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Abstract: Mounting evidence shows that supplementation with vitamin D and K or their analogs
induces beneficial effects in various diseases, e.g., osteoarticular, cardiovascular, or carcinogenesis.
The use of drugs delivery systems via organic and inorganic nanocarriers increases the bioavailability
of vitamins and analogs, enhancing their cellular delivery and effects. The nanotechnology-based
dietary supplements and drugs produced by the food and pharmaceutical industries overcome the
issues associated with vitamin administration, such as stability, absorption or low bioavailability.
Consequently, there is a continuous interest in optimizing the carriers’ systems in order to make them
more efficient and specific for the targeted tissue. In this pioneer review, we try to circumscribe the
most relevant aspects related to nanocarriers for drug delivery, compare different types of nanoparti-
cles for vitamin D and K transportation, and critically address their benefits and disadvantages.

Keywords: nanocarriers; drug delivery; vitamin D; vitamin K

1. Introduction

Nanocarriers involved in drug delivery offer several advantages when compared
to conventional treatments, allowing an increase in water solubility of slightly solu-
ble/insoluble drugs and protection against degradation and inactivation [1]. These char-
acteristics may provide enhanced stability in comparison with traditional formulations.
Further, the design of the nanocarriers involved in drug delivery facilitates the drug linger-
ing in the bloodstream for a prolonged period, which supports more efficient accumulation
at the site of action [2,3]. A necessary feature is facilitating dose reduction to patients, with
a consequential decrease of the adverse effects caused by the drug itself or formulation
adjuvants. By passive and active targeting, nanocarriers can accumulate at the desired ac-
tion site. Scientists have currently produced nanostructured delivery systems with specific
ligands bound to their surface, capable of targeting these particles to specific cells [4–6].
Therefore, ligands that identify the expressed or overexpressed receptors in targeted cells
have been bound to nanocarriers promoting superior targeting and accumulation of the
drug at the action site, thus diminishing systemic toxicity and improving its selectivity [7].
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Various studies have focused their attempts on active and passive targeting of the
molecular markers related to disease initiation and evolution. Considering that nanoscale
drug-delivery systems provide an improved means for transporting medicines, various
types of organic and inorganic nanoparticles (NPs) have been designed [6,8,9], their main
objectives being the delivery of a particular molecule to its activity site and inducing en-
hanced pharmacological impact [10–12]. Apart from the targeted element, other aspects
such as the nature and action of the carrier should be scrutinized while planning the
drug-delivery approach [13–15]. The most challenging issue in drug delivery products
is the system’s biocompatibility, meaning the capacity to surmount the body’s protec-
tion systems while being non-toxic and not triggering any immunological response in a
organism [16–18]. Furthermore, other aspects of developing an adequate drug-delivery
system are stability and improved interactions with the cellular membrane. Advances in
comprehending biochemical interactions among tissues and drug-delivery systems have
optimized nanocarriers.

To transport these new drug-delivery systems, and at the same time to enhance the
efficiency of vitamins, it is necessary to continuously perfect the NPs. These systems
should aim at improving the efficacy of the vitamins and patient compliance [10]. Vitamin
D deficiency is associated with a higher risk of developing cardiovascular conditions,
microbial infections or tumor pathogenesis [19]. Moreover, a deficiency of vitamin K
can lead to bleeding, defective bone development, osteoporosis, and a greater risk of
cardiovascular disease [20].

One of the ways in which vitamin D and K deficiency can be prevented would be
to develop compliant therapies using nanotechnology. Therefore, the objective of this
pioneer review is to highlight recent progress in the development of nanocarriers for
vitamin D and K delivery and to critically compare different types of NPs for vitamin D
and K transportation.

2. Nanocarriers for Drug Delivery: An Overview

The most significant challenge in the medical field is to develop an antitumoral
therapy [10,21,22] using passive or active targeting. In this regard, it is worth mentioning
that processes like convection and diffusion directly influence the efficiency of the passive
type of targeting. The phenomenon of convection occurs due to the physiological circulation
of blood, being responsible for the transport of molecules of large sizes thought the orifices
within the endothelium. Diffusion, on the other hand, is responsible for expelling through
the membrane complexes that are either lipophilic or have a low molecular weight, in
a gradient-dependent manner [23]. The enhanced permeation and retention effect may
ultimately improve the assembly of nano-sized carriers. In passive targeting, the outer layer
of NPs can be modified to achieve highly-specific interconnections between the transporter
particle and its target when binding to receptors found in tumors [24–27]. Nevertheless,
the liaison with the target cells depends on the nanocarrier’s capacity to arrive at the
specific tumor location, the impact of the enhanced permeation and retention still being
crucial. If considering active targeting, one should acknowledge that there will be almost
no improvement in the total drug accumulation inside the tumors, with this strategy rather
enhancing only cell recognition and drug uptake [24,28–30]. Passive and active targeting
are depicted in Figure 1.

