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ABSTRACT The classic diallel takes a set of parents and produces offspring from all possible mating pairs. Phenotype values among the
offspring can then be related back to their respective parentage. When the parents are diploid, sexed, and inbred, the diallel can
characterize aggregate effects of genetic background on a phenotype, revealing effects of strain dosage, heterosis, parent of origin,
epistasis, and sex-specific versions thereof. However, its analysis is traditionally intricate, unforgiving of unplanned missing information,
and highly sensitive to imbalance, making the diallel unapproachable to many geneticists. Nonetheless, imbalanced and incomplete
diallels arise frequently, albeit unintentionally, as by-products of larger-scale experiments that collect F1 data, for example, pilot studies
or multiparent breeding efforts such as the Collaborative Cross or the Arabidopsis MAGIC lines. We present a general Bayesian model
for analyzing diallel data on dioecious diploid inbred strains that cleanly decomposes the observed patterns of variation into biologically
intuitive components, simultaneously models and accommodates outliers, and provides shrinkage estimates of effects that automat-
ically incorporate uncertainty due to imbalance, missing data, and small sample size. We further present a model selection procedure
for weighing evidence for or against the inclusion of those components in a predictive model. We evaluate our method through
simulation and apply it to incomplete diallel data on the founders and F1’s of the Collaborative Cross, robustly characterizing the
genetic architecture of 48 phenotypes.

THE diallel is one of the oldest designs in genetics and one
whose analysis is notoriously complex. The premise is

simple: given a set of J parents, generate and phenotype off-
spring from all J · J reciprocal crosses and from these data
estimate genetic parameters that characterize how the paren-
tal genomes and sex influence phenotypic variation. Using
this design one can estimate the average parental contribu-
tion to the phenotype and the effect of specific combinations
with other parents. When the parents are inbred strains, one
can also estimate parent-of-origin effects. Despite the poten-
tial wealth of information contained in a diallel, there has
been much to discourage its use in practice. Controversies
about the interpretation of estimated parameters have been
inextricably confounded with controversies about the analysis
methods themselves, and much of the discussant literature is
steeped in terminology unfamiliar to potential users. Indeed,

to the outsider, the diallel emerges as an arcane puzzle that is
perhaps best avoided in favor of simpler designs.

The diallel originated in animal and plant breeding as an
extension of the idea that, from a breeding perspective, you
should judge the value of an individual by the phenotypes of
its offspring (Christie and Shattuck 1992 and references
therein). It was originally defined by Schmidt (1919) as
the set of all possible J2 pairwise crosses and was later in-
troduced into the mainstream genetics literature by Jinks
and Hayman (1953). In the decade that followed, the di-
allel, whose definition quickly broadened to encompass any
set of F1 crosses between J. 2 parents, caught the attention
of an active group of quantitative geneticists who went on to
develop a series of elaborations of the design and its analy-
sis. Among the simplest and most popular analytic decom-
positions is that of Griffing (1956). If hjk is the mean
phenotype or predicted value for the cross of parent j with
parent k, then the parental effects can be modeled as

hjk 5m1 gj1 gk 1 sjk; (1)

where m is the intercept, gj is the main effect of parent j, and
sjk is the statistical interaction of j and k, that is, the
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deviation from the combined main effects induced by the
specific pairing of parents j and k. Following the terminology
introduced by Sprague and Tatum (1942) and used
throughout diallel literature, gj is the generalized combining
ability (GCA) of parent j whereas sjk is the specific combin-
ing ability (SCA) of the parents j and k. GCA captures ag-
gregate effects of additive genetics whereas SCA reflects
aggregate genetic effects that lead to departures from addi-
tivity, such as dominance and epistasis.

Numerous extensions to Griffing’s model have been pro-
posed to extract more subtle effects from the diallel. These
include decomposing SCA into dominance, heterosis, and epis-
tasis components (Hayman 1957; Gardner and Eberhart
1966), into reciprocal effects (Griffing 1956), their further de-
composition into maternal and paternal effects (Cockerham
and Weir 1977; Zhu and Weir 1996), and sex-linked var-
iants thereof (Carbonell et al. 1983). Conversely, interest in
obtaining GCAs with fewer than J2 crosses has motivated
variants of the design such as the half-diallel (Griffing
1956) and the partial diallel (Kempthorne and Curnow
1961), among others (see Christie and Shattuck 1992;
Lynch and Walsh 1998), which have themselves led to tech-
nical innovation (e.g., Greenberg et al. 2010).

Disagreement about the precise meaning of parameters
estimated from a diallel cross has presented a theoretical
stumbling block to their interpretation. The parents could be
inbred lines, independent outbreeding populations (such as
open-pollinating varieties of corn), or outbred individuals
(Eberhart and Gardner 1966). They could have been chosen
deliberately, sampled randomly, or some compromise of
these. The intention of the experiment could be to draw
inferences about the parents themselves, the populations
each parent represents, or the broader population from
which all parents were drawn. Joint consideration of such
factors weaves through much of the foundational diallel
literature from 1950 to 1970 and has continued to represent
a source of controversy (Baker 1978; Wright 1985).

A more practical stumbling block arises from the diffi-
culty of estimating parameters from diallel data that are
incomplete, imbalanced, or contaminated with outliers.
Although some diallel crosses are created deliberately,
a significant number arise as a by-product of intermediate
stages in a multiparent breeding program. Such accidental
diallels can contain valuable information, but their often
haphazard patterns of missingness make them an imperfect
match for well-studied designs. For many incomplete
diallels it has been unclear how to analyze the data without
discarding observations, drastically reducing the scope of
inference, or making other significant compromises.

Even when traditional analysis methods accommodate
the design, choice about which parameters (e.g., explicit
models of dominance, SCA, etc.) should be included in the
model can alter the estimates and interpretation of the other
parameters. The option of model selection by significance
testing of individual terms, frequently proposed in older
literature, provides some guidance but is unsatisfactory in

that included parameters are estimated in a way that
disregards uncertainty in model choice. The notion that
any a priori plausible effect should be excluded from
modeling seems to us artificial and out of step with modern
approaches to applied statistical inference (e.g., Gelman and
Hill 2007).

We propose a general and efficient method for the
analysis of diallel crosses and applying it to a data set of
48 phenotypes collected from an incomplete eight-strain
diallel that arose serendipitously from the establishment of
the Collaborative Cross (Churchill et al. 2004; Chesler et al.
2008; Collaborative Cross Consortium 2012). Our methods
of analysis provide an inferential framework that is robust
to imbalance in the design, missing data, and outliers. We
model a wide range of effects including additive, heterosis,
epistatic, parent-of-origin, and sex-specific variants thereof.
This structure accomplishes two important goals. The first is
familiar and constant interpretation of parameters across
models. The second is stable and coherent estimation and
prediction that is achieved through hierarchical Bayesian
shrinkage and model selection.

Statistical Models and Methods

We describe our hierarchical decomposition of the diallel in
stages. Starting with the simplest submodel, which describes
only additive strain dosage effects, we present successive
elaborations, building up to the model depicted in Figure 1
with parameters listed in Table 1. We then state the full
model in compact form, detailing its efficient estimation
and methods for choosing informative submodels. Models
are described by a quoted string of characters in alphabetical
order in the first column of Table 1 where, following
marginality restrictions (Venables and Ripley 2002), some
components imply the presence of others unless otherwise
stated.

