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Dacomitinib, a pan-inhibitor 
of ErbB receptors, suppresses 
growth and invasive capacity of 
chemoresistant ovarian carcinoma 
cells
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Epithelial ovarian cancer (EOC) is the most lethal gynaecological malignancy worldwide. Development 
of chemoresistance and peritoneal dissemination of EOC cells are the major reasons for low survival 
rate. Targeting signal transduction pathways which promote therapy resistance and metastatic 
dissemination is the key to successful treatment. Members of the ErbB family of receptors are over-
expressed in EOC and play key roles in chemoresistance and invasiveness. Despite this, single-targeted 
ErbB inhibitors have demonstrated limited activity in chemoresistant EOC. In this report, we show 
that dacomitinib, a pan-ErbB receptor inhibitor, diminished growth, clonogenic potential, anoikis 
resistance and induced apoptotic cell death in therapy-resistant EOC cells. Dacominitib inhibited 
PLK1-FOXM1 signalling pathway and its down-stream targets Aurora kinase B and survivin. Moreover, 
dacomitinib attenuated migration and invasion of the EOC cells and reduced expression of epithelial-to-
mesenchymal transition (EMT) markers ZEB1, ZEB2 and CDH2 (which encodes N-cadherin). Conversely, 
the anti-tumour activity of single-targeted ErbB agents including cetuximab (a ligand-blocking 
anti-EGFR mAb), transtuzumab (anti-HER2 mAb), H3.105.5 (anti-HER3 mAb) and erlotinib (EGFR 
small-molecule tyrosine kinase inhibitor) were marginal. Our results provide a rationale for further 
investigation on the therapeutic potential of dacomitinib in treatment of the chemoresistant EOC.

Epithelial ovarian cancer (EOC) is the fifth leading cause of cancer-related death among women worldwide and 
accounts for the highest mortality rate of all gynaecological malignancies. Each year, over 22000 women are 
diagnosed with EOC in the United States an estimated 14000 patients die from this disease1. Late-stage diagnosis, 
peritoneal metastasis and development of chemoresistance restrain improvements in overall survival rate. Despite 
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debulking surgery and aggressive platinum/taxane-based chemotherapy regimens, the majority of patients 
relapse after achieving a complete clinical response2, 3. Inherent and acquired resistance to chemotherapeutics 
are responsible for treatment failure in EOC4. Patients with the recurrent disease are treated with gemcitabine 
and bevacizumab (anti-VEGFA mAb) but clinical trials report that the median overall survival is still dismal5, 6. 
Therefore, there is a pressing need to establish more effective therapies against chemoresistant EOC.

The ErbB or epidermal growth factor (EGF) family of receptor tyrosine kinases consists of four closely related 
members including EGFR, HER2, HER3 and HER47. This family plays key roles in tumour growth, metasta-
sis and therapy resistance through activation of down-stream pathways such as Ras/MAPK and PI3K/AKT8, 9. 
Evidence indicates that the ErbB family members are overexpressed in EOC which correlates with poor survival10. 
EGFR is overexpressed in 30–98% of EOC in all histologic subtypes11, 12. Enhanced expression of EGFR and its 
ligands correlate with advanced-stage disease, lack of therapeutic response and decreased recurrence-free sur-
vival13–15. HER2 gene amplification and over-expression are found in different subtypes of EOC and associate with 
a higher recurrence frequency16, 17. Moreover, HER3 is up-regulated in EOC clinical samples which correlates 
with a worse prognosis18, 19.

The ErbB family is thought to drive malignant progression in EOC20, 21. EGFR and HER2 promote growth 
and chemoresistance22, 23. Moreover, HER3 and its ligand heregulin (HRG) play a central role in hematogenous 
dissemination of EOC cells to the omentum. HER3 is highly expressed in omental metastases in EOC patients 
and its knockdown impairs this organotropism in vivo24. Altogether, these studies highlight the importance of 
the ErbB network in promoting growth, chemoresistance and metastatic progression in EOC and suggest that 
therapeutically disabling this family may hinder growth, survival and motility of EOC cells.

