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ABSTRACT

Background: Naringenin and its glycoside naringin are well known citrus flavonoids with 
several therapeutic benefits. Although the anti-adipogenic effects of naringenin and naringin 
have been reported previously, the detailed mechanism underlying their anti-adipogenesis 
effects is poorly understood.
Objectives: This study examined the anti-adipogenic effects of naringenin and naringin by 
determining differential gene expression patterns in these flavonoids-treated 3T3-L1 adipocytes.
Methods: Lipid accumulation and triglyceride (TG) content were determined by Oil red O 
staining and TG assay. Glucose uptake was measured using a 2-[N-(7-Nitrobenz-2-oxa-1,3-
diazol-4-yl)amino]-2-deoxy-d-glucose fluorescent d-glucose analog. The phosphorylation 
levels of AMP-activated protein kinase (AMPK) and acetyl Co-A carboxylase (ACC) were 
observed via Western blot analysis. Differential gene expressions in 3T3-L1 adipocytes were 
evaluated via RNA sequencing analysis.
Results: Naringenin and naringin inhibited both lipid accumulation and TG content, increased 
phosphorylation levels of both AMPK and ACC and decreased the expression level of 3-hydroxy-
3-methylglutaryl CoA reductase (HMGCR) in 3T3-L1 adipocytes. RNA sequencing analysis 
revealed that 32 up-regulated (> 2-fold) and 17 down-regulated (< 0.6-fold) genes related 
to lipid metabolism, including Acaca, Fasn, Scd1, Mogat1, Dgat, Lipin1, Cpt1a, and Lepr, were 
normalized to the control level in naringenin-treated adipocytes. In addition, 25 up-regulated 
(> 2-fold) and 25 down-regulated (< 0.6-fold) genes related to lipid metabolism, including 
Acaca, Fasn, Fabp5, Scd1, Srebf1, Hmgcs1, Cpt1c, Lepr, and Lrp1, were normalized to the control 
level by naringin.
Conclusions: The results indicate that naringenin and naringin have anti-adipogenic 
potentials that are achieved by normalizing the expression levels of lipid metabolism-related 
genes that were perturbed in differentiated 3T3-L1 cells.
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INTRODUCTION

Obesity is a serious consequence of prolonged disruption of energy homeostasis caused 
by an imbalance of energy intake and expenditure [1]. In that imbalance, surplus energy 
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is stored as a lipid, specifically triglyceride (TG), in white adipose tissues [2]. Obesity is a 
major contributor to the global burden of chronic diseases and complications, including 
cardiovascular diseases, diabetes, and cancers [3].

AMP-activated protein kinase (AMPK) is an energy sensor that regulates glucose and lipid 
metabolism to modulate energy homeostasis in the body. The activation of AMPK inhibits 
preadipocyte differentiation and suppresses transcription factors, including peroxisome 
proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (C/
EBPα), and sterol regulatory element-binding protein 1 (SREBP-1c), which are necessary for 
adipogenesis [4]. In addition, the activation of AMPK inactivates key metabolic enzymes, 
including acetyl Co-A carboxylase (ACC) and 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) 
reductase (HMGCR), involved in fatty acid and cholesterol synthesis [5]. Therefore, AMPK is 
considered a target in the treatment of obesity and associated metabolic diseases.

Previous studies investigated anti-adipogenic agents as potential therapeutics for preventing 
obesity and associated disorders [6]. Recently, the use of natural bioactive compounds as 
alternative methods for treating obesity and related diseases is increasing because of their 
low risks of side effects compared to those of synthetic drugs [4].

Flavonoids are plant-derived compounds with multiple therapeutic effects, including anti-
hyperglycemic and anti-hyperlipidemic activities [7]. Flavonoids mediate these biological 
effects via cell signaling pathways that are based on molecular interactions with numerous 
enzymes [8]. For naringin or its aglycon naringenin, which are citrus-derived flavonoids, 
diverse biological activities of therapeutic interests have been described, including anti-
diabetic and anti-dyslipidemic effects [9]. However, the detailed mechanism associated with 
the actions of naringenin and naringin on anti-adipogenesis has not yet been fully described.

In this context, the present study hypothesized that naringenin and naringin exert anti-
adipogenic potential by normalizing the activities of key enzymes related to lipid metabolism 
and restoring the expression of genes related to lipid metabolism to a normal level. To that 
end, the effects of naringenin and naringin on the phosphorylation levels of AMPK, ACC, and 
the expression levels of HMGCR were observed. In particular, RNA sequencing analysis was 
performed to examine the anti-adipogenic effects of naringenin and naringin, in which they 
normalized the expressions of lipid metabolism-related genes that had been perturbed in 
differentiated 3T3-L1 adipocytes.

