA 
= 0.5, which means an unweight network. This module projected sets of 
genes associated with liver GCase activity onto a Bayesian liver network, 
representing seemingly causal relationships between genes and KD 
genes [27]. We ran both Mergeomics modules in the R package [19]. 

2.7. Gene ontology enrichment 

ShinyGO v0.61 [28], for gene ontology (GO) enrichment analysis for 
network modules, was employed. This tool has annotations for model 
organisms. The chromosomal gene location, metabolic pathways, gene 
clustering, and protein interaction networks can be plotted [28]. 

2.8. Statistics 

Prism v9.1.0 (GraphPad software, San Diego, CA) and the R package 
[25] was used for statistical analysis and included a two-tailed Student’s 
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t-test and ANOVA with Bonferroni test. Pearson for correlation analyses 
was employed. The significant value was considered as p < 0.05. 

3. Results 

3.1. Liver GCase activity varies among mouse strains 

We measured hepatic GCase activity by fluorimetry in the liver of 27 
inbred mice strains with different phylogenetic origins (Fig. 1A) using an 
artificial substrate 4-MU-β-D-Glc. We observe significant variability in 
the average enzymatic activity between the different strains (Fig. 1B). 
This activity was higher in the BUB/BnJ and C58/J strains (p < 0.001; 
mean ± 95%confidence interval; 39.3 ± 25.0–53.5 and 40.1 ±

29.57–50.6 respectively) compared to MA/MyJ and CBA/J (20.7 ±
10.3–31.2 and 23.8 ± 16.8–30.7 respectively). 

3.2. GWAS identified putative modifier genes of GCase activity 

To uncover possible modifier genes, we performed a GWAS analysis 
with EMMA. EMMA is a statistical test that corrects the strains’ popu-
lation structure and genetic relatedness. EMMA applies a mixed models 
for association mapping, allowing to substantially increase the compu-
tational speed and reliability of the results by reducing false positives 
associations [17]. We found 271 significant Single Nucleotide Variants 
(SNVs) p ≤ 4.1x10− 6 that exceeded the threshold of suggestive associ-
ations previously established [36], represented in 9 non-redundant 
genes (Table S1 and Fig. 2A). Among all the variants identified, we 
found an exonic variant in the Myo6 gene, one in the 3′UTR region of 
Dmrtc2 and Arhgef1, among others (Table S1). Then, we organized the 
strains by GCase activity and plotted the genotypes of the top associated 
markers. The strains with low and intermediate activities present a 
different distribution pattern than those with high GCase activity 
(Fig. 2B). Strains AKR/J and PL/J showed a different distribution 
pattern. Perhaps in these two strains, spontaneous mutations arose in 
some of their generations after genotyping, as described for C3H/HeN, 
BL6, BALBc, and FVB [29]. A suggestive association threshold (blue line) 
(Fig. 2A) p ≤ 4.1x10− 6 was calculated in Ref. [17,29] and ii) a Bonfer-
roni correction, which resulted in a much stricter p-value of 1.28x10− 8, 
denoted by the red line in Fig. 2A. Interestingly we observed variants at 
different genomic locations with a genotype-phenotype association that 
exceeds the empirical p-value (Fig. 2A &B). 

3.3. Associations between hepatic transcripts levels and GCase enzyme 
activity 

The significant SNVs in a GWAS can be regulators of gene expression 
levels. Thus, we performed correlation studies between GCase activity 
and liver transcripts levels. To this end, we downloaded the hepatic gene 
expression array data from an online repository (GSE16780 UCLA 
Mouse MDP Liver Affy HT M430A) [20]. The array included the probes 
for seven of the nine identified genes. Associations were explored 
(Fig. S1). No significant correlations were found. The array data that we 
used did not include probes for Spag16 and Dmrtc2 genes. Therefore, it 
was not possible to test correlations with these two genes. For Erbb4 and 
Zic4 we observed a trend (p=0.07). The signals in a Manhattan plot can 
be labeling coding or other no coding genomic variability. To explore 
this possibility, we downloaded the genomes of three low (CBA/J, A/J, 
and FVB/NJ) and three high (CAST/EiJ, BUB/BnJ, and C58/J) GCase 
activity strains from the Mouse Genomes Project of Sanger Institute 
[21]. We identified predicted splice and or miss sense variants in Grik5, 
Impg1, Myo6, and Spag16 (Fig. 2C). To assess the implications of miss 
sense variants we used SIFT (sorting intolerant from tolerant) [22] and 
SnpEff [23]. 

3.4. Identification of modules, key drivers, and pathways associated with 
GCase activity 

EMMA/GWAS results were used to identify modules and key driver 
genes within the coexpression network re-constructed for mouse/human 
liver, using Mergeomics v1.18. We used 20 pre-defined mouse gene sets 
[24] and FDR <25%. The MSEA module of Mergeomics highlighted 
modules which correspond to mouse liver expression data converted to 
human gene symbols (Table S2). The wKDA identified 4 top key drivers 
(Itih4, Hsd3b5, Ocel1, Pigt) and 18 total network hubs (Fig. 3A, Table S2). 
We included the significant correlations between GCase activity, and the 
transcripts identified in the network (Fig. 3B), and of the driver genes 
(Fig. S2). Gene sets obtained from the MSEA analysis were used to 
perform a GO term enrichment analysis. Significantly enriched path-
ways included acute-phase response (p=1.01x10− 8), acute inflamma-
tory response (p=1.01x10− 8), fatty acid beta-oxidation (p=7.43x10− 5), 
fatty acid catabolic process (p=8.99x10− 4), cellular lipid catabolic 
process (p=3x10− 3), ion transport (p=3x10− 2), cell surface receptor 
signaling pathway (p=4x10− 2), among others associated with biological 
processes (Fig. 4A). Cellular component analysis highlighted blood 

Fig. 1. Variation in the hepatic GCase ac-
tivity among inbred mouse strains. 
(A) Hierarchical clustering of the genetic 
distance among the 27 used strains, based on 
EMMA’s kinship calculation 
(B) Levels of GCase activity in the liver of 27 
mouse inbred strains. Values are presented 
as mean ± standard error (n=5 biological 
sample with three technical replicates). 
ANOVA analysis revealed significant differ-
ences among the groups (p=0.0028).   

