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Abstract

Motivation: RNA editing generates post-transcriptional sequence alterations. Detection of RNA

editing sites (RESs) typically requires the filtering of SNVs called from RNA-seq data using an SNP

database, an obstacle that is difficult to overcome for most organisms.

Results: Here, we present a novel method named SPRINT that identifies RESs without the need to

filter out SNPs. SPRINT also integrates the detection of hyper RESs from remapped reads, and has

been fully automated to any RNA-seq data with reference genome sequence available. We have

rigorously validated SPRINT’s effectiveness in detecting RESs using RNA-seq data of samples in

which genes encoding RNA editing enzymes are knock down or over-expressed, and have also

demonstrated its superiority over current methods. We have applied SPRINT to investigate RNA

editing across tissues and species, and also in the development of mouse embryonic central ner-

vous system. A web resource (http://sprint.tianlab.cn) of RESs identified by SPRINT has been

constructed.

Availability and implementation: The software and related data are available at http://sprint.tian

lab.cn.

Contact: weidong.tian@fudan.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA editing generates post-transcriptional sequence alterations

(Farajollahi and Maas, 2010; Maydanovych and Beal, 2006), pri-

marily the modification of RNA nucleotides, including adenosine-

to-inosine [A-to-I, detected as A-to-G (Ramaswami et al., 2012)]

and cytosine-to-uracil (C-to-U, detected as C-to-T) editing

(Farajollahi and Maas, 2010; Picardi et al., 2015). A-to-I editing ac-

counts for over 95% of all editing events in most human tissues

(Bahn et al., 2012; Ramaswami et al., 2012; Zhang and Xiao,

2015), and is a universal process in metazoan (Grice and Degnan,

2015). C-to-U editing is found in both animals and plants (Blanc

and Davidson, 2003; Blanc et al., 2014; Shikanai, 2015). RNA edit-

ing can affect protein coding (Benne, 1996), alternative splicing

(Rueter et al., 1999), microRNA binding (Borchert et al., 2009) and

other biological processes (Blanc and Davidson, 2003; Zipeto et al.,

2015), and may be a major contributor to transcriptome diversity

(Fumagalli et al., 2015; Han et al., 2015; Paz-Yaacov et al., 2015).

It has been shown to play an important role in brain development

(Wahlstedt et al., 2009), and has also been linked to a number of

human diseases (Slotkin and Nishikura, 2013; Zipeto et al., 2015),
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such as Alzheimer disease (Gaisler-Salomon et al., 2014) and

Amyotrophic lateral sclerosis (Hideyama et al., 2012).

Detection of RNA Editing Sites (RESs) typically starts from map-

ping RNA-seq data to a reference genome and/or a transcriptome to

first identify single nucleotide variants (SNVs) (Bahn et al., 2012;

John et al., 2016; Li et al., 2011; Peng et al., 2012; Picardi and Pesole,

2013; Piechotta et al., 2017; Ramaswami et al., 2012; Sun et al.,

2016; Wang et al., 2016; Zhang and Xiao, 2015), which is then fol-

lowed by filtering out single nucleotide polymorphisms (SNPs). Since

the matched DNA-seq data are usually not available for a given study,

a complete SNP database is needed in order to filter out SNPs

(Ramaswami et al., 2012). However, most organisms either do not

have an SNP database or have only an incomplete SNP database,

which has significantly hindered the study of RNA editing from a

broad evolutionary point of view. In 2013, Ramaswami et al. pro-

posed an approach to identify conserved RESs by using an incomplete

SNP database and multiple individuals’ RNA-seq data (Ramaswami

et al., 2013). However, this approach is limited in that it could detect

only a small subset of RESs (Zhang and Xiao, 2015). Recently,

Zhang et al. developed a method named GIREMI (Zhang and Xiao,

2015) that identifies RESs based on the mutual information (MI) of

adjacent SNV in the same reads (or the same pair). Though this ap-

proach does not require a complete SNP database, it still needs prior

knowledge of a significant fraction of SNPs to derive the MI cutoff.

To our knowledge, there is currently no method that can detect RESs

without the use of any SNP information.

Since A-to-I editing is catalyzed by adenosine deaminases acting on

RNA (ADARs, including ADAR1, ADAR2 and ADAR3) (Nishikura,

2010) on double-stranded RNA (Ramaswami et al., 2012; Zipeto

et al., 2015), while C-to-U editing is by apolipoprotein B (ApoB)

mRNA editing enzyme-1 (APOBEC1) (Zipeto et al., 2015) on single-

stranded RNA (Blanc et al., 2014; Zipeto et al., 2015), it is unlikely to

observe both types of RESs within the same genomic region. On the

other hand, it has been reported that A-to-I RESs tend to be clustered in

the genome (Ramaswami et al., 2012). Given that the density of SNP in

a genome is usually low and the distribution of different types of SNP

(e.g. A-to-G or A-to-C) should be independent to each other, we reason

that it may be possible to distinguish RESs from SNPs by investigating

the distribution of SNV duplets [defined as two consecutive SNV with

the same type of variation (e.g. both are A-to-G or A-to-C)]. Indeed, in

this study we found RES-based and SNP-based SNV duplets have very

distinctive distributions, and have therefore developed an SNP-free

RNA editing IdeNtification Toolkit (SPRINT) to identify RESs by clus-

tering SNV duplets. When detecting RESs, most methods only investi-

gated those RNA reads mapped to the reference genome (Bahn et al.,

2012; Ramaswami et al., 2012; Zhang and Xiao, 2015). However,

Porath et al. analyzed unmapped reads by masking adenosine (A) sites

with guanine (G), and found genomic regions with extensive A-to-I

RESs, a phenomenon called hyper RNA editing (Porath et al., 2014).

Here, SPRINT also integrated the detection of hyper RNA editing sites

(hyper-RESs). We have conducted thorough validations to prove the ef-

ficacy of SPRINT in detecting RESs, and have also compared SPRINT

with a number of existing methods. Finally, we have applied SPRINT

to investigate RNA editing across tissues and species, and also in the de-

velopment of mouse embryonic central nervous system.