MATERIALS AND METHODS

Induction of adipocyte differentiation and incubation with test compounds
The 3T3-L1 fibroblasts (KCLB 42835) obtained from the Korean Cell Line Bank (KCLB, 
Korea) were cultured Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% 
bovine serum, 100 U/mL penicillin, and 100 μg/mL streptomycin (1% PS) (Gibco, USA) in a 
humidified atmosphere containing 5% CO2 at 37°C.

The 3T3-L1 cells were cultured in 96-well plates (1 × 105 cells/well), and after reaching 
post-confluence, cells were induced for differentiation for 48 h by adding differentiation 
initiation media (DIM) containing DMEM, 1% PS, 10% fetal bovine serum (FBS; Gibco), 
0.5 mM 3-isobutyl-1-methylxanthine (Sigma, USA), 0.5 μM dexamethasone (Sigma), 
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2 μM rosiglitazone (Sigma) and 10 μg/mL insulin (Sigma). Subsequently, the DIM was 
changed to a normal medium (DMEM containing 1% PS and 10% FBS) containing 10 μg/mL 
insulin. Media were changed to normal growth media after 48 h and every 2 days thereafter 
until differentiation to mature adipocytes. To examine the effects of test samples on lipid 
accumulation, cells were cultured in DIM with or without the following test samples: 5 µM of 
simvastatin (Sigma) and different concentrations of naringenin and naringin (Sigma) diluted in 
DMSO until differentiation to mature adipocytes. At day 8, completely differentiated adipocytes 
were assessed for lipid accumulation through Oil red O staining and Western blot analysis.

Monitoring cellular viability: 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay
The 3T3-L1 cells were seeded in 96-well plates at the cell density of 1 × 105 cells/well and 
cultured overnight using routine culture media. After reaching confluence, the cells were 
treated with different concentrations (0–100 µM) of the naringenin and naringin flavonoids 
for 48 h. Cell culture media was removed and fresh media containing 10% Ez-Cytox 
(DogenBio, Korea) was added into each well, according to the manufacturer's instructions. 
Plates were incubated for 3 h at 37°C and 5% CO2. Cell viability, as indicated by formazan 
production, was measured with an enzyme-linked immunosorbent assay microplate reader 
(TECAN, Austria) at 450 nm wavelength.

Oil red O staining
Post-confluence preadipocytes were differentiated into adipocytes as described above. 
According to a previously described method, on day 8 after adipocyte differentiation, cells 
were stained with Oil red O [10] with slight modifications. The fully differentiated adipocytes 
were fixed in 10% (v/v) formaldehyde (Biosesang, Korea) for 1 h at room temperature. Next, 
the cells were rinsed twice with phosphate-buffered saline (PBS; Gibco) and stained with 0.5% 
Oil red O solution (Sigma) (60% of Oil red O stock solution and 40% distilled water) for 1 h in 
the dark. The cells were washed with distilled water to remove the unbound dye, and images 
were captured using an IncuCyte ZOOM (Essen BioScience, USA) at 20× magnification. 
Quantitative analysis was performed using IncuCyte ZOOM processing software.

Measurement of TG content
Cellular TG contents were quantified using a commercially available colorimetric TG assay 
kit (BioAssay Systems, USA). Differentiated 3T3-L1 cells at day 8 were washed with PBS 
and harvested to cell lysis buffer containing 5% Triton X100 (Bio-Rad Laboratories, USA). 
Lysed cells were homogenized and centrifuged at 3,000 × g for 5 min. The TG content of the 
diluted supernatants was analyzed according to the manufacturer's instructions. The protein 
concentration of each sample was measured using the Bio-Rad DC protein assay (Bio-Rad 
Laboratories). TG contents were normalized to the respective protein concentration as 
detected by using bovine serum albumin (Sigma) as the calibration standard.

2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG) 
glucose uptake assay
Glucose uptake assays were performed on fully differentiated 3T3-L1 adipocytes. Briefly, 
preadipocytes were cultured in 96-well plates and induced to differentiate using the DIM 
protocol described above. Adipocytes were serum-starved for 12 h and then incubated with 
samples for 24 h. The cells were incubated with 40 μM 2-NBDG (Carlsbad, USA) for 30 min 
at 37°C. Cells were then washed 3 times with ice-cold PBS, and fluorescent images were 
obtained using an IncuCyte ZOOM fluorescence microscope (Essen BioScience). IncuCyte 
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ZOOM fluorescence processing software (Essen BioScience) was used to analyze the total 
fluorescence intensities of each well.

Western blot analysis
Cells were washed with PBS and lysed with ice-cold RIPA buffer containing protease 
inhibitor mixture. The whole-cell lysates were centrifuged at 12,000 rpm for 10 min. The 
supernatant was separated, and the amount of protein determined by Bradford assay (Bio-
Rad Laboratories). Equal amounts of protein was mixed with 20% loading buffer, separated 
by sodium dodecyl sulphate–polyacrylamide gel electrophoresis, and subjected to Western 
blot with AMPK (Cell Signaling Technology, USA), ACC (Cell Signaling Technology), p-AMPK 
(Cell Signaling Technology), and p-ACC (Cell Signaling Technology), and β-actin (Thermo 
Fisher, USA) antibodies. A chemiluminescence bioimaging instrument (NeoScience, Korea) 
was used to detect the proteins of interest. Densitometry analysis was performed using the 
ImageJ analysis software.

