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Abstract
COVID-19 cases are increasing around the globe with almost 5 million of deaths. We propose here a deep learning model 
capable of predicting the duration of the infection by means of information available at hospital admission. A total of 222 
patients were enrolled in our observational study. Anagraphical and anamnestic data, COVID-19 signs and symptoms, 
COVID-19 therapy, hematochemical test results, and prior therapies administered to patients are used as predictors. A set of 
55 features, all of which can be taken in the first hours of the patient’s hospitalization, was considered. Different solutions 
were compared achieving the best performance with a sequential convolutional neural network-based model merged in an 
ensemble with two different meta-learners linked in cascade. We obtained a median absolute error of 2.7 days (IQR = 3.0) 
in predicting the duration of the infection; the error was equally distributed in the infection duration range. This tool could 
preemptively give an outlook of the COVID-19 patients’ expected path and the associated hospitalization effort. The pro-
posed solution could be viable in tackling the huge burden and the logistics complexity of hospitals or rehabilitation centers 
during the pandemic waves.

Keywords Artificial intelligence · Convolutional neural network · COVID-19 · Duration of infection · Prognostic models · 
Rehabilitation

1 Introduction

Since October 2020, almost 300 million people have been 
infected by SARS-CoV-2 with more than 5 million of deaths 
(World Health Organization, WHO, reports). It is well 
known that in severe cases, treatment in intensive care units 
is required. This can lead to overcrowding of hospitals and 
rehabilitation settings [1] that is currently posing a global 
burden to healthcare systems [2, 3]. As already investigated 
for other pathological conditions [4, 5], artificial intelli-
gence (AI) is being applied to extract predictive informa-
tion with the potential to revolutionize the approach to tackle 

COVID-19 [6, 7]. Prediction models, capable of correlating 
patients’ characteristics to the evolution traits of the disease 
and possible patients’ responses to it, can provide helpful 
support to the decision-making process in clinical environ-
ments [8–11].

For what concerns COVID-19 prognostic models, litera-
ture mainly focuses on mortality risk, assessing it at admis-
sion [11], after a week [12], or predicting the discharge 
setting [13]. To the extent of our knowledge, only two 
articles attempted to find a relation between length of stay 
and predictive features [14, 15]. Wang et al. [14] showed 
that patients in high risk and low risk (identified by using 
the features with most predictive power in their diagnostic 
model) had significant difference in length of stay. Qi et al. 
[15] instead targeted short-term hospital stay (< 10 days) and 
long-term hospital stay (> 10 days) and obtained a binary 
classification.

In many pathological contexts, the length of stay is often 
addressed as an outcome, considered both as an indirect 
index of severity of the disease and an essential data for hos-
pitals administration. However, especially during pandemic 
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outbreaks, length of stay appears to be highly impacted by 
external factors like personnel/bed availability and local dif-
ferences in hospital management rules. Focusing on infec-
tion duration looks as a promising solution in these regards, 
thanks to its capability to overcome length of stay limitations 
and keep at the same time the aforementioned duality trait. 
Up to our knowledge and to updated systematic reviews [16], 
no existing research assesses the specific problem of infec-
tion duration by means of data-driven regression models. 
This knowledge in our view could lead to an innovative tool 
to be implemented in electronic health record (EHR) allow-
ing for a significant advantage in the management of both 
clinical and administrative aspects for COVID-19 patients’ 
treatment. Indeed, it could ease the practitioner in the deliv-
ery of personalized care to patients as well as supporting 
management of beds, intensive care units, and ventilation 
units.

To fill this gap, starting from a dataset of 222 COVID-
19 patients treated in the Fondazione Don Gnocchi hospital 
network, we compared different machine learning solutions 
with the aim of predicting the duration of the infection. The 
resulting most performant solution was based on a convolu-
tional neural network (CNN) model (namely, CNN-core) and 
it was obtained by four steps: (1) training of the CNN-core, 
(2) combining the cores in an ensemble, (3) adding two sep-
arate meta-learners (logistic regression and fully connected 
neural network), and lastly, (4) voting among meta-learners 
predictions. The achieved accuracy (median infection dura-
tion absolute error of 2.7 days, IQR = 3.0 days) looks prom-
ising for the implementation of a decision support tool to be 
integrated with the EHR of the hospital network.

2  Methods

2.1  Study design and participants

An observational study was performed including 518 
patients who were discharged from 16 Fondazione Don 
Gnocchi centers involved in the COVID-19 patients’ care. 
Inclusion criteria were based on current or previous infec-
tion by SARS-CoV-2 virus at admission in hospital and 
thus all patients positive to COVID-19 (age ≥ 18 years) 
were enrolled in the study. All patients were diagnosed with 
COVID-19 strictly following WHO guidelines [17]. Positive 
cases were verified maximally every 10 days via molecu-
lar tests. Due to the high spectrum of cases, patients in the 
database were primarily classified into as follows: type 1, 
already positive to SARS-CoV-2 before admission; type 2, 
turned positive during their stay; type 3, hospitalized after 
the infection for rehabilitation purposes. Given that the tar-
get of this study was the estimation of the duration of the 
infection from hospital admission data, only type 1 patients 

were retained for further analyses (222 patients). These data 
referred to the first pandemic wave in Italy and were retro-
spectively acquired from April to September 2020.

