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Vi-polysaccharide conjugate vaccines are efficacious against cases of typhoid fever;
however, an absolute correlate of protection is not established. In this study, we
investigated the leukocyte response to a Vi-tetanus toxoid conjugate vaccine (Vi-TT) in
comparison with a plain polysaccharide vaccine (Vi-PS) in healthy adults subsequently
challenged with Salmonella Typhi. Immunological responses and their association with
challenge outcome was assessed by mass cytometry and Vi-ELISpot assay.
Immunization induced significant expansion of plasma cells in both vaccines with
modest T follicular helper cell responses detectable after Vi-TT only. The Vi-specific IgG
and IgM B cell response was considerably greater in magnitude in Vi-TT recipients.
Intriguingly, a significant increase in a subset of IgA+ plasma cells expressing mucosal
migratory markers a4b7 and CCR10 was observed in both vaccine groups, suggesting a
gut-tropic, mucosal response is induced by Vi-vaccination. The total plasma cell response
was significantly associated with protection against typhoid fever in Vi-TT vaccinees but
not Vi-PS. IgA+ plasma cells were not significantly associated with protection for either
vaccine, although a trend is seen for Vi-PS. Conversely, the IgA- fraction of the plasma cell
response was only associated with protection in Vi-TT. In summary, these data indicate
that a phenotypically heterogeneous response including both gut-homing and systemic
antibody secreting cells may be critical for protection induced by Vi-TT vaccination.

Keywords: Salmonella Typhi, Vi-conjugate vaccine, typhoid fever, mass cytometry, CyTOF, ELISpot assay
INTRODUCTION

Vi polysaccharide (Vi-PS) vaccines targeting Salmonella enterica serovar Typhi (S. Typhi) are
moderately protective against typhoid fever but are not widely used in endemic countries.
Immunological memory is poorly induced by plain polysaccharide antigens, compromising their
long-term efficacy (1). Glycoconjugate vaccines, in which polysaccharide antigens are chemically
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conjugated to a carrier protein, elicit superior antibody titres in
infants (2, 3) in a T-cell-dependent immune response that leads
to germinal center formation and antibody maturation (4). In
addition, conjugate vaccines do not induce hypo-responsiveness
to subsequent doses in the way that plain polysaccharide vaccines
do, allowing for boosting regimens to be implemented (5). These
mechanisms have been exploited with great success in vaccines
targeting encapsulated bacteria, including those against
Streptococcus pneumoniae and Neisseria meningitidis, which
has resulted in the inclusion of these glycoconjugate vaccines
in routine infant immunization schedules (6, 7). A recently
developed Vi-tetanus toxoid (Vi-TT) conjugate vaccine was
shown to be protective in a controlled human challenge
model of typhoid fever (8) and demonstrated an efficacy of
81.6% in a Phase III, randomized, controlled trial in Nepal (9).
Immunogenicity of Vi-TT has been found to be significantly
higher in comparison with Vi-PS (10).

Production of adequate quantities of functional systemic
antibody forms only one component of a protective immune
response. Migration of antibody secreting cells to effector sites
may be important for localized antibody production. Antibody-
mediated recognition of Salmonella pathogens may be a key
mechanism for driving antigen presentation to T-cells and for
cellular cytotoxicity via Fc binding (11). Mucosal immunity is
also thought to be a factor in protection against a number of
enteric infections including cholera, rotavirus and typhoid fever
(12–14). Chemotaxis of effector cells throughout the body relies
on surface expression of homing receptors (15). Tissue specific
homing to the small intestine is primarily mediated by alpha 4
beta 7 integrin (a4b7) and C-C chemokine receptor 9 (CCR9),
while C-C chemokine receptor 10 (CCR10) mediates trafficking
of cells to both the small and large intestine. Parenteral
administration of vaccines is considered a poor method for
inducing mucosal immune responses (16–18). However, a
number of studies refute this paradigm (19–23). Currently,
there are no detailed studies describing the gut homing
response to Vi parenteral vaccines and how these cell types
correlate with protection from S. Typhi infection.

Here, the cellular response to immunization was assessed in
healthy volunteers subsequently challenged with Salmonella
Typhi. Magnitude and homing potential of the plasma cell
response were assessed and their association with protection
from typhoid fever is described.
MATERIALS AND METHODS

Study Design
Samples for this work were obtained from a randomized,
controlled, phase 2b clinical trial centered in Oxford, UK
evaluating the efficacy of Vi-TT in deliberately infected
volunteers (ClinicalTrials.gov identifier: NCT02324751).
Details of the study protocol and inclusion criteria were
published previously (8). Healthy adults received a Vi-tetanus
toxoid conjugate vaccine (Vi-TT: Typbar-TCV, Bharat Biotech),
or a Vi plain polysaccharide vaccine (Vi-PS: TYPHIM Vi, Sanofi
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Pasteur). Participants were monitored in an outpatient setting
and serial blood samples were collected at baseline (D0), and 7
(D7), 10 (D10), and 28 (D28) days post-vaccination. Participants
were challenged orally approximately 28 days post-vaccination
with 1–5 x 104 colony forming units (CFU) of S. Typhi Quailes
strain. In context of the current manuscript, all samples
were collected before the participants were challenged.
Informed written consent was obtained from all volunteers
before enrolment.