RNA sequencing analysis
RNA sequencing analysis was performed as previously described [11]. Briefly, total RNA 
was isolated from 3T3-L1 adipocytes using an Easy-blue RNA extraction kit (iNtRON 
Biotechnology, Korea). RNA quality was assessed by Agilent 2100 bioanalyzer using the 
RNA 6000 Nano Chip (Agilent Technologies, Netherlands). Based on the manufacturer's 
instructions, libraries for RNAs were constructed using Ouantseq 3′mRNA-Seq Library 
Prep Kit (Lexogen, Austria). High-throughput sequencing was performed as single-end 75 
sequencings using the NextSeq 500 (Illumina, USA). QuantSeq 3′mRNA-Seq reads were 
aligned using Bowtie2 version 2.1.0 [12]. Differentially expressed genes were determined 
based on counts from unique and multiple alignments using EdgeR within R version 3.2.2 
and Bioconductor version 3.0 [13]. The RT (read count) data were processed based on the 
quantile normalization method using the Genowiz version 4.0.5.6 (Ocimum Biosolutions, 
India). Gene classification was performed using the Medline database (National Center for 
Biotechnology Information, USA).

Statistical analysis
Values were expressed as means ± SE of 3 independent experiments. Data were statistically 
analyzed with the aid of IBM SPSS Statistics (Ver.17.0; IBM, USA). The statistical differences 
among groups were assessed using a 1-way analysis of variance followed by Tukey's test. 
The p < 0.05, p < 0.005, and p < 0.0005 indicate statistically significant differences from the 
differentiated cell control group.

RESULTS

Cell viability of 3T3-L1 cells
The MTT assay was performed to assess the effect of naringenin and naringin on 3T3-L1 
cell viability (Fig. 1D and E). Significant cellular toxicity was not observed for up to 25 μM 
concentrations of both naringenin and naringin in 3T3-L1 cells. Accordingly, the following 
experiments were conducted using non-toxic concentrations (10 and 20 µM) of the 2 flavonoids.

Lipid accumulation and TG content
The effects of naringenin and naringin on lipid accumulation and TG content in 3T3-
L1 adipocytes were observed by Oil red O staining and TG assay (Fig. 2). Differentiated 
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adipocytes significantly increased lipid accumulation and TG content compared to those of 
undifferentiated adipocytes (Fig. 2B and C). In contrast, treatment with simvastatin (positive 
control) and the higher concentrations (20 µM) of naringenin and naringin significantly 
inhibited (p < 0.0005) both lipid accumulation and TG content (Fig. 2B and C). The treatment 
of naringin shows more significant effectiveness (p < 0.0005) in inhibiting lipid accumulation 
and TG content of 3T3-L1 adipocytes than naringenin even at the low concentration (10 
µM). Therefore, the results suggest that both naringenin and naringin suppress both lipid 
accumulation and TG content in differentiated 3T3-L1 adipocytes.
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Fig. 1. Effect of naringenin and naringin on 3T3-L1 cell viability. Chemical structure of naringenin (A) and naringin (B). Differentiation procedure and assay 
schedule (C). Effect of naringenin (D) and naringin (E) on 3T3-L1 cell viability. The 3T3-L1 cells were cultured at a density of 1 × 105 in 96-well plates; after reaching 
confluence, cells were treated with 0–50 µM of the flavonoids for 48 h, and cell viability was measured by MTT assay (C). Values represent mean ± SE. 
DMEM, Dulbecco's modified Eagle's medium; IBMX, 3-isobutyl-1-methylxanthine; DEX, dexamethasone; INS, insulin; ROSI, rosiglitazone; FBS, fetal bovine serum; 
ORO, Oil red O; WB, Western blot; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. 
**p < 0.005 vs. the control.



Glucose uptake in 3T3-L1 adipocytes
The glucose uptake effects of naringenin and naringin in 3T3-L1 adipocytes were assessed 
using the 2-NBDG glucose uptake assay (Fig. 3). Differentiated 3T3-L1 adipocytes showed 
slightly increased glucose uptake when compared with undifferentiated adipocytes. However, 
simvastatin treatment significantly increased (p < 0.005) glucose uptake compared to that of 
the differentiated control. In particular, both naringenin and naringin significantly increased 
(p < 0.005) glucose uptake compared to the differentiated control when used at the 20 µM 
concentration (Fig. 3A and B). Naringin at the low concentration (10 µM) also produced 
a significant increase in glucose uptake (p < 0.005); however, that was not observed with 
naringenin treatment at the low concentration. These results indicate that both naringenin 
and naringin stimulate cellular glucose uptake in differentiated 3T3-L1 adipocytes.