Especially during the first pandemic wave, the emergency 
scenario and the lack of treatment protocols for an unknown 
disease played a role in increasing the heterogeneity among 
patients’ characteristics. For instance, an aspect of interest 
for our study was the time difference between the admission 
to the IRU and the first negative test with no subsequent 
positive ones (median 12 days, IQR = 20.5). These numbers 
gave us a further confirmation in targeting the infection 
duration as outcome, considering it as a more reliable and 
less regional-dependent proxy of hospitalization than the 
length of hospital stay. The infection duration, measured in 
days, was calculated as the difference between the date of 
the first positive molecular test and the date of the follow-
ing first negative one, without subsequent positives. The 
infection duration was finally calculated when at least two 
negative results were collected. Indeed, this variable hosts 
more general information with respect to the length of stay 
and that it can be more versatile. In fact, it can be applied 
independently of the differences in healthcare organizations 
in different regions/countries and independently from the 
specific emergency status of the healthcare system at the 
time of the recovery.

2.2  Data collection, preprocessing, and preliminary 
statistical analysis

The study protocol has been approved by the Ethical Com-
mittee of the IRCSS Fondazione Don Carlo Gnocchi the 
16/04/2020.

A structured data collection was designed on REDCap 
(Research Electronic Data Capture, Vanderbilt University, 
2021 West End Avenue, Nashville, TN 37,235, USA), an 
online-based software for database development. The data-
base was structured in a way to collect each evaluation or 
assessment in four distinct events: admission, during the 
recovery, discharge, and, only in the case of type 3 subjects, 
the acute phase of the disease. However, for specific data 
groups, such as the results of the diagnostic tools, it was 
given the disposition to collect information about any test 
repeated, independently on the events planned.

More than 800 features have been taken and the com-
plete dataset includes anagraphical data, symptoms and vital 
signs, hematochemical and hemogasanalysis values, instru-
mental data (RX, CT, EEG, etc.…), multiple assessments 
(cognitive, psychological, functional, and nutritional), and 
prior clinical data [18].

The median age of the 222 patients included in the 
study was 76 (IQR = 19) and the male was the 46% of the 
total dataset. The median infection duration was 31 days 
(IQR = 26) and the values fell in a range between 11 and 
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97 days (Fig. 1, panel A). An almost linear relationship 
between infection duration and number of molecular tests 
can be observed (Fig. 1, panel B).

Preliminary statistical analyses were carried out in SPSS 
(Vs 26, Chicago, SPSS Inc.). They concerned univariate 
analysis to understand the influence of each selected pre-
dictor with respect to the infection duration. In particular, 
Pearson correlations were applied with numerical variables, 
while the non-parametric Mann–Whitney test was applied 
for dichotomous variables. The data preprocessing was con-
ducted in Matlab (R2019b, The MathWorks, Inc., Natick, 
MA, USA) as well as the machine learning (ML) models. 
The deep learning (DL) models were written in Python 3.0 
(Python Software Foundation) using the TensorFlow library. 
Pseudonymized data can be made available upon request to 
researchers to validate and reproduce results.

For the comparison of different machine learning meth-
ods, we presented as touchstone the linear regression, a 
simple and interpretable model. To compare the different 
machine learning solutions proposed, median absolute errors 
of each solution were compared with the linear regression 
error on the same population by mean of Wilcoxon signed-
rank tests. Moreover, an effect size of this comparison was 
calculated as the ratio of negative differences between the 
measurements and the total numerosity.

2.3  Feature screening and dimensionality reduction

As it was already pointed out, the initial dataset was com-
posed by 829 features. Firstly, its dimensionality was 

reduced by keeping features taken in the first 8 h from 
admission and the ones with a fill percentage higher than 
the 30% of the column length (total subjects). Secondly, via 
a literature search of relevant correlates, we included sup-
ports, sign and symptoms, and clinical and hematochemical 
data. Furthermore, pharmacological therapies (both COVID 
related and non-COVID related) were included in the fea-
ture set given their availability in the dataset at the time of 
admission.

Missing data in the training, validation, and test sets were 
substituted by the mean (for numerical data) or the mode 
(for the categorical data) of the correspondent variable in 
the training set, reaching a full set of 55 features (Table 1).

A further reduction on data dimensionality was then 
achieved by principal component analysis (PCA). Five prin-
cipal components were retained yielding a variance > 99%. 
The same PCA transform was then applied to the test set.

2.4  Model architecture

In order to test different approaches to the problem, ML 
(linear regressions, random forests) and DL (convolutional 
neural network) models were compared. We tackled the 
problem with an approach of growing complexity. Regular-
ized linear regression and random forests were considered 
because of the simpler interpretability of the model, which 
is a non-negligible aspect in the clinical practice. More com-
plex architectures (CNN) were subsequently developed to 
increase accuracy and reliability of the tool.