Mass Cytometry
Cryopreserved peripheral blood mononuclear cell (PBMC)
samples were selected based upon sample availability for deep
immune phenotyping using mass cytometry (or Cytometry by
Time-of-Flight, CyTOF). Serial samples from 39 volunteers (Vi-
PS n=20, Vi-TT n=19), collected on at baseline (D0), 7 (D7), and
28 days (D28) post-vaccination were selected; participant
characteristics are described in Supplementary Table 1. An
antibody panel targeting 37 surface-expressed cellular markers
was used for phenotyping and allowed identification of all
major PBMC subsets (see Supplementary Table 2 for details
of the panel). Staining and data acquisition was performed at
the Human Immune Monitoring Centre (HIMC, Stanford
University, USA).

Samples were prepared for mass cytometry and run in
batches. PBMCs were thawed in a water bath at 37°C in RPMI
+ benzonase washes. Cell viability was assessed by Vi-Cell
(Beckman Coulter). Mass-tag barcoding of each sample was
conducted using a combination of two palladium isotope-
tagged CD45 antibodies diluted in CyFACS (20 mM potassium
phosphate, 150 mM NaCl, 0.1% BSA, 2mM EDTA pH 8.0) per
sample to enable subsequent multiplexing (24). All barcoded
PBMC samples from a single study participant and a single
sample from a healthy control donor were then pooled prior to
further processing. Pooled samples were incubated with a
primary antibody panel diluted in CyFACS at room
temperature for 30 min (see Supplementary Table 2, all
antibodies either Fluidigm or produced in-house). Samples
were washed three times with CyFACS buffer prior to
incubation with a secondary antibody panel diluted in CyFACS
at room temperature for 30 min. Cells were washed three times
with CyFACS then stained at room temperature with cisplatin
(Fluidigm, USA) to confirm viability and fixed with 2%
paraformaldehyde. Nucleated cells were stained with an
iridium intercalator (Fluidigm, USA) for 20 min at room
temperature. Finally, cells were washed three times (once with
CyFACS, twice with MilliQ water) and resuspended in MilliQ
water with EQ lanthanide-embedded polystyrene normalization
beads to ~0.7 M cells/ml for acquisition on a mass cytometer.
Data were acquired on Helios instruments (Fluidigm, USA). A
target of acquisition of 250,000 events. Ungated events per
sample resulted in a range of 20,000–200,000 live intact
singlets per sample (.fcs files stored in Flow Repository
Accession ID: FR-FCM-Z2GG).

The Premessa R package (https://github.com/ParkerICI/
premessa) was used with the EQ normalization beads to
account for variance in machine performance (25). Each.fcs file
December 2020 | Volume 11 | Article 574057
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containing barcoded samples was deconvoluted to separate
events from individual samples and successful deconvolution
was confirmed in FlowJo. Marker expression was arcsinh-
transformed prior to clustering and data visualization. Gating
of major cell populations was performed for the healthy control
sample run in each of the pools. Data from the healthy control
samples were not taken further in the analysis, but can be found
in Flow Repository (Repository ID: FR-FCM-Z2GG).

Data Analysis
Identification of cell sub-populations was carried out using both
clustering and manual gating strategies. A total of 100,000 live
intact singlets were subsampled with replacement from each.fcs
file to obtain a balanced input for both clustering and manual
gating. To ensure representative subsampling, a median
expression intensity within 10% of original sample median for
each marker and a correlation of 0.9999 between expression
values in the original files and the subsampled files was deemed
satisfactory (Supplementary Figure 3).

Clustering analysis (using Kohonnen self-organizing maps)
was performed using the R package FlowSOM (26). Expression
of all markers were used to define clusters. Data were centered (z-
score standardization) and logicle-transformed before clustering
based on Euclidean distance. Multiple seeds were tested to ensure
the reproducibility of outputs.

Manual gating was performed in FlowJo Version 10.0 using
subsampled files and focused on CD38++ B-cells and T follicular
helper (Tfh) cells (see Supplementary Figure 4 for the gating
strategies used). Statistical differences between time points were
calculated using Wilcoxon matched-pairs signed rank tests or
Mann-Whitney U tests, as appropriate.