Phosphorylation levels of AMPK pathway molecules
Western blot analysis was conducted to observe the effects of naringenin and naringin on 
the regulation of key enzymes in the AMPK signaling pathway (Fig. 4). The phosphorylation 
levels of both AMPK (Thr172) and ACC (Ser79) in 3T3-L1 adipocytes were significantly 
decreased (p < 0.05) in differentiated adipocytes compared to undifferentiated adipocytes. 
In contrast, the phosphorylation levels of both AMPK (Thr172) and ACC (Ser79) were 
significantly increased by the treatment of simvastatin, naringenin, and naringin 
in differentiated 3T3-L1 adipocytes (Fig. 4A and B). The effects of naringin on the 
phosphorylation levels of AMPK (Thr172) and ACC (Ser79) were greater (p < 0.0005) than 
those of naringenin and were similar to those of simvastatin. In addition, compared to the 
differentiated control treatment, naringenin and naringin treatment significantly reduced 
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Fig. 2. Effect of naringenin and naringin on intracellular lipid accumulation. Cells were differentiated and treated with samples as described in material and 
methods. Lipid accumulation was measured by Oil red O staining on day 8. Representative images were captured using the IncuCyte ZOOM at 20× magnification (A). 
Quantitative analysis of lipid accumulation in 3T3-L1 adipocyte calculated by IncuCyte ZOOM fluorescence processing software (B). Effect of naringenin and naringin 
on TG accumulation in 3T3-L1 adipocytes. Total intracellular TG concentration was determined using commercial assay kits (C). Values represent mean ± SE. 
DIM, differentiation initiation media; TG, triglyceride; Con, concentration. 
*p < 0.05, **p < 0.005, and ***p < 0.0005 vs. the differentiated control.



(p < 0.0005) the protein expression of HMGCR (Fig. 4C). The results suggest that both 
naringenin and naringin activate the AMPK signaling pathway in 3T3-L1 adipocytes.

Differential gene expression
RNA sequencing analysis was performed to observe the effects of naringenin and naringin on 
the expression levels of genes related to lipid metabolism in 3T3-L1 adipocytes. Based on the 
results of gene ontology analysis, a large proportion of the genes related to lipid metabolism 
was either up- or down-regulated in naringin and naringenin-treated 3T3-L1 adipocytes (Fig. 5).  
Thirty-two up-regulated (> 2-fold) genes, including Scd1, Scd3, Elovl3, Ppara, Lipin 1, and 
Cebpa, and 17 down-regulated (< 0.6-fold) genes, including Cpt1a, Lrp1, Lrp5, Adh7, and Lepr 
were normalized to the control level in naringenin-treated adipocytes (Tables 1 and 2). In 
addition, 25 up-regulated (> 2-fold) genes, including Scd1, Apoa4, Ppara, Cebpa, Fabp5, and G6pc 
and 25 down-regulated (< 0.6-fold) genes, including Pitpnc1, Spns2, Cpt1c, Lepr, and Pigv were 
normalized to the control level in naringin-treated adipocytes (Tables 3 and 4).

Search Tool for the Retrieval of Interacting Genes/Proteins analysis was performed to identify 
protein-protein interactions (PPIs) among the normalized genes induced by naringenin and 
naringin, and the results were visualized as a set of nodes and edges (Fig. 6A and B). The 
proteins related to lipid metabolism, including Acaca, Fasn, Scd1, Mogat1, Dgat, and Lipin1, were 
closely localized and interacted directly with each other within the PPI network of naringenin. 
In addition, the normalized down-regulated genes, including Cpt1a, Lepr, and Lrp1, were 
closely localized in the functional hub in the PPI network of naringenin. In the naringin PPI 
network, the normalized up-regulated genes, including Acaca, Fasn, Fabp5, Scd1, Srebf1, and 
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Fig. 3. Effect of naringenin and naringin on glucose uptake. Glucose uptake was assessed by a fluorescent probe, 2-NBDG. Differentiated 3T3-L1 cells were 
incubated with Flavonoids for 24 h, then incubated with 2-NBDG (40 uM) for 30 min. Cells were washed with PBS 3 times, and images were obtained using an 
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DIM, differentiation initiation media; 2-NBDG, 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose; PBS, phosphate-buffered saline; Con, concentration. 
*p < 0.05 and **p <0.005 vs. the differentiated control.