Fig. 1  Distribution of the age with respect to infection duration and their respective box-plots
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Table 1  Predictors used in the final model, before entering the PCA analysis. aCumulative Illness Rating Scale (CIRS), bCOVID-19 therapy pre-
scribed prior to admission. Numerical features are italicized while categorical features are reported with regular font 

Data group Feature name Median and IQR (numerical) 
or relative positive frequency 
(binary)

Anagraphical data (3) Age [years] 75.5 [IQR = 22]
Sex [1 female] 45.79%
RSA [1 if patients comes from residential care unit] 0.52%

Admission clinical scales (3) ICD (number of events) 3 [IQR = 2]
CIRS severity indexa 1.4 [IQR = 0.4]
CIRS comorbidity index 2 [IQR = 2]

Admission signs and symptoms (2) Fever 58.42%
Dyspnea 44.74%

Admission supports (8) Invasive mechanical ventilation (IMV) 36.84%
O2 therapy 56.32%
IMV or  O2 therapy 62.22%
Extracorporeal membrane oxygenation (ECMO) 1.58%
Urinary catheter 42.63%
Tracheal cannulation 13.68%
Artificial alimentation 14.21%
Venous cannulation 33.68%

COVID-19  therapyb (17) Favipiravir 8.42%
Avigan 7.59%
Tocilizumab 2.11%
Remdesivir 37.89%
Lopinavir-ritonavir association 20%
Darunavir 65.79%
Cobicistat 65.79%
Ruxolitinib 0.52%
Ribavirin 1.05%
Hydroxychloroquine 40.52%
Azithromycin 0.52%
Colchicine 3.16%
Heparin 66.32%
Enoxaparin sodium 0.52%
Baricitinib 36.84%
Corticosteroids 62.11%
Other antibiotics different from azithromycin 27.90%
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The random forest model is an ensemble learning 
method using a regression tree as template learner [19, 
20]. In such model, a set of binary decision trees are 
merged in a single ensemble classifier and the input 
features of each tree are subsamples of the available fea-
tures. To define the model, both the minimum number 
of leaf node observations in each tree and the number 
of predictors to sample  (nPTS) at each node need to be 
selected.

CNNs are a type of neural network capable of hier-
archically assembling more structured patterns using 
simpler ones [21]. The CNN-core model we choose was 
composed by sequential layers of different type (Fig. 2a). 
Together with the 1-D convolutional layers, 1-D max 
pooling layers were implemented. The aim was to reduce 
data dimensionality by combining the outputs of neuron 
clusters at the prior layer into a single neuron in the sub-
sequent layer. It has been previously demonstrated that 

such a convolution-pooling, fully connected structure, can 
successfully process both images [22] and one-dimen-
sional data [23, 24].

2.5  Training and testing

Each model was trained using as input the PCA-trans-
formed data and the infection duration as target. A train-
validation-test split was done to validate the model over a 
different number of subjects and parameters. The valida-
tion strategy adopted was K-fold validation with Nfolds = 5. 
The test portion removed corresponds to 15% of the sam-
ples (33 subjects); hence, each fold of the cross-validation 
was composed by 37 or 38 subjects.

Additionally, the whole process was repeated 10 times: 
the obtained aggregated results were reported to reduce 
the effect of randomized parameter initialization (CNN) 
and randomized test split.

Table 1  (continued)

Data group Feature name Median and IQR (numerical) 
or relative positive frequency 
(binary)

Therapy prior to COVID-19 (17) ACE inhibitors 11.05%

Sartans 7.37%

Antimineralocorticoid 11.58%

Antiplatelet 19.47%

Anticoagulant 35.79%

Statin 26.84%

Beta-blockers 26.32%

Calcium channel blockers 1.05%

Amiodarone 1.05%

Non-steroidal anti-inflammatory drug 3.16%

Steroid therapy 1.58%

Levodopa 18.42%

Immunosuppression 0%

Anxiolytic-antidepressant 33.68%

Proton-pump inhibitor 6.84%

Vitamines 3.68%

Other therapies 3.16%
Hematochemics (5) White blood cells [n. samples × 109/l] 6.4 [IQR = 3.26]

Neutrophils [n. samples × 109/l] 4.2 [IQR = 2.43]
Lymphocytes [n. samples × 109/l] 1.46 [IQR = 0.90]
Hemoglobin [g/l] 97.5 [IQR = 106.45]
Platelets [n. samples × 109/l] 292 [IQR = 158]
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2.6  Hyper‑parameter optimization

In the ML models, the regularization parameter λ for the 
linear regression, the complexity (depth) of the trees, and the 
number of predictors to sample at each node for the random 
forest were optimized by grid search.

For the CNN, given the large number of hyper-parameters 
to be chosen, a more complex grid search was conducted.

The involved parameters were the adaptive moment esti-
mation (Adam) optimizer learning rate lr , the number of 
neurons in the first and second fully connected layer nneurons,1 
and nneurons,2 , the number filters in the two convolutional lay-
ers nf ilters,1 and nf ilters,2 , and the number of training epochs 
nepochs . The neuron activation functions were chosen to be 
Rectified Linear Units (ReLUs) with fReLU(a) = max(0, a). 
The third and last fully connected layer (FCL) uses a linear 
activation function fLin(a) = a.

The range of each variable is shown in Table 2 and for 
each permutation ( Nperm = 4 × 5 × 4 × 3 × 3 × 4 = 2880 dif-
ferent model configurations), the optimization process was 
run 5 times per configuration and the result aggregated. The 
final configuration was chosen as the one of the model with 
minimum validation error.

2.7  Ensembling

In order to improve the performance of the CNN-core model, 
a stacked ensemble learning approach was implemented. It 
was done by concatenating the individual CNN-core mod-
els ( NCoreCNN = 5 ) predictions into a second feature vector 
(Fig. 2a). The individual CNN-core models differed only for 
starting weight initialization and a different random number 
generator seed in the Adam stochastic optimization. Xcat,1 
will be fed to the learning stage 2, also called meta-learner, 
in order to reduce the inductive training bias and the effect 
of random weight initialization of the single sub-models on 
test predictions.