The “a” model

Consider an incomplete diallel arising from crosses among
J inbred strains. Index the mothers with j and the fathers
with k, such that any mating pair is (j, k) 2 {1, . . . , J}2. Let yi
be the phenotype value of individual i and denote the
mother, the father, and the mother–father pair relevant to
individual i as j[i], k[i], and (j, k)[i]. For a continuous phe-
notype with normally distributed errors, we model

yi 5m1motherj½i�1 fatherk½i� 1 ei; (2)

where m is the intercept modeled as a fixed “overall” effect,
motherj and fatherk are the contributions from mother and
father, and ei � N(0, s2) is a deviation due to the specific
individual (i.e., the residual). In this simplest model, each
parental contribution amounts to a “dose” of the underlying
strain; i.e.,

motherj5 aj (3)
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fatherk 5 ak; (4)

where aj is the dose of the parental strain j (equivalently for
ak) and the effects are additive in the sense that two doses of
strain j increase the expected phenotype value twice as

much as one dose. The estimated effects â are used for
predicting phenotypes of unobserved crosses in the incom-
plete design. We consider an appropriate measure of discrep-
ancy between estimated and true values of a to be the sum of
squared errors (i.e., quadratic loss), lðâ;   ~aÞ 5Pj

j51ðâj2~ajÞ2.
In decision problems involving the estimation of three or
more effects under quadratic loss, shrinkage estimators
typically dominate simple means (Parmigiani and Inoue
2009). Therefore, as in Zhu and Weir (1996), we model
the aj’s hierarchically, as if drawn from a common normal
distribution,

aj � N
�
0; t2a

�
; (5)

where the variance parameter t2a is given a weakly informa-
tive prior distribution. This model leads to an estimate of
each aj that is dynamically shrunk toward zero to the extent
that its supporting data are few and their dispersion t2a is
estimated to be small (Gelman and Hill 2007).

In the “a” model, aj coincides with the GCA for strain j
described by Sprague and Tatum (1942). Nonetheless, we
make further comparisons with GCA and SCA only paren-
thetically, as these constructs hinder interpretation of later
models. When the “a” model is seen as an estimation prob-
lem with primary interest on a, the variance of additive
effects t2a does not require a biological interpretation; from
a Bayesian perspective, it simply helps model how we would
expect the data to appear. Nonetheless, anticipating the use
of its estimate t̂2a as a summary statistic, we explore its re-
lation to the concept of heritability (Lynch and Walsh 1998)
in Appendix A.

Accommodating outliers

When outliers are suspected, maybe as a result of erratic
measurement error, it can be desirable to model the
phenotype as being sampled from a distribution with
heavier tails than the normal distribution. To simultaneously
accommodate and detect outliers we model the individual

Figure 1 A directed acyclic graph depicting the hierarchy of the full
model with outliers modeled at ne t-d.f., i.e., model “BsSasdsmsvswsOn”.
Asterisks indicate components that represent sex-specific deviations from
their nonasterisked counterparts, the latter representing an unsexed
model.

Table 1 Summary of nomenclature

Model component Description Model variables Impliesa

B Inbred penalty binbred

a Strain-specific additive ða1; . . . ; aJÞ; t2a
b Strain-specific inbred ðb1; . . . ;bJÞ; t2b B
m Strain-specific maternal ðm1; . . . ;mJÞ; t2m
v Strain-specific symmetric ðv12; . . . ; vðJ21ÞJÞ; t2v
w Strain-specific asymmetric ðw12; . . . ;wðJ21ÞJÞ; t2w v
S Sex effect (female advantage) bfemale

Bs Female inbred penalty bfemale.inbred B, S
as Strain-specific female additive ðfðaÞ

1 ; . . . ;f
ðaÞ
J Þ; t2fa a, S

bs Strain-specific female dominance ðfðbÞ
1 ; . . . ;f

ðbÞ
J Þ; t2fb b, Bs

ms Strain-specific female maternal ðfðmÞ
1 ; . . . ;f

ðmÞ
J Þ; t2fm M, S

vs Strain-specific female symmetric ðfðvÞ
12 ; . . . ;f

ðvÞ
ðJ21ÞJÞ; t2fv v, S

ws Strain-specific female asymmetric ðfðwÞ
12 ; . . . ;f

ðwÞ
ðJ21ÞJÞ; t2fw

w, S
On Outlier model ðl1; . . .lnÞ; ne
(residual error) Individual variation ðe1; . . . ; enÞ;s2

a Components that would normally be included with this component (defined recursively).
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deviations ei as if drawn from a scale mixture of normal
densities,

ei jli;s
2 � N

�
0;  

s2

li

�
(6)

li j ne � 1
ne

· x2ðneÞ; (7)

where the scale factor li is modeled as 1/ne times a draw
from a chi-square distribution with ne d.f. As a result, ei is now
t-distributed as ei j s2, ne � t(ne, 0, s2). The scale li for each
data point has a prior mean E(li j ne)¼ 1. A posteriori, li acts as
an indicator of the ith data point’s outlier status, with E(li j ne,
Data),, 1, suggesting a highly deviant observation. Setting
ne / N implies that residual errors closely reflect a normal
distribution, while lower values of ne imply increasing prob-
ability of large outliers (West 1984; Carlin and Louis 2008).
For ne we consider values of 15 (only slightly heavier tailed
than the normal), 3 (large outliers likely; the lowest integer
ne for which the t has finite variance), and 6 (an intermedi-
ate value, advocated in, e.g., Greenberg et al. 2010).

Inbreeding and dominance effects: the “Bab” model

Hybrid vigor, or heterosis, describes the change in phenotype
value due to heterozygosity when crossing two inbred lines
(Lynch and Walsh 1998). It is conventional to model this
effect as a dominance term that describes the deviation of
hybrid individuals from the expected average of homozygous
phenotypes. However, we believe the diallel is more naturally
modeled in a converse manner, with inbreds, not hybrids, as
the deviant type. In a full diallel, inbreds are in the minority,
corresponding to 1/Jth of the crosses. Even when the diallel is
sparse, inbred crosses would seldom outnumber hybrids. We
therefore define our predictive baseline as primarily modeling
effects in hybrids, but accommodating inbred-specific effects
through a deviation. First, Equation 2 is elaborated as

yi5m1motherj½i� 1 fatherk½i�1 pairðjkÞ½i�1 ei; (8)

where pair(jk)[i] is a deviation specific to mother–father pair
(jk). In the “Bab” model, this pair effect is then modeled as
a strain-specific inbred penalty bj drawn from a common
distribution centered at fixed effect binbred; i.e.,

pairðjkÞ 5 Ifj¼kg
�
bj1binbred

�
(9)

bj � N
�
0; t2b

�
; (10)

where t2b 5 0 implies that the inbred penalty is constant
across strains. Modeling heterosis, either as an inbred or
a dominance effect, inevitably changes the interpretation
of aj. In our case, aj now estimates the dosage effect of strain
j when combined with another sampled strain. Defining the
additive effects this way results in more stable and precise
estimates for all effects in the diallel.

Parent-of-origin effects: the “Babm” model

The full diallel includes reciprocal crosses of both motherj ·
fatherk and fatherj · motherk. This allows us to estimate
strain-specific effects of maternity (which could include
the uterine environment for mammals, mitochondrial
effects, etc.) vs. paternity. We model these parent-of-origin
effects as a symmetric deviation about the “Bab”model. Ifmj

is the “maternal” contribution from mothers of strain j, then
we revise Equations 3 and 4 to

motherj5 aj1mj

fatherk 5 ak 2mk

mj � N
�
0;   t2m

�
with dispersion of maternal effects t2m.

Symmetric and asymmetric effects: “Babmvw”

Departures from the “Babm” model corresponding to statis-
tical interactions between pairs of strains can be represented
through two additional layers of effects, revising Equation
9 to

pairjk 5 Ifj¼kg
�
bj1binbred

�
1 Ifj 6¼kg

�
vjk 1wjk

�
(11)

vjk 5 vkj � N
�
0;   t2v

�
(12)

wjk 5 2wkj � N
�
0;   t2w

�
: (13)

Symmetric “v” effects model deviations that depend only on
the strain labels and not how they are allocated between
mother and father, whereas asymmetric “w” effects model
deviations from the symmetric effect induced by differences
between reciprocal crosses of the same strain pair.