ELISpot Assays
Antigen-specific antibody secreting cells (ASC) and
memory B-cell responses were assessed using enzyme-linked
immunosorbent spot (ELISpot) assays. Supplementary Figure
5 shows overlap with the samples that were part of the
CyTOF analysis.

Ex-Vivo ELISpot: ASC responses to Vi, lipopolysaccharide
(LPS) and tetanus toxoid (TT) were evaluated at baseline, 7, 10,
and 28 days post-vaccination. Briefly, 96-well multiscreen filter
plates (Merck Millipore, Burlington, USA) pre-coated with
antigen (Vi-polysaccharide 12/244, Lot 2039, NIBSC, Potters
Bar, UK, coating concentration 10 g/ml; S. Typhi LPS, Lot
072K4082 Sigma L2387, Dorset UK, coating concentration 10
g/ml; tetanus toxoid, Lot T177-2 and T224-01, Statens Serum
Institut, Copenhagen, Denmark, coating concentration 5 g/ml)
were loaded with 2.5 x 105 PBMCs (four wells per sample), and
incubated at 37°C with 5% CO2 overnight. Wells pre-coated with
pan goat anti-human immunoglobulin (H17000, Caltag,
Buckingham, UK, coating concentration 10 g/ml) and PBS
served as positive and negative controls, respectively. Plates
were developed using alkaline phosphatase-conjugated
secondary antibodies (Calbiochem/Merck, Burlington, USA)
and substrate development kits (Bio-Rad Laboratories Ltd,
Watford, UK). Plates were counted using an AID ELR03
ELISpot reader (Autoimmun Diagnostika, Germany). Data are
Frontiers in Immunology | www.frontiersin.org 3
presented as the number of ASCs per million PBMCs, calculated
by subtracting the mean of the PBS wells from the mean of
antigen-containing wells and adjusting for starting PBMC count.
The lower limit of detection was 3 per 106 cells for Vi-specific
IgG and IgM ASCs and was 6 per 106 cells for tetanus-specific
ASCs. Upper limits of detection were assigned for wells with
excessive spots (141 per 106 cells for Vi-specific IgG ASCs, 348
per 106 cells for Vi-specific IgM ASCs, 529 per 106 cells for
tetanus-specific ASCs). Samples that did not generate spots in
pan-IgG/M-coated wells were excluded from the analysis.

Memory B-Cell ELISpot: Memory ELISpots were conducted
using cryopreserved PBMCs. Samples were thawed, washed, and
resuspended at a concentration of 2x105 cells per well in
complete media (RPMI supplemented with 10% heat
inactivated fetal bovine serum, 1% L-glutamine, 1% penicillin/
streptomycin, 1% MEM Non-essential amino acids, 1% sodium
pyruvate, 0.1% b-mercaptoethanol). 100 ml of antigen mix,
composed of Staphylococcus aureus Cowans strain (VWR
International Ltd, 1/5000 dilution), CpG-ODN 2006 (tlrl-2006-
5 Invivogen, 1.7 g/ml) and pokeweed mitogen (L-9379 Sigma,
83.33ng/ml) was added to each well. Plates were cultured for 5
days at 37°C, 5% CO2, and 95% humidity to stimulate
plasmablast differentiation from memory B-cells. Cells were
then harvested and washed and plates were developed using
the same method described above to detected Vi-specific IgG and
tetanus-specific IgG ASCs. The upper limit of detection was 300
per 106 cells for Vi-specific IgG ASCs and 500 per 106 for
tetanus-specific IgG ASCs.

Serum Vi-IgA Quantification
Serum Vi IgA antibodies were quantified using an adapted
protocol based on the VaccZyme Human Anti-S typhi Vi IgG
ELISA kit (VaccZyme, Birmingham, UK). The secondary
antibody was replaced with goat anti human IgA prepared
1:12000 in 1 x phosphate buffered saline and 10% fetal
bovine serum.
RESULTS