2 Materials and methods

2.1 Reference genome and annotations
Reference genomes (human, hg19; chimpanzee, panTro3; mouse,

mm9; C.elegans, ce10), gene category annotations (e.g. CDS,

5’-UTR, etc.) and repeats annotations of human, chimpanzee,

mouse and C.elegans were downloaded from UCSC genome

browser (http://genome.ucsc.edu). MacaM_Rhesus_Genome_v7

(Zimin et al., 2014) (http://www.unmc.edu/rhesusgenechip/index.

htm) was used as the reference genome for rhesus, and

RepeatMasker (Tempel, 2012) (http://www.repeatmasker.org) was

used with the command option of ‘perl RepeatMasker –species

macaca MacaM_Rhesus_Genome_v7.fa’ to produce repeat annota-

tions in rhesus genome. RepeatMasker libraries were obtained

from GIRI (Genetic Information Research Institute, http://www.gir

inst.org). Rhesus gene annotations, MacaM_Rhesus_Genome_

Annotation_v7.6.8 (Zimin et al., 2014), were obtained from http://

www.unmc.edu/rhesusgenechip/index.htm. Human dbSNP (version

141) was downloaded from UCSC Table Browser (http://genome.

ucsc.edu/cgi-bin/hgTables). PhyloP (Pollard et al., 2010) conserva-

tion scores of human and mouse were downloaded from UCSC

(http://hgdownload.soe.ucsc.edu/downloads.html). PhyloP (Pollard

et al., 2010) conservation scores were based on individual nucleo-

tides, and the corresponding file names for human and mouse were

‘hg19.100way.phyloP100way.bw’ and ‘chrN.phyloP30way.wigFix’

(‘N’ refers to the ID of chromosome), respectively. Human conserva-

tion score file was in BIGWIG format (binary format), which was

converted to WIG file (text format) using ‘bigWigTowig’ (http://

hgdownload.soe.ucsc.edu/downloads.html#utilities_downloads).

2.2 RNA-seq datasets
The RNA-seq data of GM12878 (lymphoblastoid cell line) were

downloaded from the ENCODE project (http://genome.ucsc.edu/

ENCODE/downloads.html). The RNA-seq data of glioma cell line

U87MG (including both wild-type and ADAR1 knockdown) (Bahn

et al., 2012), C.elegans (including both wild-type and adars knock-

down) (Zhao et al., 2015), mouse liver (including wild-type,

Apobec-1 knockdown and ad-Apobec-1) and intestine (including

both wild-type and Apobec-1 knockdown) (Blanc et al., 2014), and

the brain, heart, liver and testis of human, chimpanzee, rhesus and

mouse (Ruiz-Orera et al., 2015), as well as mouse embryonic and

adult tissues were all downloaded from NCBI SRA database (http://

www.ncbi.nlm.nih.gov/gds/). The detailed information about the

above RNA-seq datasets can be found in Supplementary Table S1.

2.3 Reads processing, reads mapping and SNV calling
Before mapping, the first 6 bases of each read were trimmed to avoid

mapping errors caused by random-hexamer primers. Then,

Burrows-Wheeler Aligner (Li and Durbin, 2009; Li and Homer,

2010) (BWA, version 0.7.12) was applied to map RNA-seq reads to

the reference genome. Note that for all organism to be analyzed,

BWA is the only program used in SPRINT for reads mapping.

Paired-end reads were mapped separately with the command op-

tions of ‘bwa aln fastqfile’ and ‘bwa samse -n4’ as described by

Ramaswami et al. (2012). The detailed mapping information was in

SAM file (Li et al., 2009). Samtools (Li et al., 2009) (version 1.2)

was used to convert SAM files to BAM files and to sort BAM files,

and picard-tools (version 1.119, http://broadinstitute.github.io/pic

ard/) was then used to remove PCR duplicates in the sorted

BAM files with the command option of ‘MarkDuplicates.jar

REMOVE_DUPLICATES¼ true’. Those reads with high mapping

quality (�20) were regarded as mapped reads. Low complexity

reads were removed from unmapped reads (refer to Fig. 1a). Then,

both unmapped reads and the reference genome were masked by

replacing A with G (the reference genome was also masked by

replacing T with C in order to retrieve RESs in antisense transcripts),
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as described by Porath et al. (2014). Remapping of masked reads to

masked reference genome was conducted, and remapped reads were

obtained by recovering remapped masked reads.

For SNVs calling, we first identified all mismatches. Then, we

followed Ramaswami et al. (2012) to use base quality scores and

repeat annotation database to filter out those mismatches likely re-

sulted from system errors (sequencing and/or mapping errors) (for

details, refer to Fig. 1a). In case an organism does not have repeat

annotation database available, we used RepeatMasker (Tempel,

2012) to obtain repeat annotations. Ramaswami et al. (2012) fur-

ther used transcript annotations to filter out mismatches close to

exon/intron junctions because mapping errors occur frequently

near splicing sites. Considering that most organisms do not have

complete transcript annotations, here we introduced a new meas-

ure called ‘fragment-loc’ that refers to the distance of a mismatch

to the nearest end of the mapped fragment it belongs to (a read

may be split into more than one fragment when mapped to the ref-

erence genome) (Supplementary Fig. S1a). Analyzing the mis-

matches in the mapped reads from GM12878 [ENCODE,

cytosolic, poly (A)þ], we found there was a sharp increase in

the number of mismatches when fragment-loc is less than

5 (Supplementary Fig. S1b), i.e. close to the end of mapped frag-

ments, and consequently used ‘fragment-loc’ of 5 as an additional

filter to filter out mismatches. The remaining mismatches were

then called SNVs.

2.4 Mouse gene expression analysis and gene set

enrichment analysis
For mouse gene expression analysis, mouse Ensembl gene annota-

tions (version 67, ftp://ftp.ensembl.org/pub/release-67/) were used to

annotate reference genes. To calculate mouse gene expression level,

Tophat2 (Kim et al., 2013) (version 2.1.0) was applied with default

command options to map RNA-seq reads to the reference genome.

Note that Tophat2 is only used for calculating the expression level

of mouse genes. When detecting the RESs in mouse, we use BWA

for reads mapping. Then, cufflinks (Trapnell et al., 2012) was used

to calculate gene expression level with the command option of ‘cuff-

links –u -G reference_genes.gtf’, and cuffmerge (Trapnell et al.,

2012) was used to assemble transcriptomes with the command op-

tion of ‘cuffmerge –g reference_genes.gtf –s mm9.fa’. Finally, cuff-

diff (Trapnell et al., 2012) was used to calculate the fold change of

expression level with the command option of ‘cuffdiff –u mer-

ged.gtf’. DAVID (Huang da et al., 2009a,b) (https://david.ncifcrf.

gov/) was used for gene set enrichment analysis on GO BP terms

(GOTERM_BP_FAT), with ‘FDR’ as the method for multiple test

correction, and the significance threshold was set at 0.05.