Sex-specific effects

Sex-specific effects can add considerable complication to
a statistical model because it can not only double the
number of parameters but also change the meaning of the
parameters if, for example, the effect is expressed as an
offset for one sex. Here we expand our model while
preserving the meaning of the existing parameters, model-
ing the effect of an individual being female vs. being male
through a symmetric deviation about an unsexed mean. Let
c encode femaleness,

cðsexÞ5

8><>:
1
2
    if     sex    is    female

2
1
2
    if     sex    is   male;

such that for a parameter q, adding of the term c(sex) � q to
the model pushes the expected phenotype up q/2 for
females and down q/2 for males. We can view females
and males as modeled by Equations 14 and 15, respectively,
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yðfemaleÞ
i 5m1bfemale � cðfemaleÞ1motherðfemaleÞ

j½i� 1 fatherðfemaleÞ
k½i�

1   pairðfemaleÞ
ðjkÞ½i� 1 ei

(14)

yðmaleÞ
i 5m1bfemale � cðmaleÞ1motherðmaleÞ

j½i� 1 fatherðmaleÞ
k½i�

1   pairðmaleÞ
ðjkÞ½i� 1 ei

(15)

with

motherðsexÞj 5 aðsexÞj 1mðsexÞ
j

fatherðsexÞk 5 aðsexÞk 2mðsexÞ
k

pairðsexÞjk 5 Ifj¼kgb
ðsexÞ
j 1 Ifj 6¼kg

�
vðsexÞjk 1wðsexÞ

jk

�
specified for each sex. We define for each strain-specific
effect variable qj 2 {aj, bj, mj},

qðsexÞj 5 qj1cðsexÞfðqÞ
j ;

and for each strain pair-specific effect qjk 2 {vjk, wjk},

qðsexÞjk 5 qjk 1cðsexÞfðqÞ
jk :

Sexed effects are thus the regular unsexed effects plus a symmet-
ric sex-specific deviation. For example, aðfemaleÞ

j 5 aj10:5fðaÞ
j .

We set f ðqÞj ¼ f
ðqÞ
j for q 2 fa, mg and f ðbÞj ¼ f

ðbÞ
j þ bfemale:inbred,

where f
ðqÞ
j � Nð0; t2fqÞ for q 2 fa, m, bg; and for q 2 {v, w},

qjk � Nð0; t2fqÞ with constraints imposed as in Equations 12
and 13, where overall effects bfemale and bfemale.inbred are mod-
eled as fixed effects, and each strain-specific sex-deviation com-
ponent q is modeled as random with its own variance t2fq:

The full model

Including fixed covariates xi and R random-effect com-
ponents uðrÞi � Nð0; t2r Þ, "r 2 {1, . . . , R}, the “full model”
(BsSasbsmsvsws) is

yi 5m1 xTi b|ffl{zffl}
user fixed

1
XR
r51

uðrÞi|fflfflfflffl{zfflfflfflffl}
user random

1 aj½i� 1 ak½i�|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
additive

1 Ifj½i�¼k½i�g
�
binbred 1 bj½i�

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

inbred penalty

1   mj½i� 2mk½i�|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
maternal

1 Ifj½i�6¼k½i�gvðjkÞ½i�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
symmetric

1 Ifj½i�6¼k½i�gwðjkÞ½i�|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
asymmetric

1   cðsexiÞ
�
f
ðaÞ
j½i� 1f

ðaÞ
k½i�
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
sex-specific additive

1 cðsexiÞIfj½i�¼k½i�g
�
bfemale:inbred 1f

ðbÞ
j½i�
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
sex-specific inbred penalty

1   cðsexiÞ
�
f
ðmÞ
j½i� 2f

ðmÞ
k½i�
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
sex-specific maternal

1 cðsexiÞIfj½i�6¼k½i�gf
ðvÞ
ðjkÞ½i�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

sex-specific symmetric

1   cðsexiÞIfj½i�6¼k½i�gf
ðwÞ
ðjkÞ½i�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

sex-specific asymmetric

1 ei   ; (16)

with ne 6¼ N described as the “full model with outliers” or
“BsSasbsmsvswsOne”.

Prior elicitation

We model prior belief about the fixed effects m, binbred,
bfemale, and bfemale.inbred, using diffuse normal priors
N ð0; t2bÞ. For the variance parameters, which include s2

and t2q parameters controlling the dispersion of strain-specific
effects in the components a, b, m, w, v, as, bs, ms, ws, vs, we
model prior belief using inverted chi-square distributions of
the form t2 � mt · Inv – x2(nt) [equivalently described by
the inverted gamma IG(nt/2, mt/2)], which is conjugate
with our normal-likelihood and fixed-effect priors. To model
vague prior information on reasonably scaled data, we apply
weak priors with t2b 5 103 for the fixed effects and nt ¼ 0.02
and mt ¼ 2 for the variance parameters. The information in
the variance priors is equivalent to adding 0.02 datapoints
from an additional strain.

Setting shrinkage priors to beat the
maximum-likelihood estimate

Within the class of unbiased regression estimators, the
standard maximum-likelihood estimate b̂mle is unbeatable
(i.e., admissible) when judged by mean squared error
(MSE) (E½Pðb̂j2bjÞ2�). However, as famously observed by
Stein (1955), once the number of estimated effects exceeds
2, it is uniformly beaten (i.e., dominated) by biased estima-
tors that employ shrinkage (e.g., Parmigiani and Inoue
2009). In particular, ridge regression and generalized ridge
regression will dominate the maximum-likelihood estimate
(MLE) under MSE loss if

bT
h
1Q211

�
XTX

�21
i21

b#s2; (17)

where X is a design matrix and Q is any generalized ridge
shrinkage matrix (using Theorem 3.19 in Gross 2003). In
our case, X specifies individuals’ parentage (see Appendix
B), and Q is a diagonal matrix with s2=t2q values for strain
effects based upon their membership groups. A good prior
for t2q is therefore one that makes Q21 large enough for
the above condition to likely hold. Thus, for large values
of bj, one would want large t2q parameters. In this case,
“flat” priors (i.e., } 1, as given by nt ¼ 2, mt ¼ 0, after, e.g.,
Gelman 2006, or our choice of a nonzero mt) will often be
preferable to the traditional Jeffreys prior [} 1/t2; mt ¼ 0,
nt ¼ 0 (Jeffreys 1946)], which includes strong prior
weight around t2q 5 0.

Posterior estimation

We estimate posterior distributions for all parameters, using
an efficient Gibbs sampling scheme. Details are provided in
Appendices B and C.

Posterior inference

We obtain raw posteriors by collecting sampled values for
each parameter at each MCMC iteration. However, the Gibbs
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sampling scheme above gives marginal posteriors that
appear overly vague for parameters that are grouped by
a common variance [e.g., a ¼ (a1, . . . , aj)]. This is due to the
inherent lack of identifiability in a highly parameterized
mixed model. For example, a range of alternative values
for b, v, and w will produce identical predictions for yi.
Hierarchical modeling means these alternatives are distin-
guished by their different posterior probabilities, but less so
when the posteriors of t2b , t

2
v , and t2w are vague. We note,

however, that the purpose of the diallel experiment is most
often to understand differences between strains and strain
combinations, rather than estimate pure population means.
Therefore, focusing on contrasts, at each iteration t ¼ 1, . . . , T
we calculate recentered versions of the grouped parameters

~qðtÞj   5   qðtÞj   2  
1

j Jq j
X
j92Jq

qðtÞj9

from the raw Gibbs samples, where Jq denotes the group of
effects assigned to the same dispersion parameter t2q, and
jJqj is the number of such effects. The resulting posterior
intervals for ~qj are smaller and cover their true values at
the desired 95% rate. To demonstrate an alternative method
for fitting mixed models that is not (explicitly) Bayesian,
we also fit Equation 16 using the “hglm” procedure of
Ronnegard et al. (2010), which gives a point estimate by
finding the maximum of the hierarchical likelihood [h-likeli-
hood (Lee and Nelder 1996)] suggested by our model.

Posterior prediction

Phenotype predictions for unobserved individuals that both
anticipate sampling variation and incorporate all posterior
uncertainty are easily obtained from MCMC output. We
predict the phenotype Y(j, k, s), for a future individual with
mother j, father k, and sex s, by constructing the appropri-
ate design matrix xjks and using the Gibbs samples to esti-
mate the posterior predictive mean Ŷðj; k; sÞ 5 1

T

P
tx

T
jksb

ðtÞ

of all draws t 2 1, . . . , T. Prediction intervals for Y( j, k, s)
are achieved from quantiles of a set of new draws
xTjksb

ðtÞ1
ffiffiffiffiffiffiffiffiffi
s2ðtÞ

p
Zt, where s2(t) is the tth draw of s2 in the

Gibbs sampler, but with Zt being a new independent draw
from N(0, 1) or t(ne) random noise.