Despite the importance of EGFR in malignant progression in EOC, clinical trials with single-targeted agents 
such as cetuximab (anti-EGFR mAb), gefitinib and erlotinib (EGFR small molecule inhibitors) have demonstrated 
limited activity25–27. Trials of EGFR-directed therapies in combination with chemotherapeutics or other targeted 
therapies such as bevacizumab have also shown limited clinical benefit28–30. Furthermore, HER2-targeted ther-
apies including trastuzumab and pertuzumab have proven to be of no benefit in EOC patients31, 32. Refinement 
of the ErbB-targeted therapeutics is therefore warranted to address resistance and maximize potential benefit in 
EOC patients.

Dacomitinib (Pfizer) is an irreversible second-generation pan-ErbB inhibitor33. A phase I study in patients 
with advanced solid tumours has demonstrated well-tolerated doses with significant antitumor activity34. 
Dacomitinib has shown promising clinical activity in advanced non-small cell lung cancer patients who pro-
gressed on platinum therapy and were previously treated with erlotinib35, 36. In vitro studies have reported sig-
nificant anti-tumour activity of dacomitinib in gefitinib-resistant lung cancer as well as breast cancer cell lines 
which are resistant to trastuzumab and lapatinib (a dual HER2 and EGFR inhibitor)37, 38. In the present study, we 
examined the mechanistic activity of dacomitinib in chemoresistant EOC cells.

Results
Chemosensitivity of the EOC cell lines.  The chemoresponsiveness of a panel of EOC cell lines to certain 
chemotherapeutics and targeted therapies were determined by MTT assay and are summarized in Table 1. These 
data show that OVCAR3, SKOV3 and A2780CP cells exhibit resistance to carboplatin, doxorubicin and cetuxi-
mab, as compared to A2780S and Caov4 cells (Table 1; Supplementary Fig. 1).

Expression of the ErbB family in the EOC cells.  The expression of the ErbB family in chemoresistant ver-
sus sensitive EOC cells is not yet examined. To determine potential association between chemoresponsiveness and 
expression of the ErbB family, their relative expression was investigated by qRT-PCR. Using Tukey’s post hoc analy-
sis, we found no difference in the expression of the ErbB family between the two groups of the EOC cells (Fig. 1A,B).

The ErbB family contributes to cisplatin resistance.  In an attempt to examine possible correlation 
between the mRNA levels of the ErbB family and chemoresponsiveness, we found that higher expression of 
HRG1-α and HRG1-β are significantly associated with resistance to cisplatin by Pearson’s correlation (Fig. 2A). 
The correlation coefficient (r) between the expression of HRG1-α and HRG1-β and cisplatin IC50 values is 0.9058 
(P = 0.034) and 0.8997 (P = 0.037), respectively. In addition, our data demonstrated positive correlation between 
cisplatin resistance and higher expression of EGFR and HER2 (Fig. 2A). We found no significant association 

Chemosensitivity (IC50)a

Cell Lines
Cisplatin 
(μg/mL)

Carboplatin 
(μg/mL)

Paclitaxel 
(μg/mL)

Doxorubicin 
(ng/mL)

Vincristine 
(ng/mL)

Gemcitabine 
(ng/mL)

Erlotinib 
(μM)

Cetuximab 
(μg/mL)

OVCAR3 1.025 797.2 1.894 432.2 >1000 153.9 64.13 >100

SKOV3 5.799 71.32 5.355 696.1 >1000 24.14 113.6 >100

A2780CP 1.145 50.61 1.358 598.9 37.01 26.56 10.30 >100

A2780S 0.8634 4.594 0.2092 4.063 32.25 15.87 5.244 82.31

Caov4 0.3427 2.661 0.1155 5.102 3.430 4.560 2.635 43.89

Table 1.  Chemosensitivity of a panel of EOC cell lines to certain chemotherapeutics and targeted therapies. 
Data represent the average of IC50 values and were collected from three independent experiments, each 
performed in triplicate. IC50 is the concentration of drug that caused a 50% reduction in proliferation compared 
to the vehicle-treated cells.
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between the ErbB family expression and resistance to carboplatin, paclitaxel, doxorubicin, gemcitabine and erlo-
tinib (Supplementary Fig. 2).