As meta-learner, two different multi-layer perceptron 
were implemented: (i) a logistic regression (CNN-LR) and 
(ii) a fully connected neural network (CNN-MLP).

The meta-learner (stage 2) training followed the train-
ing of each of the models in the learning stage 1. For the 
logistic regression (LR), the learning stage 1 weights were 
kept constant to the final weights of the respective training 
phase during training of the meta-learner, since no back-
propagation training is required for logistic regressions. 
Conversely, while training the MLP, the learning stage 1 

weights were re-trained with starting weights set equal to 
the final weights of their previous training phase (Fig. 2b). 
The reason behind this is that the logistic regression does 
not need a back-propagation training while the MLP does.

2.8  Voting

Unlike meta-learning, during a voting process, each model 
output is considered with the same weight. In regression 
tasks, we can increase the performance of the overall model, 
balancing the offsets of the single sub-models, by averaging 
among their predictions [25].

Hence, CNN-MLP and CNN-LR predictions were aver-
aged to obtain the final result via ypred =

ypred,CNN−MLP+ypred,CNN−LR

2
 . 

Furthermore, to improve the re-training and the voting pro-
cess, hence reduce each of the CNN-core models bias, we 
removed from each of the 5 core test predictions the median 
prediction error of its training set. Then, it was fed again 
to the meta-learning stage 2. This resulted in an improved 
approach allowing the subsequent procedures (ensembling, 
meta-learning, and voting) to yield more accurate estimates.

3  Results

From the preliminary biostatistical analyses, Pearson cor-
relations with the infection duration were found to be sta-
tistically significant for the Cumulative Illness Rating Scale 
(CIRS) [26] declined as severity and comorbidity indexes 
(p-values respectively of 0.001 and 0.003) (Table 1, Fig. 3).

For what concerns features related to therapies, patients 
with an ongoing therapy with tocilizumab (p = 0.033), vita-
mins (p = 0.02), anticoagulants (p = 0.044), calcium channel 
blockers (p = 0.019), and anxiolytic-antidepressant (weak, 
p = 0.054) showed a statistically significant longer duration 
of the infection. Finally, concerning vital support aids, only 
the presence of the tracheal cannula showed weak associa-
tion with a p-value of 0.053 (Fig. 3).

For what concerns the automatic prediction of the out-
come, after optimizing hyper-parameters for all the tested 
methodologies (Table 2), the linear regression resulted in 
a median absolute error of 13.23 days (IQR = 10.19), while 
the random forest, with 15.39 days (IQR = 13.95), performed 
slightly worst (Fig. 4). The grid-search for the CNN-core 
hyper-parameter optimization resulted in the best configura-
tion having train, validation (fivefold), and test median AE 
of 11.12, 11.35, and 9.63 days respectively.

After combining 5 CNN-core models in a stacked ensem-
ble, adding two meta-learners (LR and MLP) and voting 
among the two models, the median test error resulted to be 
4.67 days (IQR = 5.25). However, it can be noticed that the 
predictions in this case resulted skewed from the ideal out-
put (Fig. 5, orange markers). Detrending the CNN-core test 

Fig. 2  Panel (a): CNN-core model and its integration in CNN-MLP 
and CNN-LR ensembles involving MLP and LR meta-learners (green 
and blue boxes respectively). Panel (b): pseudo-code for the training 
of the metalearners. Panel (c): pseudo-code of the validation and test-
ing phase

◂
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predictions by removing the respective train error before the 
ensembling and voting processes solved the problem leading 
to a median test error of 2.5 days (IQR = 1.92).

The solution based on “CNN ensemble + voting” 
and the one including “CNN detrended + ensem-
ble + voting” showed significantly improved accura-
cies with respect to the linear regression, as confirmed 
by the Wilcoxon signed rank test (Fig. 5). In the com-
parison between the random forest and the CNN-core 
model, no significant differences in performance were 
obtained. Moreover, the effect sizes of the CNN model 
after voting (0.78) and of the detrended CNN model 
after voting (0.94) statistically confirm the improve-
ment of our model with respect to the linear regression 
(p < 0.001).

The aggregated results after the repetition of the pro-
cedure with the same hyper-parameters multiple times 
( Nrun = 10 ) are summarized in Fig. 5. The median error 
of 2.7 days is very similar to the one obtained with only 
one run (2.5), but the IQR is higher (3.0 days for 10 runs 
compared to 1.9 for 1 run). The determination coeffi-
cient ( R2 ), calculated between real and predicted values, 
was positively impacted by both ensembling/voting and 
detrending procedures, reaching R2 = 0.91 for the final 
solution.