2.5 Competing tools
We compare SPRINT with the following four tools on detecting RNA

editing. These four tools are JACUSA (Piechotta et al., 2017), GIREMI

(Zhang and Xiao, 2015), RNAEditor (John et al., 2016) and

REDItools (Picardi and Pesole, 2013). GIREMI is downloaded from

https://github.com/zhqingit/giremi. RNAEditor is downloaded from

https://github.com/djhn75/RNAEditor. The related tools and annota-

tions for installing RNAEditor are downloaded following the instruc-

tion of RNAEditor’s documents. REDItools is downloaded from

https://sourceforge.net/projects/reditools/. JACUSA is downloaded from

https://github.com/dieterich-lab/JACUSA. RNAEditor is the only tool in

these three that includes reads mapping, SNV calling and RES calling.

After trimming the first six bases of each read, we run RNAEditor with

the command-line option of ‘python RNAEditor.py –i read1.fastq

read2.fastq –c configuration.txt’. Reads mapping is not included in

GIREMI, REDItools (de novo) and JACUSA (RRD). Consequently, the

BAM file produced by SPRINT is used for these tools. To call SNVs for

GIREMI, we use samtools (version 1.4) and bcftools (version, 1.4) with

the command option of ‘samtools mpileup –vf reference_genome.fa

BAM_file j bcftools call –cv ->VCF_file’. After removing all homozy-

gous sites with more than two types of alleles in the VCF_file, we anno-

tate the VCF_file with Ensembl Genes (Version 75) and convert the

VCF_file into the input_fIle of GIREMI. Then, GIREMI is used with

the command option of ‘giremi –f reference_genome.fa –o output_file –

l input_file BAM_file’ to call RESs. REDItools (de novo) is used with

the command option of ‘python REDItoolDenovo.py –i BAM_file –f

reference_genome.fa –o output_file –V 0.05 –l –t 20’. JACUSA (RRD)

is used with the commond option of ‘java -jar JACUSA_v1.2.0.jar call-

2 -T 1.56 -p 20 -s –r output_file BAM_file_CTRL BAM_file_KD’.

Then, we filter the sites called by REDItools (de novo) and JACUSA

(RRD) using dbSNP141 to obtain RESs.

3 Results

3.1 Development of SPRINT, an SNP-free RNA editing

IdeNtification toolkit
SPRINT consists of three major steps: reads processing, SNVs

calling and RESs calling (Fig S1a). Briefly speaking, reads from

Fig. 1. The workflow and the methodology of SPRINT. (a) The work flow of

SPRINT. (b) The number of SNV duplets (two consecutive SNVs with the

same type of variation) at different distance intervals. SNP and RES duplets

refer to SNV duplets in which both SNVs are SNPs and RESs, respectively.

The sub-figure plots the fraction of RES duplets among all SNV duplets (RES

duplet rate) at a given distance interval. In the horizontal axis of sub-figure,

‘200’ means ‘0–200’; ‘400’ means ‘200–400’ etc. (c) The A-to-G rate, the preci-

sion and the recall of the RESs identified by SPRINT when the cluster size cut-

off is set at 2 while the distance cutoff varies. (d) Similar to (c) except that the

distance cutoff is fixed at 200 nt while the cluster size cutoff varies. The SNVs

used in (b–d) are those SNVs called by SPRINT in Alu regions of GM12878

(cytosolic) with two or more read counts
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RNA-seq data are first processed into mapped reads (those with

high mapping quality scores) and remapped reads (those unmapped

reads that are remapped to the reference genome after masking A

with G). Then, SNVs are called separately from mapped and

remapped reads, which is then followed by the calling of RESs from

SNVs. For convenience, the RESs identified from mapped and

remapped reads are called regular-RESs and hyper-RESs, respect-

ively. For details about reads processing and SNV calling, please

refer to Figure 1a, Supplementary Figure S1a, b and Section 2.

Below, we describe the RESs calling in SPRINT.

For SNVs called from mapped reads, we follow Ramaswami

et al. (2012) to classify them into three categories—those in Alu (or

Alu family) regions, and those in repetitive non-Alu and non-

repetitive regions, before conducting RESs calling. To examine the

quality of the called SNVs, we select the SNVs called by SPRINT in

Alu regions from the mapped reads of GM12878 (cytosolic).

Following Ramaswami et al. (2012), we filter those SNVs with two

or more read counts using human dbSNP [version 141, a complete

SNP database to GM12878 (Djebali et al., 2012)] to call RESs. We

obtain 133 571 RESs with an A-to-G rate of 97.4% that is compar-

able to what Ramaswami et al. (2012) (95.8%, GM12878, cell) and

Zhang and Xiao (2015) (99.7%, GM12878, cytosolic) reported for

RESs in Alu regions, demonstrating that the SNVs called by

SPRINT with two or more read counts are of high quality. In com-

parison, the A-to-G rate of the RESs called by filtering all SNVs is

only 76.5%, suggesting that many one-read-count SNVs may be sys-

tem errors.

SPRINT identifies RESs from SNVs without the need to filter

out SNPs. To illustrate its working strategy, we identify the SNPs

from the high-quality SNVs called by SPRINT in Alu regions from

GM12878 (cytosolic) (those with two or more read counts), and

then call the remaining SNVs as RESs. By defining a SNV duplet as

two consecutive SNVs that have the same type of variation (e.g.

both are A-to-G or both are A-to-C), we find that almost all RES-

based SNV duplets (both SNVs are RESs) are within 400 nt, while

almost no SNP-based SNV duplets (both SNVs are SNPs) are within

1600 nt (Fig. 1b). In fact, the fraction of RES-based SNV duplets is

almost all above 95% when they are within 1600 nt (Fig. 1b). This

thus inspires us to identify RESs by clustering SNV duplets (see

Supplementary Fig. S1c for the clustering procedure). We first iden-

tify all SNV duplets by implementing a specific distance cutoff (e.g.

with 200 nt). Note that a SNV can be included into two adjacent

SNV duplets. Then, we scan the genome from the start position of

each chromosome to merge SNV duplets that share a common SNV.

The merging stops if the next SNV duplet does not share a common

SNV with the previous one, and a cluster of SNV duplets is identi-

fied. A new merging process is initiated from the next SNV duplet.

After the scanning and merging are completed, we obtain a large

number of SNV duplet clusters. Finally, we select those SNV duplet

clusters whose cluster size (defined as the number of SNVs within

the SNV duplet cluster) is above a certain cutoff, and consider all

SNVs within these clusters as RESs. When the cluster size and the

distance cutoffs are set at 2 and 200 nt, respectively, the precision

[1—percentage of the identified RESs that are SNPs (Zhang and

Xiao, 2015)] approximating 95% while the recall (the percentage of

true RESs that are identified) is reasonably high (80.3%) (Fig. 1c).