Expression of both HRG1-α and HRG1-β has been observed in 30–83% of EOC cell lines and tumour sam-
ples39. After binding to HRG, HER3 heterodimerises with the other ErbB receptors, which activates down-stream 
pro-survival pathways40. HRG1-β binds to HER3 with more affinity and induces greater activation of the ErbB 
receptors than HRG1-α41, 42. We therefore explored the effects of exogenous HRGβ-1 on proliferative response 
of the chemosensitive Caov4 cells to cisplatin. The resulting data show that pre-treatment with HRGβ-1 (10 ng/
mL) decreased cisplatin-induced cytotoxicity, a process abrogated when the cells were pre-treated with dacom-
itinib but not single-targeted ErbB inhibitors including cetuximab, erlotinib, trastuzumab and H3.105.5 (a 
ligand-blocking anti-HER3 antibody) (Fig. 2C).

We next compared the effects of the ErbB inhibitors on potentiation of the anti-tumour effects of cisplatin 
in the chemoresistant EOC cells. Combination of dacomitinib with cisplatin had a synergistic effect on growth 
inhibition. In comparison, erlotinib-cisplatin therapy was antagonistic (Fig. 2D,E; Supplementary Tables 1, 2). 
Altogether, these findings suggest that the ErbB family might contribute to cisplatin resistance and a pan-ErbB 
inhibition strategy is required to augment cisplatin efficacy in the chemoresistant EOC cells.

Dacomitinib inhibits cell viability and induces apoptosis.  MTT assay was performed to estimate 
anti-proliferative effects of the anti-ErbB agents on the chemoresistant EOC cells. Treatment with dacomitinib 
inhibited cell growth (Fig. 3A,B). Clonogenic capacity represents the renewal potential and a long-term response 
of cells after treatment. The results of a colony formation assay demonstrate that both trastuzumab and dacom-
itinib reduced clonogenic survival (Fig. 3C). In immortalized cells, detachment from the extracellular matrix 
induces anoikis, a special type of apoptosis43. Acquisition of resistance to anoikis is a prerequisite for EOC cells to 
survive in ascites before forming metastatic foci44. Our data show that dacomitinib diminished anoikis resistance 
(Fig. 3D). Moreover, dacomitinib but not the single-targeted agents induced apoptotic cell death, as demonstrated 
by Annexin V staining (Fig. 3E). These data suggest that dacomitinib had stronger anti-proliferative efficacy com-
pared to the single-targeted ErbB inhibitors (Fig. 3A–E).

Figure 1.  Expression of the ErbB family in the EOC cells. (A,B) The mRNA levels of the ErbB family in the 
EOC cell lines were determined by qRT-PCR. The data were evaluated in triplicate and collected from three 
independent experiments. Gene expression levels were normalised to B2M in each cell line. Data were analysed 
by one-way ANOVA followed by Tukey’s post hoc test and are shown as mean ± SD. Statistically significant 
values of *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001 were determined.
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Dacomitinib inhibits PLK1-FOXM1 signalling.  Polo-like kinase 1 (PLK1) is a serine/threonine protein 
kinase which plays a central role in mitotic progression and its elevated expression in EOC correlates with his-
tological grade45. PLK1 induces forkhead box protein M1 (FOXM1), a member of FOX family of transcription 
factors that regulates expression of a wide range of genes such as PLK1, survivin (encoded by BIRC5), cyclin B1 
(encoded by CCNB1) and Aurora kinase B (encoded by AURKB)46, 47. The FOXM1-target genes participate in 
different cellular functions including cell growth, metastatic dissemination and therapy resistance48, 49.