Vi-Specific ASCs Are Induced by Both
Vi-TT and Vi-PS Vaccines While Memory
B-Cell Responses Are Detected Only After
Vi-TT Vaccination
The numbers of Vi-specific IgG and IgM antibody secreting cells
(ASCs) were determined by ELISpot following vaccination. Vi-
specific IgG ASCs were detected in peripheral blood 7 days post-
vaccination in Vi-PS and Vi-TT vaccinees (Figure 1A, Vi-PS: n =
35, Vi-TT: n = 39, Supplementary Figure 1 for individual
participant ASC kinetics). Significantly higher frequencies of
Vi-specific IgG ASCs were detected in Vi-TT vaccinees in
comparison with Vi-PS; median 82.5 per 106 PBMCs (IQR: 10-
141) versus 3 per 106 PBMCs (IQR 3-33.5) for Vi-TT and Vi-PS,
respectively. Vi-specific IgG ASCs were also detected at 10 days
following vaccination, however the frequency of ASCs detected
was lower than 7 days post-vaccination for both groups (Vi-PS:
December 2020 | Volume 11 | Article 574057
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n = 34, Vi-TT: n = 36). Vi specific IgM-expressing ASCs followed
the same pattern as for IgG in both vaccine groups. The
frequency of tetanus-specific IgG ASCs increased 7 days
following vaccination in Vi-TT vaccinees only, median 301 per
106 PBMCs (IQR: 188-529) (Supplementary Figure 6, Vi-PS:
n = 34, Vi-TT: n = 30).

A significant increase in Vi-specific IgG memory B-cells was
detected at 10 and 28 days following Vi-TT vaccination. No
significant changes in Vi-specific IgG memory B-cells were
observed in Vi-PS vaccinees (Figure 1B). Ten days after
vaccination, 23/30 (76.7%) Vi-TT vaccinees had Vi-specific
IgG memory B-cells detectable in peripheral blood in
comparison with 3/29 (10.3%) for the Vi-PS vaccinees. Vi-
specific IgG memory B-cells were still detectable 28 days
following vaccination in 11/36 (30.6%) of Vi-TT vaccinees
while no responses were detectable in 34 Vi-PS vaccinees.
No LPS-specific memory cell response was detected
Frontiers in Immunology | www.frontiersin.org 4
(Supplementary Figure 6). Combined, these data quantify the
substantial differences in Vi-specific immunity following
vaccination with Vi-TT in comparison with Vi-PS. Differences
are present for all B cell isotypes evaluated. In addition, we
provide evidence for the successful induction of Vi-specific
memory responses after Vi-TT immunization. As expected, Vi-
PS was a poor inducer of systemic memory, in keeping with other
literature on plain polysaccharide vaccines.

Vi-TT Vaccination Induces Gut-Homing
CD38++ B-Cells
We sought to further investigate the characteristics of plasma
cells and other cellular subsets induced by Vi vaccinations. In an
expansive phenotyping study, the expression of 37 markers
across a range of PBMC subsets was measured. Clustering
based on expression intensity was performed to derive cell
types. Changes in frequency of different subsets was then
FIGURE 1 | Vi-specific plasmablasts and memory B cells are increased after conjugate or polysaccharide vaccination. (A) The number of IgG or IgM Vi-specific
antibody secreting cells (ASC) (B) or memory B cells expressed as specific cell / 106 cells was measured by ELISpot. Results for recipients of the Vi-TT vaccine are
shown in the top row and for recipients of Vi-PS in the bottom row. Significance was determined by a Wilcoxons signed paired rank test (two-tailed). **p < 0.01,
****p < 0.0001, ns, not significant. In some cases, there were no differences in ranks between two comparisons, in this case no results are indicated in the figure.
The mean frequency for each group and 95% confidence intervals are plotted. D0, Day 0, day of vaccination; D7, 7 days after vaccination; D28, 28 days after
vaccination; CyTOF, Cytometry Time of Flight; Vi-PS, Vi-polysaccharide vaccine; Vi-TT, Vi-tetanus conjugate vaccine; TT, Tetanus.Group sizes: Ex-vivo ASC Vi-TT:
n = 39 Ex-vivo ASC Vi-PS: n = 35 Memory B-cells, Vi-TT: n = 30 Memory B-cells, Vi-PS: n = 29.
December 2020 | Volume 11 | Article 574057
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assessed. When applied to our dataset, the FlowSOM algorithm
derived 24 clusters (Figure 2A) (see Supplementary Figure 7 for
a more detailed overview) five of which (two B-cell and three T-
cell clusters) were significantly changed following vaccination
(Figure 2B). In Vi-PS recipients, there was a marked expansion
of a B-cell cluster characterized by expression of typical plasma
cell markers including CD19, CD27, and CD38, 7 days post-
vaccination (Figure 2C, cluster D, p = 0.041, D0 vs D7, n = 20).
The same cluster was also expanded in Vi-TT vaccinees (p =
<0.0001, D0 vs D7, n = 19). An additional, smaller plasma cell
cluster was also observed to only change in Vi-TT recipients
Frontiers in Immunology | www.frontiersin.org 5
(Figure 2C, cluster E, p = 0.0016, D0 vs D7) characterized by
CD19, CD38, and a4b7 expression with intermediate levels
of CCR10.