Model selection by information criteria

In comparing the suitability of different submodels estimated
by Gibbs sampling, we consider the popular deviance in-
formation criterion (DIC) (Spiegelhalter et al. 2002), defined
as 2 · ℓðÊðuÞ;   yÞ24 · Êðℓðu;   yÞÞ, where u collects all parame-
ters, ℓ(�j y) is the log-likelihood, and Êð�Þ is the mean over all
T iterations. Lower DIC suggests a more parsimonious model
containing fewer parameters that are poorly estimated.

Bayesian model selection by exclusionary Gibbs
group sampling

With potentially .400 models of interest under consider-
ation (resulting from different combinations of effects), it

is impractical to use information criteria for model selection
because each model requires its own Markov chain. Further-
more, although the DIC minimizer is often a successful pre-
dictor of future Y(j, k, s), it is seldom as parsimonious as the
true model in simulation. In particular, our Bayesian adap-
tive shrinkage means that even the full model BsSasbsmsvsws

can perform well against a model that is better informed. To
deal with selection of parameter subsets q 2 1, . . . ,Q in
a way that better identifies valuable components, we con-
sider a zero-inflated mixture prior (George and Foster 2000;
Ishwaran and Rao 2005) on t2q, namely

t2q � Bernoulli
�
pq
�
·mtnt · Inv2 x2ðntÞ: (18)

This corresponds to the full model but with the elaboration
that each t2q now has a prior probability 1 – pq of being
inactive, that is, equal to zero and having all corresponding
effects Jq equal to zero. We develop an algorithm to draw
from the conditional distribution

t2q ;   bJðqÞ jbnJðqÞ;   y;   s2:

This approach selects subsets of relevant parameters on the
basis of our hierarchical model. Similarly, we model the
selection of fixed effects l 2 L as

bl � BernoulliðplÞ ·N
�
0; j2b

�
:

We calculate the posterior model inclusion probability
(MIP) for each parameter subset, using the Rao-Blackwel-
lized estimate ð1=TÞPtPðt2q 6¼ 0 jbðtÞ

nJðqÞ;   yÞ from the Gibbs
samples (e.g., Guan and Stephens 2011). In this study, we
set j2b 5 102, and pr ¼ pq ¼ 0.5 for all r and q. More details
of the algorithm are presented in Appendix D.

Experimental Materials and Methods

Phenotype data from a diallel of the Collaborative
Cross founders

We collected data on multiple phenotypes (Supporting
Information, File S1) in a diallel of eight inbred mouse
strains (abbreviated names in parentheses), A/J (AJ),
C57BL/6J (B6), 129S1/SvImJ (129), NOD/LtJ (NOD),
NZO/H1LtJ (NZO), CAST/EiJ (CAST), PWK/PhJ (PWK),
and WSB/EiJ (WSB), which are the founder strains of the
Collaborative Cross (CC) (Churchill et al. 2004; Chesler et al.
2008; Collaborative Cross Consortium 2012). It would be
expected that genetic effects present in the diallel will rep-
licate in the CC itself, which motivates our interest in this
population. Table 2 lists the phenotypes collected, transfor-
mations used to normalize each phenotype before diallel
analysis, and the completeness of the data for each pheno-
type. All CC F1 animals had free access to standard labora-
tory chow containing 6% fat by weight (LabDiet 5K52)
and acidified drinking water throughout the phenotyping
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protocol. Mice were on a 12-hr:12-hr light:dark cycle begin-
ning at 6:00 AM and were housed two to five animals per pen
in pressurized, individually ventilated cages.

Blood composition (ADVIA)

Whole blood was obtained in the morning from the retro-
orbital sinus of nonfasted animals 7 weeks of age. Collection
of 200 ml from each animal was performed using an EDTA-
coated microhematocrit tube directed into a 1.5-ml micro-
centrifuge tube containing 2 ml of 10% EDTA. Samples were
analyzed on the Bayer Advia 120 autoanalyzer within the
4 hr following collection.

Blood pressure

Animals were acclimated to a dedicated room for blood
pressure (BP) measurement on the Friday before a 5-day
testing period beginning the following Monday. Systolic blood
pressure and pulse were measured using the BP-2000 tail-cuff
system (Visitech Systems, Apex, NC). Four unanesthetized
mice were placed on a warmed platform (37�) and each was
held in place using a magnetic restraining cover. The tail is
placed through a cuff and held with a magnetic sensor unit
that detects when blood flow stops and starts. Each day 30
measurements are obtained per mouse. Mice were trained to
the apparatus for the first 3 days of the testing period and
data were collected for analysis in the last 2 days, for average
values based upon 60 total measurements. Animals were 10
weeks of age when blood pressure was measured.

Plasma chemistries

Whole blood was obtained from 8-week-old animals after a 4-hr
period of food removal in the morning (7:00–11:00 AM). Col-
lection of 150 ml from each animal was performed using
a heparin-coated microcapillary tube inserted into the
retro-orbital sinus and directed into a 1.5-ml microcentrifuge
tube containing 2 ml of 1000 units/ml heparin. Samples were
placed on ice prior to centrifugation at 10,000 rpm in a re-
frigerated microcentrifuge for 10 min. Plasma was collected
into a clean tube for analysis on the Beckman (Fullerton, CA)
CX-Delta5 Chemistry autoanalyzer.

Densitometry and body composition

Body composition was assessed when mice were 16 weeks
of age by dual-energy X-ray absorptiometry (DEXA), using
a Lunar PIXImus densitometer (GE Medical Systems) after
mice were anesthetized intraperitoneally with tribromoe-
thanol (0.2 ml 2% solution per 10 g body weight). Because
the skull is so bone dense, it is omitted from the DEXA
analysis. Mice were weighed using an Ohaus Navigator scale
with InCal calibration to accommodate animal movement.

Electrocardiography

Unanesthetized mice aged 12 weeks were placed on the
ECGenie (Mouse Specifics, Quincy, MA) for analysis of
electrocardiogram parameters. Recording is initiated when
the paws of the animal contact a 3-lead electrode plate. Data
are analyzed using manufacturer’s software.

Simulations

We assess the performance of our methods by simulation,
evaluating their ability to infer genetic parameters and to
predict future phenotypes on an 8 · 8 diallel of these inbred
strains. Two genetic architectures are considered, one sim-
ple, with additive effects only, and one more complex, with
additive, inbreeding, maternal, and sex-specific maternal
effects. We refer to our general Bayesian model as “Bayes-
Diallel” and to its associated model selection procedure as
“BayesSpike”. See File S1.

Estimation and prediction of additive genetic effects
in a simulated diallel

Gibbs sampler approaches can be difficult to compare with
non-Bayesian methods or even with each other, given their
indefinite approach to a point estimate. For the outlier model
with low degrees of freedom, the posterior may possibly be
multimodal. Furthermore, given the high dimensionality and
structure of our decomposition of the diallel, not all param-
eters receive the same information content per complete
diallel replicate, and whereas some parameters are better
informed by incomplete diallels than others.