PLK1 has been shown to mediate resistance to chemotherapeutics including cisplatin50. To determine if the 
ErbB family activates PLK1 in the EOC cells, the cells were serum-starved for 24 h and then treated with HRGβ-1 
(10 ng/mL) for 30 min. Immunoblotting analysis showed that HRGβ-1 stimulation resulted in activation of PLK1 
(Fig. 4A). This is in consistency with previous reports that the ErbB receptors activate the PLK1-FOXM1 axis51, 52.  
We next sought if dacomitinib-induced sensitisation to cisplatin is through inhibition of PLK1 pathway. To 
achieve this, the cells were treated with cisplatin in combination with BI 2536, a highly selective PLK1 inhibi-
tor. Our findings demonstrate that BI 2536 had synergistic activity with cisplatin on inhibition of cell growth 
(Fig. 4B,C; Table 2), suggesting that PLK1 blockade enhances sensitivity to cisplatin.

We therefore evaluated the effects of dacomitinib on PLK1-FOXM1 signalling. Our data show that dacom-
itinib, but not the single-targeted agents, inhibited p-PLK1 (Fig. 4D). Furthermore, dacomitinib reduced the 
mRNA and protein levels of FOXM1, survivin and Aurora kinase B. Conversely, the inhibitory effects of the 
single-targeted agents were marginal (Fig. 4D,E). Altogether, these data suggest that PLK1 blockade is a mech-
anism for dacomitinib-induced sensitisation to cisplatin and that a comprehensive ErbB inhibition strategy is 
required for blockade of PLK1-FOXM1 pathway and its down-stream targets.

Figure 2.  The ErbB family contributes to cisplatin resistance. (A) Correlation of expression of HRG1-α, 
HRG1-β, EGFR and HER2 with resistance to cisplatin. EOC cell lines with higher expression of HRG1-α, 
HRG1-β, EGFR and HER2 showed significantly higher cisplatin IC50 values. The correlation coefficient (r) 
between the expression of EGFR and HER2 and cisplatin concentrations was 0.917 (P = 0.0281) and 0.890 
(P = 0.0341), respectively. (B) Dacomitinib inhibits ErbB activation. The effect of dacomitinib (5 μM) on ErbB 
activation was determined by Western blot analysis. Protein lysates were subjected to Western blotting and 
probed with the indicated antibodies. β-actin was used as the loading control. The blots are representative of 
three independent experiments with similar results. (C) The effects of the ErbB inhibitors on HRGβ-1-induced 
proliferation in cisplatin-treated Caov4 cells were shown by MTT assay. The cells were pre-treated with the 
anti-ErbB agents for 4 h, followed by treatment with HRGβ-1 for 48 h. (D) The effects of the ErbB inhibitors-
cisplatin therapy on cell proliferation were investigated by MTT assay after 48 h of treatment and the data are 
shown by IC50 shift analysis. The concentrations of cisplatin were 0.1, 0.5, 1, 2.5, 5 and 10 μg/mL. (E) Normalised 
isobolograms of combination of erlotinib (5 μM) and dacomitinib (5 μM) with cisplatin. The data were analysed 
using the CalcuSyn software. The connecting line represents additivity. Data points located below the line 
indicate a synergistic drug-drug interaction and data points above the line indicate an antagonistic interaction. 
The numbers under the isobolograms indicate the concentrations of the drugs in combination. Data shown 
represent the mean ± SD from three independent experiments, each performed in triplicate. Statistically 
significant values of *p < 0.05 and **p < 0.01 were determined compared with the control.
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Dacomitinib reduces migration and invasion.  Ovarian cancer metastasis includes tumour cells detach-
ment from the primary site followed by their spread to the peritoneum and omentum53. The degree of peritoneal 
dissemination associates with poor prognosis54. Detachment of EOC cells from the primary site and their local 
invasion is driven by an epithelial-to-mesenchymal transition (EMT)55. EMT is triggered by down-regulation of 
cell adhesion molecules by transcriptional repressors ZEB1, ZEB2 and Snail56. It is thought that EMT contributes 
to loosening of intercellular adhesions and shedding of EOC cells into ascites57. We next determined the effects 
of dacomitinib on expression of the EMT markers ZEB1, ZEB2 and CDH2 (which encodes N-cadherin). The 
resulting data indicate that dacomitinib had stronger inhibitory effects on the expression of the EMT markers, as 
compared to the single-targeted agents (Fig. 5A). Moreover, these data show that dacomitinib hindered migration 
and invasion of the EOC cells through matrigel (Fig. 5B).