Both Vi Vaccines Alter CD38++ B-Cell
Homing and Activation
The expanded CD38++ plasma cell clusters were investigated
further by manual gating in FlowJo to examine homing marker
and surface immunoglobulin expression. Interestingly, we
observed that a considerable proportion of plasma cells
induced by both vaccines at day 7 expressed IgA (Figure 3A,
A B

C

FIGURE 2 | Cellular responses to vaccination are mostly present after conjugate vaccination. (A) A broad analysis was carried out using all available cellular markers
for hierarchical clustering in FlowSOM. A total of 24 clusters was generated. The heatmap shows the median expression of a cellular marker for each of the clusters.
A darker color indicates a higher expression of that particular marker. Expression level visualization was scaled by column. Clusters were designated as T cells, B
cells or other cells based on manual inspection of marker expression and grouped by cell type. The total number of cells in each of the clusters is indicated in the
bars on the right hand side. The total number of cells is 11,700,000. (B) The contribution of cells from a particular time point to each cluster is shown split by vaccine
arm. As the number of cells for each of the timepoints is similar, bars are expected to be equal (at 33%) if the number of cells is equal between timepoints.
Differences in cell frequency between time points were calculated using a Related-samples Friedman’s Two-way Analysis of Variance by Ranks. Significant
differences are indicated by "*". Significantly different clusters were labelled A-E for further referencing. (C) Each dot represents the number of cells from one
individual at a specific timepoint within the indicated cluster. Only clusters that were significantly changed in (B) are shown. Significance was determined by a
Wilcoxons signed paired rank test. *p < 0.05, **p < 0.01, ***p< 0.001, ****p < 0.0001, ns, not significant. The mean frequency for each group and 95% confidence
intervals are plotted. D0, Day 0, day of vaccination; D7, 7 days after vaccination; D28, 28 days after vaccination; CyTOF, Cytometry Time of Flight; Vi-PS, Vi-
polysaccharide vaccine; Vi-TT, Vi-tetanus conjugate vaccine.
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Vi-PS: n = 20, Vi-TT: n = 19). When we further investigated the
phenotype of IgA+ plasma cells, we observed they had a
distinctive phenotype and kinetics after vaccination in
comparison with IgA- plasma cells. IgA+ plasma cells expressed
integrin a4b7 and a significant subset of these co-expressed the
chemokine receptors CCR10 and CXCR3 (Figure 3B). Integrin
a4b7 and CCR10 co-expression is characteristic of a gut-directed
plasma cell response and mediates migration to both the large
and small intestine. Notably, none of the IgA+ subsets of plasma
cells expressed CCR9, the chemokine receptor mediating
migration to the small intestine (27). IgA- plasma cells also
expressed a4b7 but were otherwise generally lower in expression
of all homing markers investigated (Figure 3B). The frequency
of IgA+ plasma cells strongly increased after vaccination,
particularly in the Vi-TT group. IgA- plasma cells were
significantly changed in Vi-TT vaccinees only (Figure 3C).

To address the lack of information about antigen specificity in
our phenotyping data, we correlated the frequency of IgA+

a4b7+ CCR10+ plasma cells with Vi-IgA titres measured at 1
month after vaccination (Vi-TT: n = 33, Vi-PS: n = 37). Serum
levels of Vi-IgA were significantly increased after both
immunizations; this increase was greatest in Vi-TT recipients
(Figure 4A). The frequency of IgA+ a4b7+ CCR10+ plasma cells
7 days after immunization correlated with antibody titre,
supporting the assertion that a proportion of IgA+ cells are Vi-
specific (Figure 4B).

These results imply that the induced CD38++ plasma cell
response following vaccination is highly heterogeneous in terms
of isotype and homing pattern. Interestingly, these data also indicate
that a significant proportion of the response to these parenteral
Frontiers in Immunology | www.frontiersin.org 6
immunizations express a distinctively mucosal phenotype which
correlates with antigen-specific humoral immunity.

Vi-TT Vaccination Induces Changes in
Circulating Tfh Cells
Other cell subsets observed to significantly change in frequency
between time points are of the T-cell lineage (Figure 2C, clusters A–
C). The frequency of cells present in cluster C detected 28 days
following Vi-PS vaccination, was significantly reduced when
compared with frequencies detected at baseline and D7. No
significant change in cluster C was observed between D0 and D7.
This cluster was highly heterogeneous and consisted of multiple T-
cell populations as evidenced by expression of CD3, CD4, CD8,
CD127, and CCR7. The T-cell independent nature of Vi-PS
vaccination and the kinetics of the change in cluster C suggests it
is unlikely to represent a response to vaccination. Vaccine-mediated
T-cell responses are generally found to occur much earlier than 1
month (28). Therefore, this cluster has not been investigated in
greater detail. The frequency of cells in cluster A, which consist of
both CD8+ and CD4+ T-cells expressing PD-1, significantly
increased 7 days after vaccination in the Vi-TT group. Twenty-
eight days after vaccination, the frequency of cluster A cells was
significantly lower compared with baseline. A similar pattern was
observed in Vi-TT vaccinees for a second T-cell cluster, cluster B,
which consisted of ICOS and PD-1 positive CD4 T-cells. Cluster B
was further characterized by expression of T-cell activation markers
(CD25, CD27, CD38) and lymph node homing markers including
CCR7 and CD62L. However, T-cell clusters that significantly
changed following Vi-TT vaccination did not strongly associate
with Vi-specific humoral responses (data not shown).
A