To start, we compare BayesDiallel and BayesSpike to
estimates obtained from ordinary linear regression, using
Griffing’s model in Equation 1. We simulate an 8 · 8 com-
plete diallel with five replicate individuals in each cell and
assume all individuals are of the same sex. The first two
columns of Table 3 (top section) list the values of the sim-
ulated parameters: eight additive strain effects (a1, . . . , a8),
an intercept (m), and noise variance (s2). Sampling from
a normal distribution, these are used to generate 5 · 64 ¼
320 simulated phenotypes for the diallel. Columns 3 and 4
give MLEs and 95% confidence intervals from linear regres-
sion using Griffing’s model for GCA (Equation 1 without the
sjk, which is directly competitive with the a model in Table
1) and for GCA 1 SCA (Equation 1 including sjk, which is
directly competitive with the “av”model, as defined in Table
1). In this setting the GCA model is at a distinct advantage:
it knows a priori the true architecture and can thus save
degrees of freedom from fitting specious parameters. The
misinformed GCA 1 SCA model, however, risks overfitting
unless the point estimates for the SCA effects happen to be
small. We then consider several options for analyzing the
diallel within the (unsexed) BayesDiallel framework: the full
model, which we fit with and without consideration of out-
liers, despite the fact that outliers are not simulated; the model
that minimizes the DIC among all 26 ¼ 64 unsexed models;
the true model, which is a Bayesian version of the GCA; the
full model fit by hglm, which maximizes the h-likelihood (see
Statistical Models and Methods); and the component-switching
BayesSpike, which attempts explicitly to learn components
of value. For the BayesSpike models we report the marginal
posterior median (after Meng 2008); for the hglm fit, we
report the point estimate and 95% confidence interval;
for all other BayesDiallel methods we report the posterior
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intervals, calculated as the central 95% quantiles of the pos-
terior distribution (Carlin and Louis 2008). For the Bayesian
methods, we consider their ability to select out parameters
either through severe shrinking or through formal selec-
tion. In the “top false” row in Table 3, we report for the
BayesSpike the largest MIP of untrue fixed and random
components, assuming a (generous) prior MIP of 0.5 per
component; for the remaining Bayesian methods, we re-
port the estimated effect for the largest untrue fixed
component and the t2q estimate for the largest untrue
random component q.

Diallel analysis should (at minimum) help the re-
searcher predict phenotypes of new individuals from
sampled crosses. We generate 1000 new simulated diallels
on the basis of the same genetic architecture (i.e., using the
parameters in Table 3, column 2). Separately we use the
point estimates from each method to predict the expected
phenotype of the new individuals in each cell and compare
these predictions with each of the 1000 subsequently ob-
served data sets. The bottom row in Table 3 compares
predicted with observed values, reporting the MSE as the
average over simulations (upper row) and as its 95% cen-
tral quantile (lower row).

Athough m tends to have a wide confidence/prediction
interval relative to the additive effects, Table 3 shows that
the BayesDiallel models can meet or improve on the MLE for
GCA in terms of prediction error and point estimates, despite
the fact that the full model has 82 parameters. Against the
GCA 1 SCA MLE, however, any method using hierarchical
shrinkage is twice as successful in forecasting new pheno-
types. This advantage to hierarchical models would reduce
with smaller s2. The symmetric and asymmetric effects (v
and w) tend to be the false components most likely to enter
the model when using BayesSpike, although they are typi-
cally estimated with a much smaller magnitude than the
additive effect.

Table 4 shows results from 100 simulation experiments,
with 1000 test data sets per experiment. Values in this
table measure the mean discrepancy in estimated effects
and prediction MSE. Noise level, s2 ¼ 120, represents
a lower limit on the performance of any estimator. We see
that when the model is overspecified, as in the GCA 1 SCA
model, lack of shrinkage severely affects the consistency of
the MLE.

Inferring a complex genetic architecture:
a “BSabms” model

To investigate the performance of the Bayesian model when
many effects are present, we simulated a more complex
genetic architecture that included sex (“S”), maternal (“m”),
sex-specific maternal (“ms”), and inbreeding (“Bb”). In this
case the nonzero effects were a ¼ (27.21, 25.77, 22.88,
20.72, 0.72, 2.16, 5.05, 8.65), b ¼ (4.12, 23.88, 23.88,
2.12, 3.12, 22.88, 0.12, 1.12), m ¼ (1, 1.63, 22.54, 7.24,
9.76, 214.18, 0.19, 23.08), f(m) ¼ (3.75, 3.25, 4.25,
211.75, 0.75, 20.25, 24.75, 4.75), m ¼ 10, bfemale ¼ 4,Ta
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binbreed ¼ –4, and s2 ¼ 120. These were chosen so that
�20% of variation was explained by the “a” component,
20% from “m”, 12% from “ms”, and 0.5% from “b”. We
generated 295 simulated data sets of 8 · 8 diallels with five
replicates of each sex (640 individuals per data set). To each
diallel we applied all of the methods tested above, except
model selection using DIC (which was intractable for mul-
tiple replications when the number of models was 4001 in
sex-effect models). Table 5 provides a summary of predic-
tion and estimation error analogous to Table 4. In this case,
we see that all of the BayesDiallel models are able to adapt
to the active components, producing acceptable prediction
error. Predictions are weaker for strain-specific “b” and “ms”

effects, reflecting the smaller amount of data that inform
them. Griffing’s models are shown for comparison, but as
expected, perform poorly in this realm.

Figure 2 plots the results from fitting the Bayesian model
to 50 of the simulated diallels described in Table 5. The
black line in Figure 2, A and B, describes the set of param-
eters used for the simulation, plotting for each component
q 2 {Q, L} (i.e., among the Q random components or R fixed-
effect components) the parameter value bq if it is a fixed
effect or the SD of its vector q if it is a random effect. In
Figure 2A, each colored line summarizes estimates from the
full model applied to one simulated data set, plotting E(bq j
Data) and SD(E(qjData)), as appropriate. Figure 2B does
the same for the BayesSpike, using median(bq j Data) and
SD(median(qjData)). Figure 2, A and B, shows that whereas
the full model shrinks spurious components, BayesSpike
forces them to zero. Figure 2C plots the posterior MIP,
p̂q, estimated by BayesSpike starting with a component-
wise prior of pq0 ¼ 0.5, with the black line now indicating
the median. Figure 2D shows MIPs for BayesSpike allow-
ing for outliers at 6 d.f. and appears similar to Figure 2C.
However, Figure 2 E and F, which plot the same data in
a different way, reveal an important difference. They show
the log10 of the Bayes factor, calculated as log10ðp̂qpq0Þ2
log10½ð12p̂qÞð12pq0Þ�, which tracks the displacement of
the posterior from the prior and thereby weighs the evidence
provided by the data for or against a component’s inclusion
(Kass and Raftery 1995; Bernardo and Smith 2000). Accom-
modating outliers (Figure 2F) weakens the Bayes factors for
inclusion of true components, illustrating the trade-off be-
tween increased robustness and reduced power.

Application to Data

We apply our Bayesian models and BayesSpike procedure to
data on 48 phenotypes, collected on mice from a diallel of
founders of the Collaborative Cross. We start with an
analysis of mouse weight, for which we were able to collect
almost a full diallel. We then describe our semiautomated
analysis of 48 phenotypes, commenting on select examples
that demonstrate robustness and stability in the presence of
sparsely sampled data, and richly characterize genetic and
parent-of-origin architecture when data are abundant.Ta
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Analysis of weight data in a diallel of the Collaborative
Cross founders

Body weight data were obtained for 292 female and 302
male mice (Figure 3). Shaded cells in Figure 3, A and B,
represent observed phenotypes with the degree of shading
indicating the average weight of mice in each group (log10
scale). Crossed boxes indicate the absence of phenotyped
animals. Although mostly complete, this diallel is imbal-
anced: cells contained between 2 and 20 mice, with 1–13
male and 1–7 female. Visual inspection of this diallel reveals
some striking trends. The dark banding in column and row 5
shows that the genome of the “New Zealand Obese” (NZO)
mouse exerts a strong weight-inducing effect on its progeny
(Taylor et al. 2001). The asymmetry of the banding, how-
ever, suggests this effect is transmitted more strongly from
the mother than from the father. A similar asymmetry is
apparent for strain AJ (row and column 1). Moreover, Figure
3, A and B, shows means only, unmoderated by shrinkage
effects that would factor in the different numbers of mice
that contribute to those estimates.