Discussion
There is evidence that the ErbB signalling network contributes to chemoresistance in EOC. EGFR drives resist-
ance to cisplatin through induction of the anti-apoptotic protein Bcl-258. HER2 promotes resistance to taxane 
chemotherapies and its depletion enhances chemosensitivity59. Moreover, activation of HER3 has been demon-
strated to drive chemoresistance in EOC cells via activation of AKT pathway60. These findings suggest that the 
ErbB family is a potential therapeutic target in the chemoresistant EOC and its blockade might inhibit tumour 
growth and induce chemosensitisation61.

During ovarian carcinoma metastasis, epithelial cells lose E-cadherin-mediated cell-cell interactions, 
up-regulate N-cadherin and undergo EMT62. Evidence indicates that EMT correlates with a poor prognosis in 
EOC63, 64. Moreover, EMT is thought to drive a chemoresistant behaviour65, 66. Induction of EMT promotes peri-
toneal dissemination and reversing the EMTed phenotype is believed to be a novel strategy to hamper intraperi-
toneal metastasis67. Targeting signalling pathways contributing to EMT is a potential therapeutic approach in 
order to hinder invasiveness of EOC cells68. Both EGFR and HER2 downregulate E-cadherin expression, induce 
an EMTed phenotype and increase motility of EOC cells69, 70. The results of the present study suggest that blocking 

Figure 3.  Dacomitinib inhibits cell growth and induces apoptosis. (A) The effects of the ErbB inhibitors on cell 
proliferation were estimated by MTT assay after 48 h of treatment. (B) The effects of the anti-ErbB agents on cell 
viability were demonstrated by crystal violet staining. The cells were treated with the ErbB inhibitors for 48 h, 
then stained with crystal violet and imaged by an inverted microscope (images acquired at 10x magnification). 
(C) Clonogenic assay was conducted to evaluate the effects of the ErbB inhibitors on clonal proliferation. (D) 
Anoikis resistance assay was performed with cell culture on poly-HEMA–coated culture dishes for 48 h and 
the proportion of viable cells was measured by MTT assay. (E) The effects of the anti-ErbB agents on induction 
of apoptosis were determined by annexin V staining. Annexin V-positive cells are considered early apoptotic, 
whereas PI uptake indicates necrosis. Cells positive for both stains are considered late apoptotic. The graphs are 
representative of three independent experiments with similar outcomes. Data shown represent the mean ± SD 
from three independent experiments, each performed in triplicate. Statistically significant values of *p < 0.05, 
**p < 0.01, and ***p < 0.001 were determined compared with the control.



www.nature.com/scientificreports/

6Scientific Reports | 7: 4204  | DOI:10.1038/s41598-017-04147-0

the ErbB receptors by dacomitinib is an effective strategy in order to reduce the expression of the EMT markers 
and hamper invasive capability of the chemoresistant EOC cells.