Hmgcs1, were closely localized and formed a functional cluster. In addition, normalized down-
regulated genes, including Cpt1c, Lrp1, and Lepr, were located in the functional hub of the 
naringin PPI network. Overall, RNA sequencing analysis reveals that naringenin and naringin 
normalize the expression levels of lipid metabolism-related genes that were perturbed in 
differentiated 3T3-L1 adipocytes.
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reductase; DIM, differentiation initiation media; Con, concentration. 
*p < 0.05, **p < 0.005 and ***p < 0.0005 vs. the differentiated control.
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Fig. 5. Effects of naringenin and naringin on differential gene expression. Gene ontology analysis of 3T3-L1 adipocytes compared to normal cells (A). Naringenin-
treated 3T3-L1 adipocytes compared to normal cells (B). Naringin-treated 3T3-L1 adipocytes compared to normal cells (C). The pie chart indicates functional 
categorization of the differentially expressed genes in 3T3-L1 adipocytes, and the bar graph represents the number of genes that were up- and down-regulated.



DISCUSSION

The present study demonstrated the anti-adipogenic effects of naringenin and naringin on 
differentiated 3T3-L1 adipocytes. The naringenin and naringin treatments suppressed both 
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Table 1. Up-regulated genes normalized by naringenin in 3T3-L1 adipocytes
Gene symbol Differentiated/normal Simvastatin/normal Naringenin/normal Gene name
Scd3 188.817 87.202 1.031 Stearoyl-coenzyme A desaturase 3
Elovl3 110.594 74.751 1.002 Elongation of very long chain fatty acids like 3
Scd1 95.233 86.417 1.160 Stearoyl-coenzyme A desaturase 1
Ppara 77.170 39.919 1.578 Peroxisome proliferator-activated receptor alpha
Lpin1 25.118 21.260 1.283 Lipin 1
Apoa4 21.349 7.713 1.001 Apolipoprotein A-IV
Mogat1 19.342 16.389 1.001 Monoacylglycerol O-acyltransferase 1
Cebpa 18.250 12.830 1.182 CCAAT/enhancer-binding protein, alpha
Cyp2f2 15.210 14.921 1.081 Cytochrome P450, family 2, subfamily f, polypeptide 2
Dgat1 10.944 9.938 1.444 Diacylglycerol O-acyltransferase 1
Pla2g5 7.756 5.796 1.001 Phospholipase A2, group V
Acsf2 6.340 4.254 1.071 Acyl-coa synthetase family member 2
Cyp27a1 5.879 1.000 1.000 Cytochrome P450, family 27, subfamily a, polypeptide 1
G6pc 5.879 1.000 1.000 Glucose-6-phosphatase, catalytic
Pparg 5.716 5.128 1.383 Peroxisome proliferator-activated receptor gamma
Dbi 5.654 7.595 1.082 Diazepam binding inhibitor
Adipor2 5.577 4.734 1.244 Adiponectin receptor 2
Fasn 5.001 3.137 1.267 Fatty acid synthase
Awat1 4.885 3.898 1.000 Acyl-coa wax alcohol acyltransferase 1
Hacd2 4.571 4.082 0.945 3-hydroxyacyl-coa dehydratase 2
Acox1 4.282 4.007 1.042 Acyl-Coenzyme A oxidase 1, palmitoyl
Hmgcs1 3.370 3.956 1.214 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1
Pik3r6 2.950 1.000 1.000 Phosphoinositide-3-kinase, regulatory subunit 6
Cyp3a57 2.950 1.000 1.000 Cytochrome P450, family 3, subfamily a, polypeptide 57
Mogat2 2.950 1.000 1.000 Monoacylglycerol O-acyltransferase 2
Apoa2 2.944 1.000 1.000 Apolipoprotein A-II
Scp2 2.776 2.641 0.818 Sterol carrier protein 2, liver
Oxsm 2.656 2.235 0.936 3-oxoacyl-ACP synthase, mitochondrial
Fads2 2.242 1.908 1.197 Fatty acid desaturase 2
Cebpb 2.161 1.279 0.964 CCAAT/enhancer-binding protein, beta
Ppargc1a 2.101 2.743 1.129 Peroxisome proliferative activated receptor, gamma, coactivator 1 alpha
Galc 2.037 1.562 1.056 Galactosylceramidase

Table 2. Down-regulated genes normalized by naringenin in 3T3-L1 adipocytes
Gene symbol Differentiated/normal Simvastatin/normal Naringenin/normal Gene name
Akr1c14 0.151 0.296 0.792 Aldo-keto reductase family 1, member C14
Gata2 0.163 0.199 1.007 GATA binding protein 2
Npy1r 0.290 0.489 1.072 Neuropeptide Y receptor Y1
Mtmr11 0.291 0.381 0.765 Myotubularin related protein 11
Cpt1a 0.302 0.257 0.789 Carnitine palmitoyltransferase 1a
Adh7 0.316 0.635 1.050 Alcohol dehydrogenase 7 (class IV)
Pld1 0.333 0.462 0.949 Phospholipase D1
Hacd4 0.355 0.211 1.150 3-hydroxyacyl-coa dehydratase 4
Lrp1 0.379 0.387 0.797 Low density lipoprotein receptor-related protein 1
Asah1 0.383 0.467 0.850 N-acylsphingosine amidohydrolase 1
Lepr 0.394 0.984 1.224 Leptin receptor
Lrp5 0.407 0.348 0.918 Low density lipoprotein receptor-related protein 5
Lmna 0.412 0.347 0.726 Lamin A
E2f1 0.440 0.517 1.045 E2F transcription factor 1
Ccnd1 0.454 0.267 0.718 Cyclin D1
Gla 0.474 0.714 1.083 Galactosidase, alpha
Cyb5r3 0.498 0.726 1.009 Cytochrome b5 reductase 3