We applied the full model with outliers (BsSasbsmsvswsO6)
to the body weight data. Highest posterior density (HPD)
(Box and Tiao 1973) intervals of 163 effects parameters
based on 8000 posterior samples from four independent
Monte Carlo Markov chains are shown in Figure 4. Param-
eters are divided into four groups: general effects, which
include the inbreeding penalty (“inbreed.overall”; B) and
strain-specific effects of additive genetics (“additive”; a),
inbreeding (“inbreed”; b), and parent-of-origin effects
(“maternal”; m); strain pair-specific effects, which encom-
pass effects peculiar to specific strain pairs (v and w); sex-
specific effects, which include sex-specific deviations of
the general effects (S, Bs, as, bs, ms); and sex/strain pair-
specific effects, encompassing sex-specific deviations from
the strain pair-specific effects (vs, ws). The general effects
clearly show the high additive dosage effect of NZO (“ad-
ditive:NZO”), plus some evidence for mothers transmitting
this effect more strongly (“maternal:NZO”). A more strik-
ing parent-of-origin effect is evident in CAST (“maternal:
CAST”), which has its 95% HPD most displaced from zero
and indicates CAST mothers transmit low body weight
more strongly than CAST fathers. The sex-specific effects
include an expected drop in weight for females (“female.
overall”) but few other strong deviations from zero. The
strain pair-specific and sex/strain pair-specific effects are
typically more vague. They represent fewer observations
and so are more strongly subject to Bayesian adaptive
shrinkage, which pulls extreme but sparsely supported
means toward the middle. Figure 3, C and D, shows means
of the (posterior) predictive distribution: that is, the aver-
age value of mice in a new diallel of the same strains that
would be expected on the basis of the diallel model and the
observed data. These Bayesian predictions incorporate all
uncertainty due to finite sampling of the data and prior
uncertainty about the parameters.Ta
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Semiautomated analysis of 48 phenotypes in a diallel
of the CC founders

We applied the BayesSpike procedure for automated selec-
tion of diallel components to all 48 of the phenotypes in Table
2. Figure 5 lists the posterior MIPs for each diallel component,
assuming a prior MIP in each case of 1

2. The “Info” column
provides a measure between 0 and 1 that describes how
much information the data have provided about model
choice, defined by a scaled Kullback–Leibler divergence

Info5 cQ
X
q2Q

cq



pqlog

�
pq

pq0

�
1
�
12pq

�
log
�
12pq

12pq0

��
;

where pq0 and pq are the prior and posterior MIPs for com-
ponent q 2 {Q, L} (where Q is the set of all effects grouped
by a common variance, and L is the set of fixed effects), cQ ¼
(2j{Q, L}j0)21, cq ¼ (–log[min(pq0, 1 – pq0)])21, and
k{Q, R}k0 ¼ 13 is the number of components considered
in the selection. For each phenotype, the posterior MIPs

(rounded to 2 decimal places) are based on 10,000 samples
from five independent Markov chains.

The numbers given for each effect in Figure 5 indicate
how strongly, and in what direction, the data shift opinion
about which components should be included. For example,
the MIP values for systolic blood pressure (SystolicMean)
are mostly near 0.5, indicating little posterior certainty
and reflecting the fact that only 188 mice had measurements
for this phenotype and these encompassed only 24 of 64
diallel combinations (Figure 6). Yet despite the sparsity of
this data set, the BayesSpike returns stable, if vague, poste-
rior opinion about inclusions, and the full model, fitted to
the weight data above, provides stable, if vague, posterior
distributions (Figure 7) for 175 effects and variance param-
eters, 188 outlier parameters, 2 · 64 predicted new crosses,
and any further combination of parameters that is of inter-
est. In particular, the data set contains no inbreds, which
means that posterior information about inbreeding parame-
ters (Figure 7, rightmost column) is almost as diffuse as the

Figure 2 (A–F) Summary statistics, posterior model inclusion probabilities, and Bayes factors for Bayesian models applied to 50 simulated diallels that
share a complex genetic and parent-of-origin architecture. “True components” are group effects that were simulated; “spurious components” are
group effects that were absent. Each colored line depicts results from a single simulation, with A and B showing the posterior mean for fixed-effect
components (S, B, Bs) and the SD of sampled random intercepts for strain- and strain pair-specific components.
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original priors, and BayesSpike probabilities indicate the ab-
sence of evidence for or against their inclusion. In contrast,
HDL cholesterol (HDL), for which there are considerably
more data (631 animals with 62/64 cells covered), provides
strong evidence for an overall effect of sex (“S”), strain-spe-
cific effects of additive (“a”) and dominance (as inbreed-
ing; “b”), and symmetric effects, i.e., effects that are
specific to F1’s between particular pairs of strains but for
which the mother/father assignment does not matter. It

also shows strong evidence against any sex-specific effects
(e.g., sex-specific additive effects “as”) beyond that
explained by an overall shift in mean.

Strong evidence for a genetic effect need not imply that
the effect exerts strong influence on the phenotype. Figure 8
plots strain-specific effects for some of the phenotypes listed
in Figure 5. In this “straw plot”, each colored line tracks the
posterior mean for the relevant CC founder strain, with pre-
dicted means of inbreds given in the bottom two rows (these

Figure 3 Weight data for 292 female and 302 male mice in an incomplete diallel of the Collaborative Cross founders. Shaded boxes indicate the
average weight (on the log scale) of female (A) and male (B) mice, with crossed boxes showing missing data. C and D show the posterior predictive
means after applying the full diallel model with outliers at 6 d.f.
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contain a double dose of additive effects and so appear mag-
nified). For ease of comparison, all values are shown on the
scale of standard deviations of the transformed phenotype
(transformations listed in Table 2). The percentage of eosi-
nophils (EOS) (second straw plot) seems only moderately
affected by additive genetics in this diallel. Nonetheless, as
Figure 5 attests, the evidence for those effects is extremely
strong, as is the evidence against substantial contributions
from any other genetic, sex, or parent-of-origin effects, save
a single symmetric increase attributed to the F1 combination
of PWK and CAST (95% HPD is between 0.06 and 1.7,
posterior mean ¼ 0.88, posterior probability of being
#0 ¼ 0.99). The weight phenotype (rightmost straw plot)
is the same as that described in Figures 3 and 4 and is
marked by the effect of NZO escaping the 62 SD axis
boundaries. A similar, if more moderate effect of NZO is
evident for HDL cholesterol (Figure 8, fourth plot). White
blood cell count (WBC) is among the few phenotypes that
show strong evidence for sex-specific effects, as well as
unsexed effects (Figure 5, Figure 8). In particular, examina-
tion of its posterior HPD intervals (Figure 9) reveals that the
sex specificity is confined to epistatic effects (vs, ws) involv-
ing strains AJ, WSB, and 129, with a wider range of epistatic
effects existing irrespective of sex. These posteriors accom-
modate, through our outlier model the potential for erratic

output from the measuring equipment. Figure 10 plots dis-
tributions of the posterior data weight (i.e., the datapoint
reliability) attributed to white cell counts from each indi-
vidual, distinguishing one observation so incongruous as to
merit down-weighting to 1/10th of a data point on aver-
age. From this robust analysis, white blood cell count
emerges as a phenotype that, although apparently free of
parent-of-origin effects, has an otherwise complex genetic
architecture.

Discussion

We describe an efficient and general framework for model-
ing effects of genetics, parent-of-origin, and sex on pheno-
types collected for diallels of inbred strains. By deploying
a fully Bayesian approach with conjugate priors, imbalance
and missing data translate to vagueness in the posterior
rather than instability of the estimates. By adopting an
MCMC approach to estimation, we provide a flexible envi-
ronment in which the posterior distribution of arbitrary
combinations of parameters, including prediction of new
data, can be easily obtained. Moreover, to satisfy all in-
ferential tastes, we describe a rapid and powerful formula-
tion of Bayesian model selection for weighing the evidence
in support of each category of effect in the diallel.

Figure 4 Highest posterior density (HPD) intervals for effects parameters fitted to weight data collected on 594 mice from a diallel of Collaborative
Cross founders. Horizontal bars show for each parameter the region of highest posterior density that covers 50% (thick line) and 95% (thin line) of the
posterior probability, with breaks indicating the posterior median and short vertical bars the posterior mean. The labels “additive”, “inbreed”, and
“maternal” in the first graph refer to the a, b, and m effects in Table 1. In the third graph they refer to sex-specific effects as, bs, and ms. The “v” and
“w” labels in the second and fourth graphs refer to symmetric and asymmetric effects (as in Table 1).