B

C

FIGURE 3 | Vi immunization induces a sub-population of gut-homing B-cells. (A) Surface immunoglobulin expression across plasma cells from either Vi-TT or
Vi-PS vaccinees was assessed by manual gating at 7 days post-vaccination. (B) Cells from clusters D and E were grouped according to their expression of
IgA. Homing marker expression on IgA+ and IgA- cells is shown using density plots. (C) The frequencies of IgA+ and IgA- plasma cells at baseline, 7, and 28
days after vaccination with either Vi-TT (n = 19) or Vi-PS (n = 20). Each dot represents the number of plasma cells from an individual at a specific time point.
Significance was determined by a Wilcoxons signed paired rank test (two-tailed). **p < 0.01, ****p < 0.0001, ns, not significant. Participants in (B) were
vaccinated with Vi-TT and participants in (C) were vaccinated with Vi-PS. Mean frequency for each group and 95% confidence intervals are plotted. D0, Day 0,
day of vaccination; D7, 7 days after vaccination; D28, 28 days after vaccination; CyTOF, Cytometry Time of Flight; Vi-PS, Vi-polysaccharide vaccine; Vi-TT, Vi-
tetanus conjugate vaccine.
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Given the T-cell dependent nature of the response to Vi-TT,
we anticipated a significant rise in circulating Tfh cells post-
vaccination. Whilst a single cluster of Tfh was not identified by
the FlowSOM algorithm, a fraction of cells in cluster B
expressed the canonical markers indicative of a Tfh
phenotype (CD4, CXCR5, PD-1, ICOS) (data not shown). To
further investigate the behavior of Tfh upon vaccination, we
identified this population by manual gating (CD3+ CD4+

CXCR5+ CD45RA- PD-1+ ICOS+). A non-significant increase
at D7 was present in Vi-TT vaccinees (Figure 5, Vi-TT: n = 18,
Vi-PS: n = 17).

Upon Vaccination With Vi-TT Changes in
Cell Frequencies Within CD38++ B-Cell
Clusters Are Associated With Protection
Against Typhoid Fever
The association between observed changes in cellular frequency
and protection from typhoid fever after challenge with live
bacteria at D28 were investigated. When combining individuals
from both vaccine arms, protected participants generally
exhibited a greater change in all of the clusters A–E following
vaccination when compared with participants diagnosed with
typhoid fever (Figure 6A). When the vaccine arms were
evaluated separately, a greater fold change in CD38++ plasma
cell clusters D and E was significantly associated with protection
from disease in Vi-TT (Figures 6B, C, n = 19), but not Vi-PS
(n = 20). Plasma cell responses induced by both vaccines were
further investigated in detail for their association with protection
against typhoid fever. The fold rise of the gated total plasma cell
response (irrespective of tissue tropism or immunoglobulin
expression) was strongly associated with protection in Vi-TT
vaccinees (p = 0.026) but not Vi-PS (p = 0.201). (Figure 7A). In
recipients of Vi-TT strong induction of plasma cells without
markers of mucosal tropism (IgA- CCR10-) was found to be
Frontiers in Immunology | www.frontiersin.org 7
protective (p = 0.033) whereas generation of IgA+ CCR10+

-expressing plasma cells was not associated with protection
(p = 0.277) (Figure 7B). In contrast, induction of non-mucosal
plasma cells was not significantly different between outcome
groups amongst recipients of Vi-PS (p = 0.761) whereas mucosal
plasma cells had a stronger relationship with protection (p =
0.094) (Figure 7C). These findings suggest that that Vi-
vaccinations may mediate protection via different mechanisms
with both systemic and mucosal responses potentially playing
a role.
A B