A. Durán et al.                                                                                                                                                                                                                                  



Biochemistry and Biophysics Reports 28 (2021) 101105

4

microparticle (p=6x10− 2), early endosome (p=4x10− 1), protein-lipid 
complex (p=4x10− 1), organelle lumen (p=4x10− 1) and others 
(Fig. 4B). Molecular function revealed fatty-acyl-CoA binding 
(p=1x10− 2), anion-sodium symporter activity (p=1x10− 2), among 
others (Fig. 4C). 

4. Discussion 

Our goal was to identify putative modifier genes/networks of hepatic 
GCase activity using a system genetics strategy. Identifying modulable 
genetic modifiers of GCase activity offers a feasible and attractive 
therapeutic alternative for diseases with lysosomal dysfunction, 
bringing us closer to a precision medicine-based approach. 

Our study associated 271 SNVs (Table S1) within nine genes (Dmrtc2, 
Arhgef1, Grik5, Impg1, Myo6, Zic4, Ikzf2, Erbb4, Spag16) to liver GCase 
activity (Fig. 2A & B), and four key drivers (Itih4, Hsd3b5, Ocel1, Pigt) 
(Fig. 3A-D, Table S3). We found no literature linking these newly asso-
ciated genes to the GCase enzyme directly. However, the identified 
genes are associated with several human diseases: Grik5 to bipolar dis-
order [30]; Erbb4 to schizophrenia [31]; and melanoma [32]; Myo6 to 
deafness [33]; Arhgef1 to primary Immunodeficiencies [34]; Impg1 to 

vitelliform macular dystrophies [35] and Zic4 to Dandy-Walker mal-
formation [36]. A connection between these disorders and GCase ac-
tivity should be therefore be explored. 

In addition, the integrative networks identified additional putative 
regulators of GCase activity. The KD genes have been linked to different 
functions: Itih4 to inflammatory responses [37] and liver development 
and regeneration [38]. Hsd3b5 to steroid hormones biosynthesis [39], 
Ocel1 to cancer prognosis [40] and Pigt to glycosylphosphatidylinositol 
transfer (GPI) proteins [41]. Alterations in these functions have been 
reported in GD patients, such as i) lymphoid neoplasms [42]; ii) gam-
mopathies [43]; iii) predisposition to infections [44]; iv) immune system 
dysregulation [45]. Widespread inflammation has been studied in depth 
in GD. Foamy GD macrophages, known as Gaucher cells, release in-
flammatory molecules including IL1β, TNF-α, MCP-1 and IL-6, [46,47]. 
Our results support a role for GCase in the immune response and or this 
inflammatory pathway(s) can regulate GCase activity. 

Our study has some limitations, i) we used public data from a liver 
expression array of HMDP strains instead of RNAseq. The array has 
limited probes to capture the transcriptomic landscape of the tissue. 
Thus, we cannot infer the eventual roles of other genes, different iso-
forms, splice variants, and genes with a low level of expression [48]. ii) 
we used liver homogenates. Several cell types make up the liver, and 
each cell subgroup could have specific contributions to the variability of 

Fig. 2. GWAS identifies putative modifiers of hepatic GCase activity. 
(A) Manhattan plot highlights the top associated GCaase activity genes plotted 
as chromosome position versus the inverse of the negative logarithm of the 
association p-value. 
(B) Strains were organized according to GCase enzymatic activity, from lowest 
to highest, and the genotype of the peak associated SNV and genomic regions 
are shown. Adenine (A), purple; cytosine (C), blue; guanine (G), green; thymine 
(T), yellow; Chr, chromosome. 
(C) Miss sense and coding variants in the top associated genes in three strains 
with low GCase activity and three high activity levels. Same color code than in 
(B) was used. The effect of the variant, Amino Acid (AA) change, and SIFT 
prediction were plotted. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 

Fig. 3. Integrative network of GCase activity. The gene hubs of the network are 
represented with diamonds and Key Driver (KD) genes by yellow diamonds. 
Gene modules are indicated with a different color. Non-member genes are 
expressed in grey. Red edges show the multiple interactions of KD with other 
genes. 
(A) Itih4; Inter-Alpha-Trypsin Inhibitor Heavy Chain 4. 
(B) Hsd3b5; hydroxy-delta-5-steroid dehydrogenase, 3 beta- and steroid delta- 
isomerase 5. 
(C) Ocel1; Occludin/ELL Domain Containing 1. 
(D) Pigt; Phosphatidylinositol Glycan Anchor Biosynthesis Class T. (For inter-
pretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 

A. Durán et al.                                                                                                                                                                                                                                  



Biochemistry and Biophysics Reports 28 (2021) 101105

5

the phenotype studied [49–52]. 
In conclusion, our study has revealed candidate modulators of GCase 

activity. Further functional analyses are required to understand how the 
identified genes regulate GCase activity in hepatic cells. The newly 
identified targets might be relevant for designing therapies for patients 
with GCase dysfunction, such as Gaucher and Parkinson’s disease. 
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