The corresponding number of RESs is 116 488, and the A-to-G rate

is 98.8%. It’s worth noting that the A-to-G rate is almost constantly

above 98% at all tested cluster size and distance cutoffs (Fig. 1d).

To investigate whether we may further increase the number of called

RESs, we apply the clustering strategy to all SNVs. By choosing the

cluster size and the distance cutoffs are set at 3 and 200 nt,

respectively, we obtain 335 499 RESs. The A-to-G rate is 99%

(Supplementary Fig. S2a), suggesting that the clustering strategy can

effectively remove those one-read-count SNVs that are likely system

errors. Combining the RESs called from high-quality SNVs and

from all SNVs together, we obtain 359 725 RES (98.7% A-to-G) in

Alu regions from the mapped reads of GM12878 (cytosolic).

Identifying RESs in non-Alu regions is a challenging task

(Ramaswami et al., 2012; Zhang and Xiao, 2015). Here, we use a

summed editing rate (A-to-G plus C-to-U rate) to indicate the qual-

ity of the called SNVs. By fixing the distance cutoff at 200 nt and

setting the cluster size cutoff at 5 and 7 for repetitive and non-

repetitive SNVs, respectively, we obtain 5469 and 2081 RESs with a

summed editing rate of 99.3% (96% A-to-I; 3.3% C-to-U) and

95.6% (75.9% A-to-I; 19.7% C-to-U) in these two regions, respect-

ively (Supplementary Fig. S2b and c). Combining them with the

RESs called in Alu regions, we obtain 367 275 RESs (98.6% A-to-

G) from the mapped reads in GM12878 (cytosolic).

The clustering strategy is also applied for identifying hyper-RESs

from remapped reads. By setting the cluster size and the distance

cutoffs at 5 and 200 nt, respectively (Supplementary Fig. S2d), we

obtain 422 068 hyper-RESs (98.9% A-to-G) in GM12878 (cyto-

solic). Among them, only 59 566 are also identified from mapped

reads, suggesting that most hyper-RESs are different from regular-

RESs. Finally, we combine regular-RESs and hyper-RESs together,

and obtain a total number of 729 777 RESs from GM12878 (cyto-

solic) without filtering out SNPs (Supplementary Table S1).

3.2 The validation of SPRINT’s effectiveness in

identifying RESs
To examine SPRINT’s effectiveness in identifying A-to-I RESs, we

apply SPRINT to two RNA-seq datasets: U87MG dataset that in-

cludes both wild-type and ADAR1 knockdown cell lines (Bahn

et al., 2012), and a C.elegans dataset that includes both wild-type

and adrs (adr-1 and adr-2, ADARs of C.elegans) knockdown sam-

ples (Zhao et al., 2015). In both datasets, we observe a significant

reduction in the number of both regular and hyper A-to-I RESs de-

tected by SPRINT when ADARs are knock down (Fig. 2a–d and

Supplementary Table S1). For C-to-U RESs, we apply SPRINT to

two datasets: the first consists of mouse liver and intestine RNA-seq

data from both wild-type and Apobec-1 knockdown conditions

(Blanc et al., 2014); the second is adenoviral delivery of Apobec1

(ad-Apobec-1) mouse liver RNA-seq data in which Apobec-1 was

overexpressed (Blanc et al., 2014). In the first dataset, we also ob-

serve a significant reduction in the number of C-to-U RESs (wild

type: 166; Apobec-1 knockdown: 6) called by SPRINT when

Apobec-1 is knockdown (Fig. 2e and f and Supplementary Table

S1), and the percentage of SNP among the C-to-U RESs called by

SPRINT in mouse wild type liver and intestine was both lower than

2.5% (mouse dbSNP, version 128, downloaded from UCSC Table

Browser). While in the second dataset, SPRINT identifies 62 788 C-

to-U RESs when Apobec-1 is overexpressed (Supplementary Table

S1), much greater than that in wild type mouse liver (166 C-to-U

RESs in the first dataset), and the percentage of SNP among the

C-to-U RESs called by SPRINT in Apobec-1 overexpressed liver was

less than 1%. The significant reduction and increase of the number

of RESs called in Apobec-1 knockdown and overexpression samples

demonstrated SPRINT’s effectiveness in calling C-to-U RESs, while

the very low percentage of SNPs suggests that the C-to-U RESs

called by SPRINT are likely of high quality. We further find that

there are only very few C-to-U RESs in Alu regions in both wild type

and ad-Apobec-1 samples (wild type intestine: 15, 0.8%; wild type
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liver: 8, 0.5%; ad-Apobec-1 liver: 992, 1.56%), while all C-to-U

RESs found when Apobec-1 is knockdown are in Alu regions

(Supplementary Table S1). This suggests that the C-to-U RESs found

in Alu regions are likely false positives, and they are therefore

removed from the report of C-to-U RESs from here on.

By applying SPRINT to a randomly selected portion (e.g. 10%,

20%, etc.) of reads in GM12878 (cytosolic) that mimic different

sequencing depths, we find that SPRINT is able to identify RESs

with high quality regardless of sequencing depth, though higher

sequencing depth is needed in order to achieve a more complete

coverage of RESs (the number of called RESs is almost linearly cor-

related with sequencing depths) (Supplementary Fig. S3). The simu-

lation results also suggest that the number of RESs cannot be

directly compared across samples unless they are under similar

sequencing depths. Note that in all datasets used to validate

SPRINT, the RNA-seq data being compared are under similar

sequencing depth. In addition, since most RESs have only one or

two read counts (Supplementary Fig. S4), it implies that many RESs

may fail to be identified under current sequencing depth.

3.3 The comparison of SPRINT with other methods
We first compare the RESs called by SPRINT with the previously re-

ported RESs in the studies of Ramaswami et al. (2012), Zhang and

Xiao (2015), Porath et al. (2014) (Table 1), Blanc et al. (2014) and

Zhao et al. (2015). For regular-RESs, in GM12878 (cell), SPRINT

identifies 355 730 RESs (96.6% A-to-G), much greater than that

(150 865, 95.7% A-to-G) obtained by Ramaswami et al. In both of

Alu and non-Alu regions, SPRINT identify 2.3 fold and 5.1 fold

number of RESs comparing to the number of RESs called by

Ramaswami et al. with consistently high precision [above 96.5%,

defined as 1 � percentage of the identified RESs that are SNPs

(Zhang and Xiao, 2015)]. Here, it can be noted that SPRINT has a

lower A-to-G rate in non-repetitive RESs, which is highly likely to

be caused by the sequencing artefacts (clustered G-to-T sites) in the

RNA-seq data of ENCODE project. For all ENCODE’s RNA-seq

data analyzed in this study, after the removal of A-to-G and C-to-U

sites from the RESs called by SPRINT there are a very high fre-

quency of G-to-T sites (36–95%) in the remaining sites, which is in

significant contrast to that of the RESs called from the RNA-seq

data generated by the other studies (9–28% G-to-T sites after the re-

moval of A-to-G and C-to-U sites). For the RESs called by

Ramaswami et al., 47% of the remaining sites after the removal of

A-to-G and C-to-T sites are also G-to-T sites. See Supplementary

Figure S5 for details, and this kind of bias shows that users of

SPRINT should check the rate of observed changes before any con-

clusion. If G-to-T sites are removed from the RESs called by

SPRINT, then A-to-G rate in nonrepetitive regions is over 98.6%.