FIGURE 4 | Gut-tropic plasma cells correlated with serum titres of Vi-IgA. (A) Serum Vi-IgA titres were measured pre- and post-vaccination. Titres are represented
on a Log2 scale. Each dot represents one participant At baseline in the Vi-TT group, n = 33. At 7 days post-vaccination, n = 36. At baseline in the Vi-PS group, n =
37. At seven days post-vaccination, n = 37. Significance was determined via a Wilcoxons signed paired rank test (two-tailed). ***p< 0.001, ****p < 0.0001, ns, not
significant. (B) The frequency of CCR10+ IgA+ plasma cells 7 days after vaccination were correlated with logged Vi-IgA titres 1 month after vaccination using a
Spearman’s correlation. In the Vi-PS group, n = 20. In the Vi-TT group, n = 19.
A B

FIGURE 5 | Circulating Tfh after Vi vaccination. (A) Circulating T-follicular
helper cells (cTfh)were identified by manual gating as CD3+CD4+CXCR5
+PD-1+ICOS+(see supplementary figure 3 for representative example of
gating strategy). For each participant, numbers of cTfh are plotted as a
frequency of the CD4+CXCR5+population in Vi-TT recipients. (B) And Vi-
PS recipients. Significance for all was determined by a Wilcoxons signed
paired rank test (two-tailed). ns, not significant. With n = 35 for all, n = 18
for Vi-TT and n = 17 for Vi-PS. Data were excluded from analysis if less
than 20 cells in the final gate were obtained. D0, Day 0, day of
vaccination; D7, 7 days after vaccination; CyTOF, Cytometry Time of
Flight; Vi-PS, Vi-polysaccharide vaccine; Vi-TT, Vi-tetanus conjugate
vaccine.
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DISCUSSION

This is the first study to describe in detail and compare cellular
responses following vaccination with a Vi-conjugate or plain Vi-
polysaccharide vaccine. We have identified a heterogeneous
plasma cell signature following vaccination that associates with
protection from typhoid fever after experimental challenge. In
keeping with previous studies of Vi-PS, we have identified a
predominance of IgA+ CD38++ plasma cells 7 days post-
vaccination with relatively lower induction of IgG+ plasma
cells (29). Vi-TT was also found to induce potent proliferation
of IgA+ plasma cells, but with a stronger induction of IgG
responses than Vi-PS as is expected for a conjugate vaccine.
Consistent with studies of other conjugate and polysaccharide
Frontiers in Immunology | www.frontiersin.org 8
vaccines (30, 31), the overall magnitude of the plasma
cell response is greater for Vi-TT than Vi-PS. These findings
further elucidate the cellular responses that follow these
immunizations (32).

An interesting observation in our study is that a subset of
IgA+ plasma cells detectable after both Vi-immunizations co-
express the mucosal homing markers a4b7 and CCR10.
Activated plasma cells are conferred with tissue-specific
homing markers at the site of initial antigen encounter (33,
34). The chemokine receptor CCR10 is a pan-mucosal migration
marker and induces homing of numerous leukocyte subsets to
sites such as the gut, mammary gland, salivary gland and trachea
(35, 36). Co-expression with the surface integrin, a4b7, is well-
documented in mediating migration of IgA+ plasma cells to the
A

B C

FIGURE 6 | Individuals protected upon S. Typhi challenge had increased plasmablast changes after Vi-TT vaccination. The change in the number of cells in a cluster
at D7 compared to D0 is shown as the log-transformed ratio between D7 and D0. Participants are split into those who developed typhoid and those who did not
after challenge with S. Typhi. (A) Clusters A–E, showing participants from Vi-TT and Vi-PS groups combined. (B) Change in the number of cells in Cluster D with
recipients of Vi-PS and Vi-TT plotted separately (C) change in the number of cells in Cluster E with recipients of Vi-PS and Vi-TT plotted separately. For the Vi-TT
group: protected participants (nTD), n = 11, diagnosed participants (TD), n = 8. For the Vi-PS group, protected participants (nTD), n = 11, diagnosed participants
(TD), n = 9. Significance was determined by a Mann-Whitney test. *p < 0.05. D0, Day 0, day of vaccination; D7, 7 days after vaccination; Vi-PS, Vi-polysaccharide
vaccination; Vi-TT, Vi-tetanus conjugate vaccine, nTD, not diagnosed with typhoid fever, TD, diagnosed with typhoid fever.
A B C