Bayesian Analysis of Inbred Diallels 427



Figure 5 Posterior model inclusion probabilities (MIPs) for genetic, sex, and parent-of-origin effects in 48 phenotypes measured in a diallel of the
Collaborative Cross founders. All MIPs (colored columns except “Info”) are rounded to 2 d.p. and assume a prior of 0.5 for their components effect.
Colors reflect the values and are scaled from blue (zero) to light red (one), with beige at 0.5 representing posterior belief about inclusion that is unmoved
by the data. The “Info” column quantifies the gain in information about MIPs provided by the data, with values ranging from 1 (highly informative, red)
to zero (uninformative, blue).

428 A. B. Lenarcic et al.



Nonetheless, our approach is motivated by our bias: as
geneticists focusing on model organisms, we are primarily
concerned with characterizing the genetic architecture
within the set of J2 genome combinations with a view to
subsequent hypothesis-driven experiments. We less often
seek to infer formally parameters relating to the superpopu-
lation of individuals or species from which those inbred
strains were drawn. Interestingly, traditional literature on
diallel analysis has tended to oppose the use of random
effects in our context. It espouses what we call the “random
parents commonplace”: that modeling parental contribu-
tions as random effects is valid only if the parents have been
drawn at random from a larger population and it is the
variance parameters of this larger population that the inves-
tigator seeks to estimate. It further asserts that when the
above conditions are not met, for example, if we are inter-
ested in parental effects present in the cross, or if the parents
were chosen deliberately, then parental contributions should
be modeled as fixed effects (e.g., Griffing 1956; Eberhart
and Gardner 1966; Baker 1978). This commonplace persists
in current literature, reiterated in, for example, Greenberg
et al. (2010), who nonetheless develop an elegant Bayesian
hierarchical model tailored to analyze a specific type of out-
bred diallel.

We consider this view in need of updating. Stein (1955)
shocked the statistical world by showing that when simul-
taneously estimating three or more means as part of the
same decision problem, fixed-effects modeling is domi-
nated by biased methods that use shrinkage. Trading off
errors in one dimension with those in another, the resulting
estimates are drawn closer together when dimensions look
similar, with useful shrinkage even when those dimensions

are unrelated (Parmigiani and Inoue 2009). In the diallel,
dimensions are related, making the argument for hierarchi-
cal modeling yet stronger. Although it is sometimes hard to
concoct a rationale for parental effects coming from a com-
mon distribution, it should be easy to intuit that they lie on
a common scale and that knowledge about a1, . . . , aj21

provides information about how we would expect aj to
appear. Bayesian updating provides a coherent rendering
of this intuition, allowing information from the data and
uncertainty from the priors to propagate through the hier-
archy and inform posterior estimates of parameters and
predictions of new effects (Bernardo and Smith 2000;
Sorensen and Gianola 2004). To make our point, we dem-
onstrate by simulation how a fixed-effects GCA model with
10 parameters is matched or beaten by Bayesian shrinkage
models with n 1 175 parameters in its own backyard
(Tables 3 and 4).

When there is prior belief that phenotypic similarity will
tend to follow overall genetic similarity (e.g., Kang et al.
2008), relatedness (e.g., Lynch and Walsh 1998), spatial
distribution, or some other structure that can be incorpo-
rated into an expected J · J correlation matrix A, then this
could aid estimation, potentially being incorporated by
replacing Equation 4 with a � Nð0;   t2aAÞ. Failing to do so,
perhaps for convenience, makes inefficient use of available
prior data, but discredits use of our hierarchy no more than
it would for a fixed-effects model.

The use of a mixed model makes it tempting to interpret
variance parameters as heritabilities. However, the very
depth of genetic characterization afforded by the diallel, as
well as legitimate aspects of the random parents common-
place described above, suggests a more reflective approach.

Figure 6 (A and B) Systolic blood pressure collected on 188 mice in a sparsely sampled diallel of the Collaborative Cross founders. Shaded boxes
indicate the average blood pressure in a group (darker equals higher), with crossed boxes showing missing data.

Bayesian Analysis of Inbred Diallels 429



Our decomposition of effects groups into a, b, m, v, w spans
many possible reduced models for quantitative inheritance.
When we further explore the heritability, or the amount of
variance explained, by each group of effects, we find that, in
a diallel breeding structure, the variance contributions of the
groups interact. For an expedient method of calculating h2q,

the heritability attributable to effects group q, we promote
a calculation using the estimated t̂q group dispersions (Ap-
pendix A).

In our model we do not treat explicit variance heteroge-
neity (Rodriguez et al. 1993). However, our outlier approach
implicitly adapts to variance heterogeneity by assigning

Figure 7 Highest posterior density (HPD) intervals for effects parameters fitted to systolic blood pressure data collected on 188 mice from an incomplete
diallel of Collaborative Cross founders, with abbreviations and symbols as described in Figure 4. This diallel had no inbred animals. Posterior distributions
for parameters relating to inbreeding (collected in the rightmost column) are therefore vague, reflecting mostly uninformative prior belief (note the x-axis
scales). Nonetheless, they are stably estimated and do not disrupt estimation of the other effects.

Figure 8 A “straw plot” summarizing estimated effects and predicted values in five phenotypes collected on a diallel of the Collaborative Cross
founders. Gray horizontal lines group posterior means for overall (B, S, Bs), strain-specific (a, b, m), and sex/strain-specific (as, bs, ms; as 11

2 dose for
females, – 1

2 dose for males) effects, as well as posterior predictive means for inbreds. For ease of comparison across phenotypes, x-axes are scaled to the
SD of the transformed phenotype. Values for the NZO (light blue) strain in the HDL cholesterol and weight phenotypes are extreme enough to escape
the 2 SD limits of the plot.
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reduced weights li to measurements it deems to be more
variable. Postprocess exploration of l̂i j jk½i� may reveal
strain-dependent variances. Algorithmically, an option for
a parametric form of Var(ei j j, k, S) can be achieved by
modeling 1/li � exp{xiT g}, replacing the update for li with
Gibbs step

g j Y 2Xb5 r;

where drawing from a posterior using ℓðg j rÞ 5P
ir
2
i =ð2  expfxTi ggÞ can be achieved by Metropolis–Hastings,

to calculate the new li values. Ideally, g would have a reduced
form including just additive, or sex-specific additive, compo-
nents to retain model parsimony. See Rönnegård and Valdar
(2011) for an example of such a double generalized linear
model in practice.

Bayesian models are often slower to compute and more
difficult to interpret, and can require a large and ill-defined
set of prior choices. Although it is often the case that
estimators using reasonable hyperpriors can outperform the
MLE over a large parameter space, for most loss functions
neither MLE, nor ridge, nor Bayes estimators completely
dominate each other. Given a mixed-model decomposition
of the diallel, including the possibility of outliers, un-
observed diallel combinations, and unknown sparsity among
the parameters, stable MLE estimates can be difficult to
achieve. Penalized estimates [e.g., from group LASSO (Hastie
et al. 2009)] represent an opportunity, but these can often
be interpreted as a Bayesian prior hypothesis. We demon-
strate the use of the h-likelihood (using hglm) for obtaining
mostly accurate point estimates for our diallel model and in
less computational time. Although useful for this purpose,
the hglm approach does not easily provide the rich flexibility
of our Gibbs sampler for, among other things, modeling

Figure 9 Highest posterior density (HPD) intervals for effects parameters fitted to white blood cell count (WBC) data collected on 626 mice from a diallel
of Collaborative Cross founders, with abbreviations and symbols as described in Figure 4.

Figure 10 Simultaneous accommodation and detection of outliers in di-
allel data on white blood cell count (WBC), using the full model with
outliers (at 6 d.f.). Each line represents the posterior distribution of the
weight data (li; see Models and Methods) for the phenotype measure-
ment of individual i, with corresponding posterior means given as ticks on
the x-axis and line shading for visualization only. On average, individuals
will have weight at 1, but posterior distributions concentrated near 0,
such as the high peak at 0.1, are outliers downweighted by the model.
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outliers and uncertainty about component inclusions. We
supply an algorithm with reasonable default priors, but
users are still permitted to choose their own, including flat
Gelman or Stein priors, Jeffreys priors, or heavily informed
priors from the inverse gamma family. For the BayesSpike
model, one might consider a priori that all components have
an equal 50% chance of inclusion, that they have different
anticipated prior weights, or that the prior proportion of active
groups is itself unknown and must be learned in the model.