lipid accumulation and TG content and increased glucose uptake in 3T3-L1 adipocytes. 
Both naringenin and naringin increased the phosphorylation levels of AMPK and ACC and 
inhibited the expression level of HMGCR, which are the key enzymes in lipogenesis and 
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Table 3. Up-regulated genes normalized by naringin in 3T3-L1 adipocytes
Gene symbol Differentiated/normal Simvastatin/normal Naringin/normal Gene name
Scd1 95.233 86.417 1.327 Stearoyl-Coenzyme A desaturase 1
Ppara 77.170 39.919 1.670 Peroxisome proliferator-activated receptor alpha
Apoa4 21.349 7.713 1.043 Apolipoprotein A-IV
Cebpa 18.250 12.830 1.161 CCAAT/enhancer-binding protein alpha
Fabp5 15.580 12.573 1.001 Fatty acid binding protein 5, epidermal
Lpl 7.613 7.816 1.152 Lipoprotein lipase
G6pc 5.879 1.000 1.012 Glucose-6-phosphatase, catalytic
Pparg 5.716 5.128 1.579 Peroxisome proliferator-activated receptor gamma
Adipor2 5.577 4.734 1.174 Adiponectin receptor 2
Fasn 5.001 3.137 1.289 Fatty acid synthase
Bmp4 3.927 1.000 1.008 Bone morphogenetic protein 4
Ghrl 3.901 3.893 1.018 Ghrelin
Hmgcs1 3.370 3.956 1.326 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1
Cyp3a57 2.950 1.000 1.005 Cytochrome P450, family 3, subfamily a, polypeptide 57
Mogat2 2.950 1.000 1.005 Monoacylglycerol O-acyltransferase 2
Srebf1 2.907 2.027 1.271 Sterol regulatory element-binding transcription factor 1
Lias 2.898 2.812 1.050 Lipoic acid synthetase
Eci3 2.828 1.684 1.234 Enoyl-Coenzyme A delta isomerase 3
Socs2 2.756 2.257 1.058 Suppressor of cytokine signaling 2
G6pdx 2.737 3.247 1.264 Glucose-6-phosphate dehydrogenase X-linked
Oxsm 2.656 2.235 1.020 3-oxoacyl-ACP synthase, mitochondrial
Fads2 2.242 1.908 0.974 Fatty acid desaturase 3
Cebpb 2.161 1.279 1.055 CCAAT/enhancer-binding protein (C/EBP), beta
Ppargc1a 2.101 2.743 0.903 Peroxisome proliferative activated receptor, gamma, coactivator 1 alpha
Galc 2.037 1.562 1.256 Galactosylceramidase

Table 4. Down-regulated genes normalized by naringin in 3T3-L1 adipocytes
Gene symbol Differentiated/normal Simvastatin/normal Naringin/normal Gene name
Akr1c14 0.151 0.296 0.993 Aldo-keto reductase family 1, member C14
Pitpnc1 0.164 0.204 0.899 Phosphatidylinositol transfer protein, cytoplasmic 1
Spns2 0.280 0.232 0.775 Spinster homolog 2
Gba 0.288 0.379 0.707 Glucosidase, beta, acid
Npy1r 0.290 0.489 1.069 Neuropeptide Y receptor Y1
Mtmr11 0.291 0.381 0.956 Myotubularin related protein 11
Cpt1c 0.302 0.257 1.012 Carnitine palmitoyltransferase 1c
Adh7 0.316 0.635 1.001 Alcohol dehydrogenase 7 (class IV)
Pld1 0.333 0.462 0.972 Phospholipase D1
Hacd4 0.355 0.211 1.025 3-hydroxyacyl-coa dehydratase 4
Pigv 0.360 0.735 0.802 Phosphatidylinositol glycan anchor biosynthesis, class V
Hexa 0.375 0.491 0.870 Hexosaminidase A
Lrp1 0.379 0.387 0.861 Low density lipoprotein receptor-related protein 1
Lepr 0.394 0.984 1.056 Leptin receptor
Fgf10 0.403 0.615 0.998 Fibroblast growth factor 10
Lrp5 0.407 0.348 1.096 Low density lipoprotein receptor-related protein 5
Lmna 0.412 0.347 0.784 Lamin A
Scpep1 0.438 0.533 0.772 Serine carboxypeptidase 1
E2f1 0.440 0.517 1.112 E2F transcription factor 1
Lima1 0.457 0.334 1.008 LIM domain and actin binding 1
Fgf7 0.463 0.480 1.167 Fibroblast growth factor 7
Gla 0.474 0.714 1.101 Galactosidase, alpha
Pigt 0.491 0.587 1.124 Phosphatidylinositol glycan anchor biosynthesis, class T
Socs5 0.494 0.584 0.921 Suppressor of cytokine signaling 5
Tmem150a 0.497 0.640 0.782 Transmembrane protein 150A