Single-targeted ErbB agents have shown minimum response in chemoresistant ECO patients26, 31, 71. 
Compensatory activation of the other ErbB receptors sustains the activation of common downstream pro-survival 
pathways72. Targeting all the ErbB receptors is therefore a more effective treatment strategy, especially when 
resistance to a single-targeted ErbB agent has occurred73. For instance, breast cancer patients who experienced 
tumour progression after treatment with trastuzumab have demonstrated response to the dual EGFR and HER2 
inhibitor lapatinib74. Furthermore, cetuximab-resistant colorectal and head and neck squamous cell carcinoma 
cells are sensitive to pan-ErbB inhibitors75–77. In consistency, our data show that the inhibitory effects of the 
single-targeted ErbB inhibitors on viability and invasiveness of the chemoresistant EOC cells were marginal. 
Conversely, dacomitinib exerted pronounced anti-tumour activity, suggesting that it may have potential for treat-
ment of the EOC patients who ultimately have developed resistance after initial response.

Taken together, the results of the present study provide new insight into the mechanistic activity of dacomitinib 
through inhibition of the PLK1-FOXM1 axis (Fig. 6). These findings also indicate that dacomitinib-mediated 

Figure 4.  Dacomitinib inhibits PLK1-FOXM1 pathway. (A) HRG/HER3 loop activates PLK1. The effects of 
HRGβ-1 on PLK1 activation was determined by Western blot analysis. Protein lysates from serum-starved and 
HRGβ-1-treated cells were subjected to Western blotting and probed with the indicated antibodies. The blots are 
representative of three independent experiments with similar outcomes. (B) PLK1 blockade increases cisplatin 
sensitivity. The effects of BI 2536-cisplatin therapy on cell proliferation were investigated by MTT assay and 
shown by IC50 shift analysis. The cultures were treated with BI 2536 (20 nM) and cisplatin (0.1, 0.5, 1, 2.5, 5 and 
10 μg/mL) for 48 h. (C) Normalised isobolograms of combination of BI 2536 and cisplatin. (D) The effects of 
cetuximab (10 μg/mL), trastuzumab (10 μg/mL), H3.105.5 (10 μg/mL), erlotinib (5 μM) and dacomitinib (5 μM) 
on PLK1-FOXM1 pathway and its down-stream targets were determined by Western blot analysis. The blots are 
representative of three independent experiments with similar outcomes. (E) The effects of the anti-ErbB agents 
on the expression of PLK1-FOXM1 targets genes were determined by qRT-PCR analysis. Data shown represent 
the mean ± SD from three independent experiments, each performed in triplicate. Statistically significant values 
of *p < 0.05, **p < 0.01, and ***p < 0.001 were determined compared with the control. SFM, serum-free media; 
CCNB1, cyclin B1; CDC25C, cell division cycle 25C; CDK1, cyclin-dependent kinase 1; FOXM1, Forkhead box 
M1; AURKB, Aurora kinase B; BIRC5, survivin.
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Concentrations

fa CI

DRI

BI 2536 (nM) Cisplatin (μg/mL) BI 2536 Cisplatin

OVCAR3

20 0.1 0.23 0.724 2.442 3.181

20 0.5 0.42 0.658 10.405 1.780

20 1 0.51 0.832 17.559 1.290

20 2.5 0.64 1.083 41.129 0.944

20 5 0.75 1.136 100.142 0.888

20 10 0.90 0.693 529.397 1.448

SKOV3

20 0.1 0.45 0.049 424.093 21.290

20 0.5 0.46 0.229 624.218 4.393

20 1 0.49 0.402 2972.447 2.491

20 2.5 0.62 0.640 7.8e + 005 1.562

20 5 0.79 0.627 5.39e + 009 1.594

20 10 0.84 0.944 1.83e + 011 1.060

A2780CP

20 0.1 0.55 0.797 1.278 70.538

20 0.5 0.57 0.818 1.327 15.428

20 1 0.59 0.836 1.389 8.592

20 2.5 0.6 0.974 1.426 3.661

20 5 0.66 1.012 1.629 2.511

20 10 0.76 0.863 2.172 2.483

Table 2.  Combination index (CI) and dose reduction index (DRI) of BI 2536 and cisplatin combination in 
OVCAR3, SKOV3 and A2780CP cells. DRI represents the order of magnitude of dose reduction that is allowed in 
combination for a given degree of effect as compared with the dose of each drug alone. “fa” denotes fraction affected.