Table 2  Grid values for the optimization of the ridge linear regres-
sion (A), random forest (B), and convolutional NN (C). Subscripts 
refer respectively to the FCL layers (for the number of neurons) and 
to the convolutional layers (for the number of filters). The output FCL 
layer is a single-output neuron, being this a single-output regression

Optimized variable Search range Best A

λ [0–10] with step 0.1 1.1
Optimized variable Search range Best B
nPTS [1,5,50,100] 5
LSmin [1,5,10,15,20] 20
Optimized variable Search range Best C
l
r

[0.00001, 0.0001,0.01,0.1] 0.001
nneurons,1 [32,64,128,256,512] 256
nneurons,2 [8,32,64,128] 128
nf ilters,1 [16,32,64] 32
nf ilters,2 [12,32,64] 64
nepochs [5,10,20,50] 5

Fig. 3  Graphical representation of the infection duration versus significant variables. Results from the CIRS severity and comorbidity index cor-
relation with infection duration are reported in the upper panels while group comparisons are reported in the middle and lower panels

466



Medical & Biological Engineering & Computing (2022) 60:459–470

1 3

4  Discussion

In this study, a predictive model for the duration of SARS-
CoV-2 infection in hospitalized patients was investigated 
and validated on data from 222 patients. Classical machine 
learning algorithms, such as optimized linear regressions 
and random forests, resulted in performances not fully 

satisfying for this problem. However, non-linear models 
resulted to significantly improve the prediction accuracy. 
Indeed, on our dataset, a model of increased complexity is 
needed for an accurate prediction of the clinical outcome 
at the expense of a reduced interpretability. Our cross-val-
idation results confirm that, by means of data taken in the 
first 8 h from patients’ admission, an accurate prediction 

Fig. 4  Box plot of the absolute 
error (days). The CNN result is 
referred to the CNN-core, while 
the CNN after voting refers to 
the model after being combined 
in the ensemble/meta learning 
step and the voting procedure 
(with no detrending). The CNN 
detrended + voting plot cor-
responds to the final result with 
detrending, preceding ensem-
bling, and voting (absolute test 
error calculated on ypred after 
voting between CNN-MLP and 
CNN-LR)

Fig. 5  Left panel: Scatter plot 
of predicted infection duration 
with respect to the real value. 
Values obtained by aggregating 
together the output of 10 differ-
ent runs of the procedure with 
fixed hyper-parameters. Results 
obtained with three different 
methods. Right panel: Absolute 
prediction error (calculated 
from the 10 different run 
aggregated together) of the best 
performing solution (green dots 
in the left panel)
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(median error < 3 days) of the duration of the infection is 
feasible.

This resulted to be a significant improvement with respect 
to the linear regression. Furthermore, we presented results 
of the steps through the development of the CNN based 
final model, confirming that an increased model complex-
ity can be reached with simple techniques, as ensembling 
and voting.

During a time in which a complex pandemic seems still to 
affect importantly healthcare services, a prognostic predic-
tion tool can support clinical decision in hospitals or sani-
tary structures by providing data-driven elements for a better 
time planning and hospital organization [27–29].

As already stated, we focused on predicting the infec-
tion duration. Up to our knowledge, there is not a previous 
study involving data-driven regression models targeting the 
infection duration for COVID-19 or any other illness. Some 
similar solutions reported in literature concern the length of 
stay estimation (Table 3). Nemati et al. [30], by means of 
survival analysis, targeted the in-hospital length of stay for 
COVID-19 patients, showing how the discharge probability 
reaches 1 after ~ 27 days.

Qi et  al. [15], instead, focused on binary outputs as 
short- and long-term hospital stay (area under the curve, 
AUC = 0.97 ). By translating our best-performing regression 
solution in a similar binary classifier using the target median 
(31 days) as the threshold, we achieved an AUC of 0.98 . 
Ebinger et al. [31] similarly classify patients according to a 
LoS threshold set equal to 8 days obtaining an AUC = 0.819. 
Lastly, Chiari et al., starting from more than 1000 patients 
and multimodal sources (blood exams and clinical vari-
ables), obtained a mean absolute error of 4.11  days in 

predicting LoS [32]. The latter manuscript presents an 
internally validated model, trained using a dataset with 
median LoS of 14 days, using data acquired up to the first 
8 days after admission. Finally, Setti et al. developed a linear 
kernel-based support vector for regression targeting post-
COVID rehabilitation LoS [27]. The model, trained on data 
from the first pandemic wave, was tested with data from the 
second pandemic wave achieving a median absolute predic-
tion error of ~ 7 days. Regression models targeting length of 
stay in specific wards (MAE ~ 1 days, range: 2–7 days [33]) 
and in emergency unit (RMSE = 13.35 days [34]) show the 
complexity this prediction, by means of regression methods. 
Even if the comparison is not entirely fair, since our patient 
spectrum is narrower (only COVID-19 with respect to the 
heterogeneity of patients in emergency unit), we achieved a 
significant decrease in the prediction error.

Some relevant limitations to our work need a further dis-
cussion. In addition to the low interpretability of the model, 
another limit is that the infection duration could be altered 
by the advent of new therapies and treatments or by the dif-
fusion of SARS-CoV-2 variants. As soon as such informa-
tion will be available, a redefinition of the solutions will be 
necessary.