cholesterol synthesis. RNA sequencing results revealed that naringenin treatment normalizes 
the expression of genes involved in lipid metabolism, including Acaca, Fasn, Scd1, Mogat1, Dgat, 
Lipin1, Cpt1a, and Lepr. In addition, the treatment of naringin normalizes the expression of 
genes related to lipid metabolism, including Acaca, Fasn, Fabp5, Scd1, Srebf1, Hmgcs1, Cpt1c, Lepr, 
and Lrp1 in 3T3-L1 adipocytes.

The present study shows that naringenin and naringin treatments reduce intracellular lipid 
accumulation and TG content in 3T3-L1 adipocytes, as was observed previously [6,14]. 
Naringenin reduces diet-induced weight gain and improves glucose and lipid metabolism in 
animal models [15]. In addition, naringin-rich pomelo (Citrus grandis (L.) Osbeck) peel extract 
has been shown to reduce body weight, TG, and total cholesterol level in obese rats [16]. 
Therefore, the present study of differentiated 3T3-L1 adipocytes confirms that both naringenin 
and naringin have significant roles in inhibiting lipid accumulation and TG synthesis.

Furthermore, the present study in differentiated 3T3-L1 adipocytes confirmed that both 
naringenin and naringin significantly increase glucose uptake in 3T3-L1 adipocytes. Many 
flavonoids are known to increase glucose uptake via the activation of AMPK, which enhances 
glucose transporter type 4 translocation in 3T3-L1 adipocytes [17,18]. Naringenin and 
naringin enhance glucose utilization through increased glycolysis, which ultimately reduces 
the utilization of lipids [19,20]. Therefore, the previous and present findings suggest that 
naringenin and naringin produce anti-adipogenic effects by increasing glucose uptake, which 
might enhance glucose metabolism in differentiated 3T3-L1 adipocytes.

In the present study, the naringenin and naringin treatments increased the phosphorylation 
levels of both AMPK and ACC and decreased the expression level of HMGCR. Activation of 
AMPK suppresses lipid synthesis [21] through downregulation of key adipogenic factors, 
including PPARγ, C/EBPα, and SREBP-1c [4]. Phosphorylation of ACC inhibits fatty acid 
synthesis by blocking the conversion of acetyl-CoA to malonyl-CoA [22]. Naringenin 
is known to reduce the levels of plasma cholesterol and hepatic TG that accompany the 
decreased expression of HMGCR in animal models [23]. In addition, naringin is known 
to activate AMPK [20] and suppress HMGCR expression in type 2 diabetic mice [24]. The 
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A Naringenin B Naringin

Fig. 6. PPI networks of normalized genes related to lipid metabolism in naringenin and naringin treated 3T3-L1 adipocytes. PPI network of naringenin (A). PPI 
network of naringin (B). Red circles represent up-regulated genes, and blue circles represent down-regulated genes in 3T3-L1 adipocytes. PPI, protein-protein-
interaction.



previous and present findings suggest that naringenin and naringin treatments regulate 
lipid metabolism by activating the AMPK pathway in 3T3-L1 adipocytes, which potentially 
contributes to a reduction of adipogenesis.

RNA sequencing results revealed that both naringenin and naringin treatments normalized 
the expressions of genes involved in lipid metabolism in 3T3-L1 adipocytes. The treatment 
of naringenin normalized the expressions of up-regulated genes, including Acaca, Fasn, Scd1, 
Mogat1, Dgat, and Lipin1. The Acaca encoding enzyme catalyzes the carboxylation of acetyl-
CoA to malonyl-CoA [25], while Fasn catalyzes the conversion of malonyl-CoA into palmitate 
[26]. Scd1 is a rate-limiting enzyme in the synthesis of mono-unsaturated fatty acids [27], 
and Mogat catalyzes the synthesis of diacylglycerol, the precursor of triacylglycerol [28]. Dgat 
catalyzes the covalent addition of a fatty acyl chain to diacylglycerol [29] and reduces TG 
levels in Dgat knockout mice [30]. Lipin1 is a key regulator of TG metabolism and lipoprotein 
synthesis [31]. In this regard, normalization of genes related to lipid metabolism, including 
Acaca, Fasn, Scd1, Mogat1, Lipin1, and Dgat, by naringenin contributes to reducing adipogenesis 
in 3T3-L1 adipocytes.