Figure 5.  Dacomitinib inhibits migration and invasion. (A) The effects of the anti-ErbB agents on expression 
of EMT markers were determined by qRT-PCR analysis. (B) The effects of the ErbB inhibitors on cell migration 
and invasion. The cells were placed into 8-μm porous culture inserts, treated with the drugs and allowed to 
migrate for 48 h. The migrated cells on the lower surface of the inserts were quantified by crystal violet staining. 
For invasion assay, the cells were placed into matrigel-coated inserts and allowed to invade through the matrigel 
layer for 48 h. Data shown represent the mean ± SD from three independent experiments, each performed in 
triplicate. Statistically significant values of *p < 0.05 and **p < 0.01 were determined compared with the control.
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blockade of the ErbB receptors provides advantages over single-targeted ErbB inhibitors and thus offer a novel 
and promising treatment strategy to address chemoresistance in EOC. Further in vivo investigations are war-
ranted to explore the anti-tumour activity of dacomitinib in therapy-resistant EOC.

Materials and Methods
Antibodies and chemicals.  Antibodies were obtained as follows: Aurora B (Abcam); EGFR, HER2, HER3 
(clone 2F12) and HER3-neutralising monoclonal antibody (clone H3.105.5) (Millipore); p-EGFR (Tyr1068), 
p-HER2 (Tyr1248), p-HER3 (Tyr1289; clone 21D3), p-HER4 (Tyr1284; clone 21A9) and p-PLK1 (Thr210) (Cell 
Signalling Technology); HER4 (clone C-7), PLK1 (clone F-8), FOXM1 (clone C-20), survivin (clone FL-142) 
and β-actin (Santa Cruz Biotechnology). Dacomitinib and BI 2536 (a specific inhibitor of polo-like kinase 1) 
were purchased from Adooq Bioscience (Irvine, CA, USA) and were dissolved in DMSO. The final concentra-
tions of DMSO did not exceed than 0.1% [v/v] in all the treatments. Erlotinib (EGFR small molecule inhibitor) 
was obtained from Chemietek (Indianapolis, IN, USA). Cetuximab (a ligand-blocking anti-EGFR mAb), tras-
tuzumab (anti-HER2 mAb), cisplatin and doxorubicin (DNA-damaging drugs), paclitaxel (a taxane inhibitor 
of microtubule disassembly), vincristine (a mitosis-blocking agent), carboplatin (an alkylating agent) and gem-
citabine (a nucleoside analogue which inhibits DNA synthesis) were purchased from the pharmacy of Shariati 
hospital (Tehran, Iran). Poly-hydroxyethylmethacrylate polymer (poly-HEMA) was obtained from Santa Cruz 
Biotechnology. Recombinant HRGβ-1 was purchased from Peprotech.

Human ovarian carcinoma cell lines.  Human ovarian carcinoma cell lines were obtained from National 
Cell Bank of Iran (NCBI, Tehran, Iran). These include A2780CP, A2780S, Caov4, OVCAR3 and SKOV3. All the 
cell lines were authenticated by STR profiling and were routinely checked for mycoplasma infection. Cell cultures 
were maintained at 37 °C in 5% CO2 in a humidified incubator and cultured according to NCBI recommendations.

Chemosensitivity assay.  The EOC cells were seeded at 2 × 103 per well in 96-well plates and treated with 
the chemotherapeutics for 48 h. Cell viability was determined by MTT assay. Vehicle-treated cells were used as the 
control group. Chemosensitivity was shown as IC50 values calculated from full dose–response curves.

Median-effect analysis for treatment synergy.  To determine the efficacy of combination of cisplatin 
with the anti-ErbB agents, the cells were treated with 0 to 10 μg/mL of cisplatin and different concentrations of 
the ErbB inhibitors for 48 h. Survival fractions in each treatment were determined by MTT assay and combina-
tion index (CI) was computed using the method developed by Chou and Talalay78 and the computer software 
CalcuSyn (Biosoft, Cambridge, UK). CI < 1, CI = 1 and CI > 1 represent synergism, additive effects and antago-
nism of the two drugs, respectively.