Another limitation is that our dataset was acquired in hos-
pitals, involving symptomatic patients only. In this regard, 
given the simple nature of input features, it is reasonable 
to assume that by extending the pool of available data to 
the overall population, a general solution could be achieved. 
Still, the cohort heterogeneity for what concerns the dura-
tion of infection (from ~ 10 days up to ~ 80 days) is a point 
in favor of the generalizability of the results that could 
be improved by further patients’ stratification on a larger 

Table 3  Summary of literature findings on predicting COVID-19 length of stay compared with our solution

Training and 
validation (# 
patients)

Test-
ing (# 
patients)

Outcome Results

Nemati et al. [30] 1182 – Discharge-time probability (survival analy-
sis)

Discharge probability = 1 after ~ 27 days. 
C-index from Stagewise GB = 71.47%

Qi et al. [15] 31 – Short- and long-term hospital stay 
(≤ 10 days)

Data at admission, AUC = 0.97 (95% CI 
0.83–1)

Ebinger et al. [31] 772 193 Short- and long-term hospital stay (≤ 8 days) Models trained on hospital day 1–2-3. Increas-
ing accuracies over time with an accuracy of 
0.765 (AUC = 0.819) if trained on day 3

Chiari et al. [32] 524 132 Length of stay Models trained on hospital day 2–4-6–8. Best 
results trained after 8 hospitalization days 
with a mean absolute error of 4.11 days

Setti et al. [27] 62 25 Length of stay, post-COVID rehabilitation Data taken in the first week from admission to 
rehabilitation, median test error of 7.04 days 
[IQR = 10.7]

This study 189 33 Infection duration Data taken in the first week from admission 
resulted in a test median absolute error of 
2.7 days [IQR = 3.0]
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database. Lastly, we have to acknowledge that a slight under-
estimation of the number of intermediate positive molecular 
tests performed on each patient may have been possible. This 
was primarily due to two concurrent factors, the first being 
the excessive burden on the healthcare facilities of the first 
pandemic wave and the second resulting from the fact that 
inferences on intermediate testing were not the main objec-
tive of the study.

Indeed, a strength of this model is that it is developed 
on very simple and accessible data, mostly available in the 
clinical routine and easily collectable in a digital form. The 
integration of such a model into the clinical workflow can 
be straightforward, through a simple graphical user inter-
face. Even non-medical personnel can transfer the requested 
data into the tool, right after the admission, and obtain an 
estimate of the duration of the infection. This allows us to 
consider our tool to be “low cost” for the hospital, having at 
the same time an accuracy level in the estimation of infection 
duration which is clinically relevant.

5  Conclusions

In conclusion, we reported the development and validation 
of a predictive model based on data collected from Fondazi-
one Don Gnocchi centers (Italy) during the first COVID-19 
pandemic wave. This work confirms that deep learning and 
machine learning can be viable tools for predicting clini-
cal outcome in order to support the clinical decision-mak-
ing processes. Given the simple measurement of the input 
data, the model results to be easily translatable into clinical 
practice.

Further work will aim to perform an external prospective 
validation and to perform a sensitivity analysis of the predic-
tion with respect to COVID-19 therapies and SARS-CoV-2 
variants. To bring the finding of the study into clinical prac-
tice, a user-friendly software is currently under development 
for future integration in the clinical daily practice.

Glossary

IQR  Interquartile range
AUC   Area under the curve
MAE  Mean absolute error
RMSE  Root mean squared error
AI  Artificial intelligence
CNN  Convolutional neural network
LR  Logistics regression
MLP  Multi-layer perceptron
FCL  Fully connected layer
PCA  Principal component analysis
EHR  Electronic health record

GUI  Graphical user interface
CT  Computed tomography
EEG  Electroencephalogram

Funding The study was supported by the Department of Excellence 
in Robotics & AI, Scuola Superiore Sant’Anna and the Italian neu-
roscience and neurorehabilitation research hospitals network (“Rete 
IRCCS delle Neuroscienze e della Neuroriabilitazione”) which funded 
the study jointly with the “Ricerca corrente RC2020 program” and 
the 5 × 1000 funds AF2018: “Data Science in Rehabilitation Medi-
cine” AF2019: “Study and development of biomedical data science 
and machine learning methods to support the appropriateness and the 
decision-making process in rehabilitation medicine” by the Italian 
Ministry of Health.

References

 1. De Biase S, Cook L, Skelton DA, Witham M, ten Hove e R (2020) 
The COVID-19 rehabilitation pandemic. Age Ageing 49(5): 696–
700. https:// doi. org/ 10. 1093/ ageing/ afaa1 18

 2. Xie J et al (2020) Critical care crisis and some recommendations 
during the COVID-19 epidemic in China. Intensive Care Med 
46(5):837–840

 3. Arabi YM, Murthy S, Webb S (2020) COVID-19: a novel corona-
virus and a novel challenge for critical care. Intensive Care Med 
46(5):833–836

 4. LeBlanc M, Crowley J (1995) A review of tree-based prognostic 
models. Cancer Treat Res 75:113–124. ISSN: 09273042

 5. Koutarou Matsumoto et al (2020) Stroke prognostic scores and 
data-driven prediction of clinical outcomes after acute ischemic 
stroke, pp. 1477–1483. Stroke. ISSN: 15244628

 6. Leeuwenberg AM,   Schuit E (2020) Prediction models for 
COVID-19 clinical decision making. The Lancet Digital Health 
2(10):496–497. ISSN: 25897500 

 7. Siddique Latif et al (2020) Leveraging data science to combat 
COVID-19: a comprehensive review. IEEE Transactions on Arti-
ficial Intelligence, Early Access

 8. Nguyen P, Tran T, Wickrmasinghe N, Venkatesh S (2016) Deepr: 
a convolutional net for medical records. arXiv

 9. Yu C, Fei Wang F, Ping Zhang P, Jianying Hu J (2016) Risk pre-
diction with electronic health records: a deep learning approach. 
SDM