FIGURE 7 | Vi-vaccine plasma cell responses have differential associations with protection from typhoid fever. The association between protection from disease and
(A) the total plasma cell response (Vi-TT, n = 19, Vi-PS, n = 20) (B) the IgA+ CCR10+ plasma cell response (Vi-TT, n = 17, Vi-PS, n = 20) or (C) the IgA- CCR10-
plasma cell response (Vi-TT, n = 19, Vi-PS, n = 20) is shown for both vaccine groups. Significance was determined by a Mann-Whitney test. *p < 0.05. D0, Day 0,
day of vaccination; D7, 7 days after vaccination; Vi-PS, Vi-polysaccharide vaccine; Vi-TT, Vi-tetanus conjugate vaccine, nTD, not diagnosed with typhoid fever, TD,
diagnosed with typhoid fever, TD = diagnosed with typhoid fever.
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gastrointestinal tract (37). High endothelial venules (HEVs) of
the gut-associated lymphoid tissue are distinct from other
mucosal tissues for their high expression of the a4b7 ligand,
MadCAM-1, that facilitates cell extravasation from blood into
the tissues (38–40). Induction of gut homing effector cells may be
a key feature of host defenses against enteric pathogens. In
murine models of S. Typhimurium infection, several cell types
have been found to localize to the small intestine, including
monocytes, effector T-cells and plasmablasts (41–43). indicating
that migration to the mucosal surface is a crucial aspect of host
immunity. Induction of a4b7-positive plasmablasts against other
enteric pathogens such as Shigella is also thought to be important
in protection (44).

The detection of gut-tropic plasma cells was unexpected after
administration of two parenteral vaccines. These findings could
imply that a proportion of the IgA+ plasma cells observed after
vaccination are derived from a memory B-cell population
previously primed at the mucosal surface. Mucosally activated
B-cells have been shown to contribute to the memory pool in bone
marrow and spleen (45, 46). The clonal relatedness of serum IgA
antibodies and intestinal plasma cells in patients with celiac
disease further suggests that mucosal responses are contributing
to immunity beyond the gut (47). Vi ELISpots found no evidence
of memory cells in peripheral blood, although Vi-IgA ELISpots
were not carried out. Participants with history of exposure to
Salmonella Typhi and/or previous Vi vaccination were excluded
from our study as much as possible. Vi expression has been
demonstrated on other Enterobacteriaceae species such as
Citrobacter freundii, a commensal pathogen typically responsible
for nosocomial infections associated with immunocompromised
patients (48–50). The prevalence of C. freundii carriage in the UK
adult population and in our cohort is unknown. Given the
systemic nature of Vi-vaccination, it is unclear whether prior
mucosal exposure would plausibly have an effect on plasma cell
responses to vaccination. The possibility of Vi-specific memory B-
cells contributing to a secondary lymphoid niche has not been
investigated here.

We observe an association between plasma cell responses to
vaccination and protection from disease after challenge in Vi-TT
participants only. Previously, our lab has found that Vi-IgG
antibody titres after vaccination in Vi-TT recipients, whilst high,
were unable to distinguish protected and diagnosed individuals
(8). Here, we find that greater induction of IgA- CCR10- plasma
cells was significantly associated with protection in Vi-TT
participants. IgA+ CCR10+ plasma cells were increased in
protected participants of both vaccine arms albeit not
significantly. This trend was strongest in Vi-PS vaccinees. This
may suggest that both magnitude and localization of the plasma
cell response are important factors in protection from typhoid
fever. Other immune responses beyond plasma cells that also
play a role in protection have not been factored into
these comparisons.

Beyond B-cells, other cellular compartments were largely
unchanged, or exhibited only modest changes at the time
points measured. This may reflect a lack of substantial
responses to Vi-PS/Vi-TT vaccination by other cell types, and/
Frontiers in Immunology | www.frontiersin.org 9
or kinetics of other populations (e.g. innate cells) that differ from
those of B-cells. Whilst a rise in Tfh cells was observed in the Vi-
TT group after vaccination, it did not reach statistical
significance. Most previous studies detailing changes in Tfhs in
peripheral blood have examined attenuated viral vaccines,
known to induce strong T-cell dependent responses, although
some responses after glyco-conjugate vaccination have been
described (51–53). Notably, these studies also did not find
correlations between Tfh frequencies and polysaccharide
antibody titres which is in-keeping with our findings. It is
likely that the relatively low cell numbers analyzed hindered
our capacity to detect significant differences in Tfh cell
frequencies, and that power to detect small differences was
limited by the sample size. Detection of memory B-cell
responses to Vi following immunization does however indicate
productive germinal center responses are induced by Vi-TT
as anticipated.

To conclude, this study has identified populations of
mucosally-directed and systemic plasma cells induced after two
parenteral Vi-vaccinations that differentially associate with
outcome of infection. Vi-PS appears to mediate some of its
protective effects at the mucosa whereas Vi-TT seems to rely on
induction of a high magnitude, systemic response. The
application of CyTOF to vaccine evaluation has been little
exploited but has the potential to offer a deeper understanding
of responses that associate with protection from disease. To
thoroughly explore our data both clustering and gating strategies
were used to provide the most robust conclusions. These findings
contribute to our increasing understanding of vaccine-mediated
protection from typhoid fever.
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