We further compare the RESs called by Ramaswami et al. with those

called by SPRINT, and find 78.9% of the RESs identified by

Ramaswami et al. are also found by SPRINT (82.3% for A-to-I

RESs), partly validating the quality of the RESs identified by

SPRINT. In GM12878 (cytosolic), SPRINT identifies 367 275 RESs

(98.6% A-to-G), much greater than that (genome-aware: 41 027,

99% A-to-G; 70% SNP known: 37 591, 98.4% A-to-G) reported by

Zhang et al. (GIREMI). SPRINT also achieves higher precision in re-

petitive non-Alu and nonrepetitive regions (96.8% and 95.5%; 0%

SNP known) than that reported by Zhang et al. (84.3% and 73.8%;

70% SNP known).

We next compare SPRINT with the method used by Blanc et al.

(2014) on identifying C-to-U RESs. In wild-type mouse intestine and

liver, SPRINT identifies 1757 and 158 C-to-U RESs, respectively,

both of which are much greater than that (438 and 39 in intestine

and liver, respectively) reported by Blanc et al. (2014). The C-to-U

RESs found by SPRINT in mouse liver and intestine are mainly in

3’-UTR, which is consistent with what Blanc et al. reported (Blanc

et al., 2014; Rosenberg et al., 2011) (Supplementary Fig. S6a).

For hyper-RESs, we compare SPRINT with the method de-

veloped by Porath et al. (2014). Porath et al. reported 27 124 hyper-

RESs (94.6% A-to-G) in wild-type U87MG. In comparison,

SPRINT identifies 57 913 hyper-RESs with higher A-to-G rate

(Table 1). Porath et al. (2014) also analyzed GM12878 (cell), and

identified 157 077 hyper-RESs (96% A-to-G). SPRINT identifies

328 762 hyper-RESs (97.9% A-to-G) in the same data (Table 1).

Recently, Zhao et al. (2015) investigated both regular- and hyper-RESs

in C.elegans, and reported a combined number of 50 740 A-to-I RESs.

Fig. 2. The validation of SPRINT’s effectiveness in detecting RESs. (a) The num-

ber of regular-RESs and (b) the number of hyper-RESs identified by SPRINT in

wild-type and ADAR1 knockdown U87MG cell line (Bahn et al., 2012). (c) The

number of regular-RESs and (d) the number of hyper-RESs identified by

SPRINT in wild-type and ADARs (adr-1 and adr2) knockdown C.elegans em-

bryos (strand-specific) (Zhao et al., 2015). (e) The number of C-to-U RESs identi-

fied by SPRINT in wild-type and Apobec-1 knockdown mouse intestine (Blanc

et al., 2014). (f) Similar to (e) except that the samples are from mouse liver. In

(a–f), ‘>’means ‘to’, A-to-I is detected as A-to-G, and C-to-U is detected as C-to-

T. Others refer to all types of variations except A-to-I and C-to-U. Because

U87MG and mouse (liver and intestine) RNA-seq datasets are not strand-spe-

cific (Bahn et al., 2012, 2014), A-to-G mismatches might be detected as T-to-C

mismatches when reads are mapped to opposite strand, and C-to-T mis-

matches might be detected as G-to-A. Therefore, A-to-G and T-to-C editing sites

are combined to represent A-to-I editing sites, while C-to-T and G-to-A RES are

combined to represent C-to-U editing sites in those two datasets

3542 F.Zhang et al.



From the same data, SPRINT identifies a much higher number

(232 133) of A-to-I RESs (regular: 11 958; hyper: 227 703) (Table

1). The variation pattern of the number of A-to-I RESs identified by

SPRINT at different development stage of C.elegans is similar to

that reported by Zhao et al. (2015) (Supplementary Fig. S6b).

Currently, there are a number of RES detection tools available

for running locally, including GIREMI (Zhang and Xiao, 2015),

RNAEditor (John et al., 2016), REDItools (Picardi and Pesole,

2013), RED (Sun et al., 2016), RES-Scanner (Wang et al., 2016) and

JACUSA (Piechotta et al., 2017). Note that all these tools require

the input of either complete or incomplete SNP annotations, and

most of them are not fully automated, requiring users to conduct

reads mapping and SNV calling; in addition, none of them can de-

tect hyper-RESs (Supplementary Table S2). Here we use U87MG

dataset to compare SPRINT with some of these tools for detecting

regular-RESs. The U87MG dataset includes the RNA-seq data of

U87MG ADAR knockdown sample (Bahn et al., 2012), which can

be used as a negative control to assess the false discovery rate (FDR)

of different methods. By assuming that all RNA editing sites (RESs)

detected in U87MG ADAR knockdown sample are false positives,

and assuming that a method detects comparable number of false

positive RESs in U87MG ADAR sample (because they have similar

sequencing depth), we can compute the FDR of a given method as

the ratio of the number of A-to-I RESs detected from U87MG

ADAR knockdown sample to the number of A-to-I RESs detected

from U87MG ADAR control sample (no more than 100%). As

RES-Scanner requires the use of paired DNA-seq data that are not

available for U87MG in the study of Bahn et al. (2012) [though the

DNA-seq data of U87 cell line has been released by a previous study

(Clark et al., 2010), this data has been generated using a different

sequencing platform and at low coverage], while we encounter diffi-

culties to run RED locally, we compare SPRINT with GIREMI,

RNAEditor, REDItools (de novo) and JACUSA (RRD) using

U87MG as a benchmark dataset (see Section 2 for details on running

these tools) (Table 1). Note that all these methods being compared

with SPRINT use complete SNP annotations. Because JACUSA

(RRD) detects RESs by detecting the differences between the SNV

called in paired RNA-seq data, its FDR cannot be calculated.