 10. Liu S, See KC, Ngiam KY, Celi LA, Sun X, Feng e M (2020) 
Reinforcement learning for clinical decision support in critical 
care: comprehensive review. J Med Internet Res 22(7):e18477, 
lug. https:// doi. org/ 10. 2196/ 18477

 11. Liu Q, Fang X, Tokuno S, Chung U, Chen X, Dai X, Liu X, Xu 
F, Wang B, Peng P (2020) A web visualization tool using T cell 
subsets as the predictor to evaluate COVID-19 patient’s severity. 
PLoS ONE 15(9):e0239695. https:// doi. org/ 10. 1371/ journ al. pone. 
02396 95

 12. Luke Moore Ahmed Abdulaal, Aatish Patel, Esmita Charani, 
Sarah Denny, Nabeela Mughal (2020) Prognostic modeling of 
COVID-19 using artificial intelligence in the United Kingdom: 
model development and validation. J Med Internet Research

 13. Liu Y-P et al (2020) Combined use of the neutrophil-to-lympho-
cyte ratio and CRP to predict 7-day disease severity in 84 hospital-
ized patients with COVID-19 pneumonia: a retrospective cohort 
study. Ann Transl Med 8(10):635–635. https:// doi. org/ 10. 21037/ 
atm- 20- 2372

469

https://doi.org/10.1093/ageing/afaa118
https://doi.org/10.2196/18477
https://doi.org/10.1371/journal.pone.0239695
https://doi.org/10.1371/journal.pone.0239695
https://doi.org/10.21037/atm-20-2372
https://doi.org/10.21037/atm-20-2372


Medical & Biological Engineering & Computing (2022) 60:459–470

1 3

 14. Wang S et al (2020) A fully automatic deep learning system 
for COVID-19 diagnostic and prognostic analysis. Eur Respir 
J 56(2):2000775, ago.   https:// doi. org/ 10. 1183/ 13993 003. 
00775- 2020

 15. Qi X, et al (2020) Machine learning-based CT radiomics model 
for predicting hospital stay in patients with pneumonia associated 
with SARS-CoV-2 Infection: a multicenter study», Infectious Dis-
eases (except HIV/AIDS), preprint. https:// doi. org/ 10. 1101/ 2020. 
02. 29. 20029 603

 16. Syeda HB et al (2021) Role of machine learning techniques to 
tackle the COVID-19 crisis: systematic review. JMIR Med Inform 
9(1):e23811

 17. World Health Organization (2020) Clinical management of severe 
acute respiratory infection when novel coronavirus (2019-nCov) 
infection is suspected: interim guidance. Available at: https:// apps. 
who. int/ iris/ handle/ 10665/ 33089 318

 18. Arienti C, Campagnini S, Brambilla L, Fanciullacci C, Lazzarini 
S, Mannini A, Patrini M, Carrozza M (2021) The methodology of 
a “living” COVID-19 registry development in a clinical context. 
J Clin Epidemiol 142. https:// doi. org/ 10. 1016/j. jclin epi. 2021. 11. 
022

 19. Breiman L (1998) Arcing classifier. Ann Stat 26(3):801–849
 20. Breiman L (2001) Random forests. Mach Learn 45:5–32
 21. Fukushima K (1998) Neocognitron: a hierarchical neural network 

capable of visual pattern recognition. Neural Netw 1(2):119–130
 22. Khan A, Sohail A, Zahoora U, Qureshi e AS (2020) A survey of 

the recent architectures of deep convolutional neural networks. 
Artif Intell Rev 53(8):5455–5516.  https:// doi. org/ 10. 1007/ 
s10462- 020- 09825-6

 23. Malek S, Melgani F, Bazi  e (2018) One-dimensional convolu-
tional neural networks for spectroscopic signal regression: fea-
ture extraction based on 1D-CNN is proposed and validated. J 
Chemom 32(5):e2977. https:// doi. org/ 10. 1002/ cem. 2977

 24. Zhao J, Mao X, Chen e L (2019) Speech emotion recognition 
using deep 1D & 2D CNN LSTM networks. Biomed Signal Pro-
cess Control 47:312–323. https:// doi. org/ 10. 1016/j. bspc. 2018. 08. 
035

 25. Cruz RMO, Sabourin R, Cavalcanti e GDC (2014) On meta-learn-
ing for dynamic ensemble selection», in 2014 22nd International 
Conference on Pattern Recognition, Stockholm, Sweden, ago. 
1230–1235. https:// doi. org/ 10. 1109/ ICPR. 2014. 221

 26. Linn MW, Linn BS, Gurel L (1968) Cumulative Illness Rating 
Scale. J Am Geriatr Soc 622–626

 27. Setti E, Liuzzi P, Campagnini S, Fanciullacci C, Arienti C, Patrini 
M, Mannini A, Carrozza MC (2021) Predicting post COVID-19 
rehabilitation duration with linear kernel SVR. IEEE EMBS 
International Conference on Biomedical and Health Informat-
ics. https:// doi. org/ 10. 1109/ BHI50 953. 2021. 95086 02