Approaches that model hierarchically, borrowing strength
across data sources and explicitly defining higher-order
components, are becoming essential to navigate the complex
high-dimensional spaces created by high-throughput data of
all types. However, such hierarchies should be designed to
empower researchers, not intimidate or perplex them. We
emphasize interpretability of all parameters in the model in
the hope they can at some level be interpreted and critiqued
by nonexperts. We provide a framework for high-, medium-,
and low-level analysis of imperfectly sampled diallels. In
doing so, we succinctly summarize results from a vast amount
of original data on the genetic architecture of phenotypes in
founders of the Collaborative Cross and their F1 hybrids.

Our diallel Gibbs sampler and BayesSpike software are
provided free of charge as R packages R/BayesDiallel and
R/BayesSpike as soon as practicably in File S1.
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Appendix A: Heritability in the Diallel

Heritability is the proportion of phenotypic variance explained by genetic effects. Its exact definition depends on what
effects are being considered and in which population phenotypic variance is measured. Consider any linear genetic model,
yi ¼ xiTb 1 ei, where b 2 ℝp is an explanatory vector of common effects, and ei � N(0, s2) are iid environmental effects, for
independently sampled individuals i 2 1, . . ., N in the population. The vector xi 2 ℝp·1 represents a draw from the genetic
diversity of haplotypes/strains/alleles as distributed in the population, represented by stacked matrix X 5 ½xT1 . . . xTn�T. If both
xi and b were randomly distributed and independent, and mY 5 E½xTi �E½b� were the population mean, then the observed
variability of Var(yi) ¼ E[(yi – mY)2] has expectation that can be calculated

VarðYiÞ5 tr
�
E½xixTi �E


bbT��1s22 ðE½xTi b�Þ2: (A1)

Equation A1 provides a method to decompose observed variability of Y to the contributions of specific effects or groups of
effects. If we assume that diallels of future strains will have effects distributed bj � Nð0; t̂2qÞ, then E(bbT) is a diagonal
matrix with t̂2q values for each group of factors. In a complete diallel experiment, E[xixiT] 2 ℝp · p is a very structured design
matrix. If we considered mother strain j and father strain k to be independent draws from a pool of J strains, and gender of
the offspring to be an independent Bernoulli draw, then we can calculate explicit expected dosage amounts of each of the a,
b, m, v, w, as, bs, ms, vs, and ws effects. For additive effect aj9, for strain j9, located at position {xi}a(j9) along the xi covariate
vector, expected E½fxig2aðj9Þ� 5 E½Ifj 5 j9g1Ifk 5 j9g2� 5 2ð111=JÞ=J: Since there are J separate aj9 terms, the variance con-
tribution of additive effects can be approximated as

PJ
j951E½x2ij9 � 5 2ð111=JÞt̂2a. Further expectations are calculated in Table

A1. With Table A1 we can then interpret the heritability contribution of additive effects h2a to be

Table A1 Expected heritability contribution of effects to Var(Yi) of the effects groups

a b m v w as bs ms vs ws

2ðJ11Þ
J

1
J

2ðJ21Þ
J

J21
J

J21
J

J11
2J

1
4J

J21
2J

J21
4J

J21
4J

Bayesian Analysis of Inbred Diallels 433



h2a 5
2ð11 1=JÞt̂2a

2ð11 1=JÞt̂2a 1 1=J t̂2b 1 2ð12 1=JÞt̂2m 1 ð12 1=JÞt̂2v 1 ð121=JÞt̂2w 1s2
(A2)

in a diallel with no sex-specific effects. We see that heritability contributions of inbreeding effects b contribute at a reduced
level of 1/J to the variability of the phenotype. This is because in a complete diallel, inbred subjects compose only 1/J of the
population.

Appendix B: Gibbs Sampling Scheme for the Full Model

Collecting all fixed-effect (e.g., bfemale) and strain-specific random-effect parameters (e.g., aj) in a single vector of pM re-
gression coefficients b, we construct an n · pM design matrix X ¼ [x1T . . . xnT]T and consider the regression problem

y5Xb1 e:

X is both sparse and highly structured in our diallel model. For instance, in the “av” model (additive and symmetric effects),
pM ¼ 1 1 J 1 (J 1 1) · J/2, and the last (J 1 1) · J/2 positions in xi are mostly zeros with a single 1 at the position
corresponding to mother/father pair (j, k)[i]. Let the parameter groups a, as, m . . . be enumerated as groups q 2 1, . . . ,Q
and J(q) denote the group of coefficients qj assigned to the same shrinkage parameter t2q. By introducing a Q matrix,
as suggested from Equation 17, with diagonal terms 1=t2q for parameters grouped to Nð0; t2qÞ, the multivariate posterior is

b j t;s2 � N
��

XTX1s2Q21�21
XTy;   s2�XTX1s2Q21�21

�
; (B1)

which can be efficiently sampled by taking the Cholesky square root of XTX 1 s2Q21, where the diagonal of matrix XTX
counts the number of subjects with relevant j, k pairs for each q group. We deploy Gibbs sampling (Geman and Geman 1984;
Gelfand and Smith 1990; Casella and George 1992), using C-level BLAS (Dongarra 2002) code compiled in package format
for R (R Development Core Team 2011), and find that the 2011 Macintosh vecLib LAPACK (Apple Developers) is sufficient to
generate as many as a 8000 draws in 26.2 sec from the posterior, given that pM has an upper bound of 244 when the number
of strains is 8. However, when pM gets larger, doing so as the number of strains increases, it is necessary to invert conditional
subset groups of b. The advantage of a single Cholesky draw is to reduce autocorrelation of the Gibbs sampler. In this case,
maximum autocorrelation at 1-lag for pM ¼ 164 variables is 0.177, and max 20-lag is 0.086, with 95% of the 1-lag being
between 60.05. Given b, we draw t2q as

t2q jbJðqÞ �
0@mt 1

X
j2Jq

b2
j

1A · Inv2 x2
�
nt 1 j Jqj

�
;

where jJqj is the count of members of group q, and draw s2 as

s2 jb �
 
nsms 1

X
i

ðYi2xTi bÞ2
!
· Inv2 x2ðns 1nÞ:

Appendix C: Gibbs Sampling Scheme for the Full Model with Outliers

Computational complexity changes with the outlier model, where ei � Nð0;s2Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðneÞ=ne

p � tð0;s2; neÞ. In this case, if we
draw li as a weight for subject i from

li jb;s2 �


11

1
s2ðyi2xTi bÞ2

�21

· x2
�
ne 11

�
  ;

then we can reweight by defining components XTye j 5
P

ifXgijliyi and fXTXe gj;k 5
P

ifXgijlifXgik, in which case
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b j y;s2;l; t2 � N
��

XTXe 1s2Q
�21

XTye ;s2�XTXe 1s2Q
�21
�

becomes a new draw of b. Since the reweighting is an Oðp2MnÞ operation, it can slow down the algorithm when n . pM.

Appendix D: Exclusionary Gibbs Group Sampling in the Diallel

To sample efficiently from Equation 18, we consider the residual vector y2XnJðqÞbnJðqÞ, which includes current information of
all bj for j not in J(q). Integrating bJðqÞ out of this draw produces an unnormalized function f ðt2q jbnJðqÞÞ. This function
f ðt2q jbnJðqÞÞ takes on a discrete probability at t2q 5 0 that we define as f  0 and also includes a continuous density
f1ðt2q jbnJðqÞÞ with support on t2q 2 ð0;NÞ. If F1 5

RN
0 f1ðt2q jbnJðqÞÞdt2q , then a Bernoulli draw of probability

P
�
t2q 6¼ 0 jbnJðqÞ

�
5

pqF1�
12pq

�
f0 1pqF1

provides a Gibbs decision to turn on or off parameters in group q. Moreover, to avoid potentially slow numerical integration,
we construct a Metropolis–Hastings importance sample from f1ðt2q jbnJðqÞÞ, which approximates F1 in expectation.
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