Among all methods reporting FDR, SPRINT achieves the lowest

FDR in all three categories (Alu, repetitive non-Alu and non-

repetitive regions: 3.2%, 4.5% and 0%, respectively) except for

GIREMI in Alu regions (0.9%). In Alu regions, although GIREMI

has a lower FDR than SPRINT does while REDItools (de novo)’s

FDR (3.6%) is close to SPRINT’s, the number of RESs detected by

both GIREMI (2152) and REDItools (628) is significantly much

lower than that by SPRINT (48 085). RNAEditor detects more num-

ber of RESs than SPRINT does in Alu, and repetitive non-Alu re-

gions, yet it has higher FDR, especially in repetitive non-Alu regions.

It’s worth noting that in non-repetitive regions, all the

methods being compared with SPRINT have much higher FDR

(53–100% FDR for the other methods, compared to 0% FDR by

SPRINT). Because the FDR of JACUSA is unavailable, we compare

its A-to-G rate with SPRINT’s. JACUSA detects less number of

RESs, and has lower A-to-G rate than SPRINT does, especially in re-

petitive non-Alu and nonrepetitive regions [SPRINT: 99.6%, 99.5%

and 87.8%; JACUSA (RRD): 94.7%, 39% and 20.8%]. We further

compare the RESs called by different methods, and find that many

RESs called by SPRINT are not found by the other methods

(Supplementary Fig. S7). By using U87MG as a benchmark dataset,

we conclude that SPRINT achieves lowest FDRs on detecting RESs

among the four methods. We also evaluate the computational speed

of different methods using U87MG. SPRINT spends much less timeT
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than RNAEditor, and is comparable to the other two methods in

terms of computational time (Supplementary Table S3). Reads map-

ping is the most time-costing step in SPRINT. Once reads mapping

is completed, less than half hour is needed for SNV calling and RES

calling. A binary executable version and a python package of

SPRINT along with install instructions are available for download-

ing at http://sprint.tianlab.cn/SPRINT/.

3.4 RNA editing across tissues and species
Here, we apply SPRINT to a recently published dataset (Ruiz-Orera

et al., 2015) that includes deeply sequenced RNA-seq data of brain,

liver, heart and testis from four species—human, chimpanzee, rhesus

and mouse (Section 2 and Supplementary Table S1). The A-to-G

rate of both regular and hyper RES is all above 95% in these sam-

ples (Supplementary Table S1), indicating that the RESs identified

by SPRINT in these samples are of high quality. In all four tissues of

the four species, regular A-to-I RESs occur most frequently in in-

tronic and intergenic regions, infrequently in 5’ UTR, and seldom in

CDS (Fig. 3a). The proportion of regular A-to-I RESs in 3’ UTR is

significant (3–32%) in both human and mouse, and varies in be-

tween tissues and ages. Though it is smaller (1–5%) and less variable

in chimpanzee and rhesus, this may be attributed to the incomplete

transcript annotations in these two species. In addition, there is a

significant enrichment of RESs in 3’ UTR for regular A-to-I RESs

that are common to all tissues for all four species (Fig. 3a). A-to-I

RESs is also highly enriched in 3’ UTR compared to randomly se-

lected ‘A’ sites in Alu regions (Fig. 3a). These lines of evidence thus

highlight the significance of A-to-I RESs in 3’ UTR. Hyper A-to-I

RESs have similar distributions to that of regular A-to-I RESs. We

then use Variant Effect Predictor (VEP, http://www.ensembl.org/

info/docs/tools/vep/) to annotate the potential coding consequences

of human CDS regular and hyper A-to-I RESs, and find the propor-

tion of missense variants is around 60% in all four tissues with vari-

ations (ranging from 60–67%) (Fig. 3c), suggesting that A-to-I RESs

might have great influence on protein translation, which have also

been reported by a previous study (Picardi et al., 2015). C-to-U

RESs show different distributions in between species, especially in

between mouse and human. For example, a significant proportion

of C-to-U RESs are in CDS in human; in contrast, they are mainly in

3’ UTR in mouse (Fig. 3a). Further inspection of the CDS C-to-U

RESs detected by SPRINT in human and chimpanzee reveals that

they mainly occur in mitochondria (Fig. 3b), which remains further

validation and investigation.

Previous studies (Bahn et al., 2012; Ramaswami et al., 2012)

have reported that the nucleotide before and after an A-to-I RES pre-

fers to be T and G, respectively. Here, we find such preferences be-

come more significant when either the read counts or the editing

ratio of A-to-I RESs increases (Fig. 3d, e). This tendency is observed

in all samples in this dataset (Supplementary Fig. S8a and b),

and by using the RESs identified by Ramaswami et al. (2012)

(Supplementary Fig. S8c). It’s worth noting that previous studies

typically used A-to-I RESs with higher read counts (e.g. 5) to derive

the nucleotide preference (Bahn et al., 2012). Here, even though we

do not find significant pattern of nucleotide preferences for RESs

with low read counts, there is no evidence that they may be noise,

given that these RESs also have high A-to-G rate (Supplementary

Fig. S4c and d) and that we have demonstrated the effectiveness of

SPRINT in detecting RESs by using ADARs knock out RNA-seq

data. Blanc et al. (2014) found that both A and T are preferred for

the nucleotide surrounding a C-to-U RES. Here, we find similar pat-

tern in mouse liver (the other samples are not analyzed because of

the lack of enough C-to-U RESs) and also in ad-Apobec-1 mouse

liver (Supplementary Fig. S8e). It has been reported that A-to-I RESs

are less conserved than their neighbor sites (Zhang and Xiao, 2015).

Fig. 3. RNA editing in different tissues of human, chimpanzee, rhesus and

mouse. (a) The proportions of different categories of regular A-to-I RESs (left),

hyper A-to-I RESs (middle) and C-to-U RESs (right) called by SPRINT in differ-

ent tissues of human, chimpanzee, rhesus and mouse. ‘wks’ refers to ‘weeks’.

(b) The number of CDS C-to-U RESs detected in different tissues of the four

species. (c) The fractions of potential coding consequences (e.g. missense,

synonymous, etc.) of CDS A-to-I RESs called by SPRINT in human. We used

Variant Effect Predictor (VEP, http://www.ensembl.org/info/docs/tools/vep/) to

annotate the potential coding consequences of human CDS regular and

hyper A-to-I RESs. (d) The preference for the nucleotide before (�1, upper)

and after (þ1, lower) a regular A-to-I RES for RESs with different editing

ratios. Here, the read depth of a RES is required to be greater than or equal to

five. The nucleotide preference is plotted using WebLogo(Crooks et al., 2004).

(e) Similar to (d) except that RESs with different read counts are investigated.