 28. Mannini A, Hakiki B, Liuzzi P, Campagnini S, Romoli A, Draghi 
F, Macchi C, Carrozza MC (2021) Data-driven prediction of 
decannulation probability and timing in patients with severe 
acquired brain injuries. Computer Methods and Programs in Bio-
medicine 209(4):106345. https:// doi. org/ 10. 1016/j. cmpb. 2021. 
106345

 29. Shamout F, Zhu T, Clifton D (2020) Machine learning for clinical 
outcome prediction. IEEE Rev Biomed Eng. 14:116–126

 30. Nemati M, Ansary J, Nemati e N (2020) Machine-learning 
approaches in COVID-19 survival analysis and discharge-
time likelihood prediction using clinical data. Patterns 
1(5):100074. https:// doi. org/ 10. 1016/j. patter. 2020. 100074

 31. Ebinger J, Wells M, Ouyang D, Davis T, Kaufman N, Cheng S, 
Chugh S (2021) A machine learning algorithm predicts dura-
tion of hospitalization in COVID-19 patients. Intell Based Med 
5:100035. https:// doi. org/ 10. 1016/j. ibmed. 2021. 100035

 32. Chiari M, Gerevini AE, Maroldi R, Olivato M, Putelli L, Serina 
I (2021) Length of stay prediction for Northern Italy COVID-19 
patients based on lab tests and X-ray data. Pattern Recognition. 
ICPR International Workshops and Challenges. https:// doi. org/ 10. 
1007/ 978-3- 030- 68763-2_ 16

 33. P.-F. (Jennifer) Tsai et al (2016) Length of hospital stay predic-
tion at the admission stage for cardiology patients using artificial 
neural network. J Healthc Eng 1–11. https:// doi. org/ 10. 1155/ 2016/ 
70354 63

 34. Stone K, Zwiggelaar R, Jones P, Parthaláin e NM (2020) Predict-
ing hospital length of stay for accident and emergency admissions. 
In Advances in computational intelligence systems, vol. 1043, 
Z. Ju, L. Yang, C. Yang, A. Gegov, e D. Zhou, A c. di Cham: 
Springer International Publishing, pp 283–295

 35. PL is a PhD student at Fondaz. Don Gnocchi and Scuola 
Sant’Anna. With Biomed. Eng. bachelor and master in Neurom. 
Control, he works on cerebellar networks and ML for clinical 
outcome prediction

 36. SC is a PhD student at Fondaz. Don Gnocchi and Scuola 
Sant’Anna. She had her bachelor in Mechatronics Eng. and master 
in Bionics Eng. Her interests are in ML and robotics in rehabilita-
tion field

 37. CF is a Psychologist, PhD, Clinical Trials Unit coordinator at 
IRCCS Fondaz. Don Gnocchi Florence, she monitors experimen-
tal protocols in central-southern area, according to ICH-GCP

 38. CA is a PhD, Coordinator of Cochrane Rehabilitation and of the 
Clinical Trials Unit at IRCCS Fondazione Don Gnocchi-North 
Area. She works on CTs methodology in rehabilitation research

 39. MP is a researcher at Fondazione Don Carlo Gnocchi and a Gen-
eral Practitioner. Since 2018, he has been part of Cochrane Reha-
bilitation Headquarters where he followed several projects

 40. MCC is Prof. of Industrial Bioeng. at Scuola Sant’Anna coordi-
nating the NeuroRobotics Area and President of CNR (Italian 
National Council of Research)

 41. AM is Research Engineer at IRCCS Fondaz. Don Gnocchi and 
affiliate with Scuola Sant’Anna. His interests cover machine learn-
ing methods for signal processing and clinical outcome prediction

Publisher's note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

470

https://doi.org/10.1183/13993003.00775-2020
https://doi.org/10.1183/13993003.00775-2020
https://doi.org/10.1101/2020.02.29.20029603
https://doi.org/10.1101/2020.02.29.20029603
https://apps.who.int/iris/handle/10665/33089318
https://apps.who.int/iris/handle/10665/33089318
https://doi.org/10.1016/j.jclinepi.2021.11.022
https://doi.org/10.1016/j.jclinepi.2021.11.022
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.1007/s10462-020-09825-6
https://doi.org/10.1002/cem.2977
https://doi.org/10.1016/j.bspc.2018.08.035
https://doi.org/10.1016/j.bspc.2018.08.035
https://doi.org/10.1109/ICPR.2014.221
https://doi.org/10.1109/BHI50953.2021.9508602
https://doi.org/10.1016/j.cmpb.2021.106345
https://doi.org/10.1016/j.cmpb.2021.106345
https://doi.org/10.1016/j.patter.2020.100074
https://doi.org/10.1016/j.ibmed.2021.100035
https://doi.org/10.1007/978-3-030-68763-2_16
https://doi.org/10.1007/978-3-030-68763-2_16
https://doi.org/10.1155/2016/7035463
https://doi.org/10.1155/2016/7035463

	Predicting SARS-CoV-2 infection duration at hospital admission:a deep learning solution
	Abstract
	1 Introduction
	2 Methods
	2.1 Study design and participants
	2.2 Data collection, preprocessing, and preliminary statistical analysis
	2.3 Feature screening and dimensionality reduction
	2.4 Model architecture
	2.5 Training and testing
	2.6 Hyper-parameter optimization
	2.7 Ensembling
	2.8 Voting

	3 Results
	4 Discussion
	5 Conclusions
	References