Crystal violet staining.  The cells were plated at a density of 6 × 104 cells in 6-well plates and treated with 
the drugs for 48 h. The cultures were then washed with PBS, fixed with ice-cold methanol and stained with crystal 
violet (0.5% w/v). The images were acquired with an inverted microscope.

Figure 6.  Schematic illustration of the anti-tumour effects of dacomitinib on the EOC cells. Dacomitinib 
inhibited cell growth, induced apoptosis and restored cisplatin sensitivity through blockade of the PLK1/
FOXM1 axis and its downstream targets Aurora B and survivin.
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Colony formation assay.  Single-cell suspensions were seeded in 6-well plates at a density of 500 cells/well. 
Once adhered, the cells were treated with the desired concentrations of the drugs for 48 h. The plates were further 
incubated for 10 d and colonies were stained with 0.5% crystal violet and counted under an inverted microscope. 
Plating efficiency (PE) and survival fraction (SF) were calculated using the following formula: PE = number of 
colonies/number of cells seeded; SF = number of colonies/number of cells seeded × PE and plotted graphically 
to obtain survival curves.

Anoikis resistance assay.  For anoikis evaluation, 96-well plates were coated with poly-HEMA (20 mg/mL 
in 95% ethanol) and dried in a tissue culture hood. The cells were trypsinised into a single cell suspension and 
seeded in poly-HEMA-coated plates at a density of 5 × 103 cells/well. The cell suspension cultures were treated 
with the desired concentrations of the drugs for 48 h. Cell viability was estimated by MTT assay.

Analysis of gene expression by quantitative reverse transcription-PCR.  The quantitative reverse 
transcription-PCR (qRT-PCR) analysis was performed on a LightCycler 96 instrument (Roche Molecular 
Diagnostics) using RealQ-PCR Master Mix kit (Ampliqon, Copenhagen, Denmark). The primers used are listed 
in Supplementary Table 3. The target gene expression levels were normalised to beta-2-microglobulin (B2M) 
levels in the same reaction. For calculations, 2−ΔΔC

T formula was used, with ΔΔCT = (CT target − CT B2M) 
experimental sample – (CT target − CT B2M) control samples, where CT is cycle threshold79.

Western blot analysis.  The cells were lysed with RIPA lysis buffer (50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 
1.0% NP-40, 0.5% sodium deoxycholate and 0.1% SDS) containing protease and phosphatase inhibitors (Roche 
Molecular Biochemicals). Protein concentration was determined using the Bradford assay. A total of 50 to 100 μg 
of protein were separated by SDS-PAGE and transferred onto PVDF membranes (Membrane Solutions, TX, 
USA). Membranes were blocked and blotted with the relevant antibodies. Horseradish peroxidase-conjugated sec-
ondary antibodies were detected with a BM chemiluminescence detection kit (Roche Molecular Biochemicals). 
β-actin was used as the loading control. All antibody dilutions were 1:500 except for the β-actin antibody, which 
was used at a dilution of 1:5000.

Annexin V/PI staining.  Cells were stained with PI and FITC-conjugated Annexin V, as provided by 
Annexin-V-FLUOS Staining Kit (Roche Diagnostics) according to the manufacturer’s instructions. The results 
were analysed using a Partec PAS III flow cytometer (Partec GmbH) and WindowsTM FloMax software (Partec).

Cell migration and invasion.  Transwell cell migration and invasion assays were carried out as described earlier80.

Statistical analysis.  All data were evaluated in triplicate against vehicle-treated control cells and collected from 
three independent experiments. Data were graphed and analysed by GraphPad Prism Software 7.0a using one-way 
ANOVA and the unpaired two-tailed Student’s t-test. All data are presented as mean ± standard deviation (SD).
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