(f) The averaged phyloP conservation scores (Pollard et al., 2010) at different

positions relative to a regular A-to-I RES (left) or a hyper A-to-I RES (right) in

3’ UTR, with the position ranging from �1000 toþ1000 (upper) and from -20

toþ20 (lower). (The sequence patterns of A-to-I RESs in other categories can

be found in Supplementary Fig. S7). In (d–f), the A-to-I RESs used are from

human testis (25 weeks), because human testis has the most number of de-

tected A-to-I RESs among all tissues investigated in this study. (g) Similar to

(f), except that C-to-U RESs are investigated. The left and right sub-figures are

plotted using the C-to-U RESs identified from mouse liver (7–8 weeks) and

mouse ad-Apobec1 liver, respectively
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Here, we find similar conservation patterns for regular A-to-I RESs

in human and mouse (Fig. 3f and Supplementary Fig. S9).

Chimpanzee and rhesus are not analyzed here because of unavail-

able phyloP scores (Pollard et al., 2010). For C-to-U RESs, we find

in mouse liver that they are also less conserved than their neighbor

sites, though the nucleotides that are proximate to C-to-U RESs are

more conserved than those further away (Fig. 3g). Similar yet more

significant conservation pattern is found for C-to-U RESs in ad-

Apobec-1 mouse (Fig. 3g).

So far, we have analyzed regular and hyper A-to-I RESs separ-

ately. By normalizing the number of regular and hyper A-to-I RESs

using the total reads in each sample, we find they are almost linearly

positively correlated with each other (Fig. 4a). In addition, the num-

ber of regular and hyper A-to-I RESs are also linearly positively cor-

related at gene level (Fig. 4b and Supplementary Fig. S10).

Therefore, we combine them together when comparing the number

of A-to-I RESs across tissues and species. In general, primates have

many more A-to-I RESs [817.4–6057.5 RESs per one million (1 M)

reads] than mouse (45.9–471.5 per 1 M reads) has (Fig. 4c).

Considering that the normalized number of A-to-I RESs

varies during the development, as shown in the C.elegans data

(Supplementary Fig. S7b), we select the samples in chimpanzee, rhe-

sus and mouse that are at relatively similar age in order to conduct

comparison in between tissues. In all these three species, brain has

the highest normalized number of A-to-I RESs among the four tis-

sues investigated (Fig. 4c), especially in mouse (Supplementary

Table S1 and Supplementary Fig. S11). For example, the normalized

number of A-to-I RESs in mouse brain is over 10 times to that in

heart and 3.5 times to that in liver, in contrast to 5.1 and 1.7 in

chimpanzee, and 2.4 and 2.0 in rhesus, respectively. The above lines

of evidence highlight the importance of RNA editing in brain, espe-

cially for mouse.

3.5 RNA editing in embryonic mouse central nervous

system
We further apply SPRINT to the embryonic and adult mouse dataset

that includes the RNA-seq data from CnsE11half (11.5 days, Cns

refers to central nervous system), CnsE14, CnsE18, CbellumAdult

(adult cerebellum), FlobeAdult (adult frontal lobe), LiverE14,

LiverE18 and LiverAdult (adult liver) from the Mouse ENCODE

project [all strand-specific, poly (A)þ] (Supplementary Table S1 and

Section 2). The A-to-G rate of both regular and hyper RESs is 97%

in adult cerebellum and frontal lobe, and is above 90% in adult

liver. It is only above 80% in embryonic samples, which is because

the number of RESs found in these samples is much smaller than

that in adult cerebellum and frontal lobe (around 6–12 times

smaller). When the number of A-to-I RESs increases during the

development of embryonic CNS (Fig. 5a), the A-to-G rate also

increases. Different from embryonic CNS, the normalized number

of A-to-I RESs in embryonic liver even slightly decreases during the

development (Fig. 5a), though adult liver still has about two times

of A-to-I RESs to that in embryonic liver. For C-to-U RESs, the nor-

malized number does not change much during the development of

either embryonic CNS or liver, and is in similar range in between

embryonic and adult tissues (Supplementary Table S4). Consistent

with the increase of the number of A-to-I RESs, the expression level

of three ADARs (Adar, Adarb1 and Adarb2) all significantly in-

crease during the development of embryonic CNS (Supplementary

Table S5). In comparison, Adarb2 is not expressed during the

Fig. 4. The normalized number of A-to-I RESs across different tissues in the

four species. (a) The normalized number of regular A-to-I RESs versus the

normalized number of hyper A-to-I RESs for all samples investigated in this

study. The normalized number refers to the number of RESs per one million

reads. (b) The number of regular A-to-I RESs versus the number of hyper A-

to-I RESs for all genes in human testis (25 weeks). PCC refers to Pearson

Correlation Coefficient. R (version 3.2.2) is used to calculate PCC and p-value

with the command options of ‘cor.test (x, y, alternative¼’greater’)’. (c) The

normalized number of A-to-I RESs (the union of regular and hyper A-to-I

RESs) in different tissues of the four species. ‘wks’ refers to weeks

Fig. 5. RNA editing in embryonic and adult mouse tissues. (a) The normalized

number and (b) the proportions of different categories of A-to-I RESs, and (c)

the proportions of different categories of C-to-U RESs in mouse embryonic

and adult tissues. (d) The mean expression level change of newly edited

genes during the development of embryonic CNS (upper) and liver (lower).

The line segment represents the mean expression level changes [log2 (fold

change)] of newly edited genes (1822 and 1139 genes in CNS and liver, re-

spectively), while the null distributions are plotted by computing the mean

expression level change of randomly selected genes (the same number as

the newly edited genes) in CNS and liver (10 000 times of randomization)
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development of embryonic liver, and even though the expression

level of both Adar and Adarb1 increases, it’s much lower in embry-

onic liver than in embryonic CNS.

Next, we investigate the distribution of RESs in the development

of embryonic CNS and liver. We find the proportion of 3’-UTR A-

to-I RESs is very different in between embryonic CNS and liver

(3.8–4.4% for CNS, and 10.2–10.8% for liver), while it is similar in

between similar tissues (Fig. 5b), suggesting it may be tissue-specific.

In addition, A-to-I RESs that are common to all seven samples inves-

tigated here are significantly enriched in UTR, particularly in 3’

UTR (Fig. 5b). For C-to-U RESs, the proportion of 3’ UTR C-to-U

RESs significantly increases during the development of embryonic

liver, and almost all C-to-U RESs are in 3’ UTR in adult liver (Fig.

5c). The distributions of C-to-U RESs in embryonic CNS are not

investigated because of very small number of C-to-U RES in these

samples (Supplementary Table S4).