Naringenin treatment normalized the expressions of down-regulated genes, including Cpt1a, 
and Lepr. Cpt1 catalyzes fatty acid oxidation by converting acyl-CoAs into acylcarnitines [32], 
and Cpt1 knockout mice are reported to be susceptible to high-fat-diet- induced obesity [33]. 
Lepr regulates energy expenditure and reduces lipid accumulation in the body [34]. A previous 
study showed attenuation of obesity via Lepr gene therapy [35]. Naringenin has been reported 
to stimulate the mRNA expression of Cpt1 [36], an observation supported by the present 
findings. Therefore, the previous and present findings suggest that naringenin reduces 
adipogenesis by normalizing lipid metabolism-related genes in 3T3-L1 adipocytes.

Naringin treatment normalized the expressions of up-regulated genes, including Acaca, Fasn, 
Scd1, Fabp5, Srebf1, and Hmgcs1. As described previously, the expression of Acaca catalyzes the 
first committed step in fatty acid synthesis [25]. Fasn is the central enzyme involved in de novo 
lipogenesis [26], and Scd1 is the rate-limiting enzyme in the synthesis of mono-unsaturated 
fatty acids [37]. In addition, Fabp5 is involved in lipid trafficking and intracellular fatty acid 
storage [38]. Srebf1 regulates SREEBP1a and SREBP1c that are involved in fatty acid and 
cholesterol synthesis [39]. Hmgcs1 is involved in cholesterol synthesis, converting acetyl-CoA 
and acetoacetyl-CoA into HMG-CoA [40]. In this regard, normalization of genes related to 
lipid metabolism, including Acaca, Fasn, Fabp5, Scd1, Srebf1, and Hmgcs1, by naringin treatment 
contributes to reducing adipogenesis in 3T3-L1 adipocytes.

Naringin treatment normalized the expressions of down-regulated genes, including 
Cpt1c, Lepr, and Lrp1. Cpt1 is involved in fatty acid oxidation [32], and Lepr regulates energy 
expenditure, which reduces lipid accumulation [34]. Lrp1 is a key factor in maintaining lipid 
homeostasis, insulin sensitivity, and glucose homeostasis [41]. Overall, the results suggest 
that naringin restores adipogenesis to the normal level by normalizing the expression of 
Cpt1c, Lepr, and Lrp1 genes in 3T3-L1 adipocytes.

In the present study, both naringenin and naringin showed significant anti-adipogenic 
effects, with naringin having a higher potency than naringenin in mitigating obesity. 
Naringenin and naringin are major flavonoids present in grapefruit and are abundant in 
many other citrus fruits [42]. Naringin is a 7 O-glycoside in which 2 rhamnose units are 
attached to its aglycon portion, naringenin, at the 7-carbon position [43]. The glycoside 
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forms of flavonoids are the most abundant polyphenols in plants [44]. Glycosides are known 
to be more biologically active than the respective aglycone, since the bound sugar moiety of 
O-glycosides is known to influence their bioavailability [45]. Attaching a glycosidic moiety 
increases hydrophilicity, which influences the pharmacokinetic properties of the respective 
compounds [46]. Solubility has a major role in the therapeutic efficacy of flavonoids. Low 
solubility of flavonoid aglycones in water, coupled with its short residence time in the 
intestine, results in their low absorption. The low solubility of the flavonoids in water often 
presents a problem in medicinal applications [47]. Further, O-glycosylation can enhance 
some biological benefits, including anti-adipogenic activity, as reported previously [48]. 
However, as the glycoside linkages are less stable than most glucuronide linkages and might 
not withstand the acidic environment in the stomach; moreover, glycosidase from intestinal 
bacteria may cleave sugar residues, which will generate the aglycone naringenin [49,50]. 
Therefore, the absorption of naringin inside the body remains to be clarified further [50]. 
However, being a 7 O-glycoside, naringin shows higher anti-adipogenic potential than its 
aglycone naringenin in 3T3-L1 adipocytes.

Overall results of the present study indicate that both naringenin and naringin treatments 
reduce lipid accumulation and TG content in 3T3-L1 adipocytes by increasing the 
phosphorylation of both AMPK and ACC while reducing the expression of HMGCR. In 
particular, both naringenin and naringin normalize the expression of genes involved in 
lipid metabolism in 3T3-L1 adipocytes (Fig. 7). Further studies are needed to delineate the 
potential role of these genes as therapeutic targets in adipogenesis. The overall results 
suggest that naringenin and naringin treatments have potent anti-adipogenic effects related 
to normalizing the expression of lipid metabolism-related genes that are perturbed in 
differentiated 3T3-L1 adipocytes.
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Fig. 7. Proposed model of the anti-adipogenic effects of naringenin and naringin on 3T3-L1 adipocytes. 
GLUT4, glucose transporter type 4; AMPK, AMP-activated protein kinase; HMGCR, 3-hydroxy-3-methylglutaryl 
CoA reductase; ACC, acetyl Co-A carboxylase; CPT1, carnitine palmitoyltransferase I.
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