We identify genes that are under A-to-I editing only in a later de-

velopment stage of embryonic CNS, and inspect their expression

level change. We find that newly edited genes are often accompanied

by the elevation of gene expression levels (p-value significant by per-

mutation) (Fig. 5d). In contrast, this association is not observed in

embryonic liver (Fig. 5d). We further identify those genes that are

newly edited with at least 10 A-to-I RESs from CnsE11.5 to

CnsE18, and find they are significantly enriched in functions of ner-

vous system (e.g. GO: 0007268—synaptic transmission, GO:

0007611—learning and memory, etc.) (Supplementary Table S6),

suggesting that RNA editing might play important roles in the devel-

opment of CNS. For example, Grik2 whose expression level has a

fold change of 5.5 has 51 new A-to-I RESs in CNSE18. It encodes a

subunit of kainite glutamate receptors that are the predominant ex-

citatory neurotransmitter receptors in mammalian brain, and play

important roles in a variety of normal neurophysiologic processes

(Lanore et al., 2012; Li et al., 2009). Another example is Grin2a

that has 38 new A-to-I RESs and a fold-change of 4.7 in expression

level in CNSE18. This gene encodes a subunit of N-methyl-D-aspar-

tate (NMDA) receptors that are involved in long-term potentiation

in synaptic transmission (Lal et al., 2015; Turner et al., 2015;

Zhong et al., 2014). In comparison, those genes that are edited

throughout the development of CNS are enriched with more general

functions, such as GO: 0009057—macromolecule catabolic process,

GO: 0007049—cell cycle, etc.) (Supplementary Table S7). These

genes include Btrc that functioned in cell cycle checkpoints (Busino

et al., 2003; Jin et al., 2003), and Mad2l2 that is required by pluri-

potent embryonic stem cells (Pirouz et al., 2015), etc. It is therefore

likely that RNA editing may not only be of importance for CNS de-

velopment, but also be involved in embryonic cell development.

4 Discussion

Current methods on detecting RESs typically require the use of SNP

annotations to filter SNVs (Bahn et al., 2012; Ramaswami et al.,

2012; Zhang and Xiao, 2015). For organisms that do not have SNP

annotations available, matched DNA-seq data are currently needed

for filtering out SNPs, which are costly and cannot be generalized. It

is therefore highly desirable to have a method that detects RESs

without the need to filter out SNPs. In this study, we have developed

a novel method named SPRINT that identifies RESs by clustering

SNV duplets, bypassing the need of SNP annotations. The clustering

approach not only distinguishes RESs from SNPs, but also effect-

ively removes the one-read-count SNVs that are likely system errors,

allowing the utilization of all SNVs that significantly increases the

number of called RESs. The use of clustering is nothing new. For ex-

ample, RNAEditor implemented clustering only after SNPs have

been filtered out and an initial set of RESs have been identified,

making it still rely on the use of SNP annotations. However, the

introduction of SNV duplets is novel, and is based on the fact that

SNV duplets of SNPs and SNV duplets of RESs have very different

distributions that was not discovered before. This is the foundation

of SPRINT, and is the major reason why SPRINT is a novel method.

This approach has also been applied for detecting hyper-RESs, mak-

ing SPRINT a comprehensive tool for analyzing RNA editing. The

quality of RESs called by SPRINT is well demonstrated by their high

A-to-G rate in almost all samples analyzed in this study. In addition,

SPRINT’s effectiveness in detecting A-to-I and C-to-U RESs has

been validated by the significant reduction in the number of RESs

called from samples where genes encoding the respective editing en-

zymes are knockdown. Besides the SNP-free advantage over existing

methods, SPRINT is also able to identify significantly more number

of RESs than existing methods do (Porath et al., 2014; Ramaswami

et al., 2012; Zhang and Xiao, 2015; Zhao et al., 2015), and appears

to have lower FDR than the other methods by using U87MG as the

benchmark dataset. Finally, SPRINT has been fully automated to be

applicable to any RNA-seq data that have reference genome se-

quences available. As such, SPRINT should be of great use for accel-

erating the study of RNA editing. A website of SPRINT (http://

sprint.tianlab.cn/) has been constructed to store the RESs detected

by SPRINT in this study.

We have applied SPRINT to investigate RNA editing in four tis-

sues from human, chimp, rhesus and mouse, and also in mouse em-

bryonic and adult tissues. On the one hand, these applications have

demonstrated that SPRINT is applicable to any RNA-seq data with-

out the need of SNP annotations. On the other hand, besides con-

firming previous reports on RESs’ distributions, sequence and

conservation patterns in more conditions and more species (Bahn

et al., 2012; Blanc et al., 2014; Porath et al., 2014; Ramaswami

et al., 2012; Zhang and Xiao, 2015), we also obtain a number of

novel findings about RNA editing. First of all, we provide more lines

of evidence that 3’ UTR A-to-I RESs are likely of functional signifi-

cance, particularly its significant enrichment among the common

RESs in all four species. Secondly, we find the numbers of regular

A-to-I RESs and hyper A-to-I RESs are almost linearly positively

correlated with each other at both sample and gene level, suggesting

that they may not have mechanistic difference. Thirdly, we find that

in human a significant proportion of C-to-U RESs are in CDS, with

many located in mitochondria. In addition, C-to-U RESs are located

in more conserved regions than those nucleotides further way from

the RESs, suggesting that C-to-U RESs may play significant func-

tional roles. Fourthly, we find in all four species that brain is under

more extensive RNA editing than the other three tissues are, espe-

cially for mouse. Finally, we find that the number of A-to-I RESs sig-

nificantly increases during the development of mouse embryonic

CNS, while the newly edited genes in a later development stage are

not only coupled with the increase in expression level, but also are

significantly enriched in functions involved in the development of

CNS, suggesting that RNA editing plays an important role in the de-

velopment of CNS.

In SPRINT, we use BWA (Li and Durbin, 2009a,b; Li and

Homer, 2010) for reads mapping. It has been noted that different

mapping strategy has an effect on RNA editing detection (Picardi

and Pesole, 2013; Ramaswami et al., 2012). The use of splice-

aware aligners such as Tophat2 (Kim et al., 2013), may further im-

prove SPRINT’s performance. However, this may require signifi-

cant modifications on current workflow of SPRINT, as we will
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need to test the efficacy of different splice-aware aligners and ex-

plore how to merge (cluster) SNV duplets in a single transcript.

Nevertheless, as SPRINT is SNP-free, fully automated, excellent in de-

tecting RNA editing and applicable to a broad range of organisms, it

is already of great use for assisting in in understanding the mechan-

isms and functional roles of RNA editing. The addition of splice-

aware aligners in SPRINT and the extension to RNA-seq data with-

out available reference genome sequence will be explored in the future

development of SPRINT.
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