To acquire immediate curative responses of the therapeutic agents carried through
nano-based delivery systems, active drug targeting approaches should be considered. This
is because, in passive targeting, the NPs carry the engulfed medications passively toward
the tumor cells, taking advantage of the minuscule size of the drug-delivery particles and
the specific neovascularization of the tumor [1,31].
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When the carrier structures disassemble, the bioactive compounds are discharged,
with the degradation rate being controlled and adjusted in line with the architecture of the
NPs. Polymers such as polyethylene glycol (PEG) can also be used in a coating process of
nano-sized drug delivery vehicles, to improve their durability in the systemic circulation,
to control their detrimental interactions with the opsonizing proteins and to practically
diminish their rapid degradation and clearance [32–34]. Moreover, it is acknowledged
that minimization of the adverse effects is a great advantage of NP usage through close
modulation of the nonspecific absorption of drugs into healthy tissue [35].

There are different types of nanocarriers, generally divided into organic and inorganic,
which are further presented below.

2.1. Organic Nanocarriers
2.1.1. Nanostructured Lipid Carriers

Nanostructured lipid carriers (NLCs) were created to improve the poor drug loading
and removal during storage. In the case of NLCs, the expulsion of medication triggered by
the crystallization phenomenon is controlled by the lipid matrix’s remarkable structure.
There are several NLC classes, such as imperfect, amorphous, or multiple NLCs. The
imperfect NLCs are described by a lipid mixture composed of various fatty acids capable of
inducing imperfections [36]. The imperfections in the lipid matrix create more area for drug
accumulation, thus the encapsulation efficiency is increased. Amorphous NLCs are made
by combining liquid with solid lipids, ultimately leading to a partition of phases which
generates an oil nano-compartments occurrence in the solid lipid phase [37,38]. Entrapment
of a large quantity of non-polar drugs or drug-loading improvement should be used when
the drugs are not easily soluble in solid lipids and offers benefits to the solid phase of NPs
that further controls the drug removal during storage [39]. Furthermore, NLCs, also known
as carriers of both water-soluble and fat-soluble compounds, can robustly immobilize the
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contained bioactive agent. Another strategy of drug delivery nano systems reported in the
literature is the manufacturing of hybrid lipid−polymer NPs that incorporate the benefits
of lipid NPs and polymeric NPs [40,41].

Liposomes

Assembled by virtue of the self-organization of phospholipids, liposomes can be
defined as artificial, small, round vesicles that are both biodegradable and biocompat-
ible. The already well-known methods of classification of these compounds take into
account their diameter, the number of bilayers, or even the manufacturing method [42].
Phospholipids are amphipathic particles having a hydrophobic extension composed of
two fatty acid sequences with a number of carbon atoms ranging from 10 to 24, and a polar
head which ensures their hydrophilic characteristics. The preference for phospholipids
is due to their bivalent structure, since the formed bilayer can easily modify its fluidity
and influence the discharge ratio of the engulfed drug [43]. Thus, liposomes are char-
acterized by their particular structure, defined by the bilayer structure of lipids. Apart
from phospholipids, cholesterol is another constituent that may be considered to obtain
liposomes, since it ensures an enhanced stability of these structures [42,44]. Interacting
with the carbon sequences present in liposome phospholipids, cholesterol changes their
organization, consequently altering the discharge proportion of the encapsulated bioactive
agent. They present increased biocompatibility like other synthetic materials and valu-
able drug vehicles [45,46]. Considering the above, liposomes could offer a considerable
advantage as drug carriers, not only by facilitating the transport of specific medications,
but also by mediating a controlled release of the therapeutic agents within a designated cell
or organ [47,48]. Another benefit coming from liposomes’ usage in medicine is that they
prevent the deterioration of the loaded drug, largely limiting the detrimental exposure to
the environment. The drug discharge can be voluntarily activated by different techniques,
such as light, ultrasound, high temperatures or even magnetism [49,50]. Further, liposomes
can also change DNA, as anticancer agents, by adding characteristic molecular particles
to their surface. These are the most promising tools for gene therapy, a premise proven
by at least a few experiments which concluded that the suitable biodistribution of these
compounds represents a great argument for choosing them as drug carriers [8]. Coating
liposomes with hydrophilic polymers or sugars was shown to improve the half-life of these
particles even further. The most studied models are PEG and monosialoganglioside (GM1).
These overlays diminish their contact to serum proteases, hence extending their stability.
As a result, liposomes’ survival is prolonged in the systemic circulation, the same strategy
being used to increase the half-life of other lipid nanostructures [8,51,52].

Liposomes may become reactive if they are sensitive to extrinsic or intrinsic stimuli
and exhibit modifications in their arrangement in concordance with temperature, pH, or
electrostatic charge. As a reference, pH-sensitive liposomes are stable in healthy tissues.
Nevertheless, tissues having a pH below 7.4 destabilize these nanospheres, leading to a
discharge of the engulfed bioactive substance [53]. This is a remarkable technique that helps
to intermediate the intracellular drug release, specifically when it comes to tumoral tissues.
Researchers have also created functionalized liposomes, which are able to target specific
molecules found on the surface of different cells, allowing their internalization into these
targeted cells [54]. Consequently, there are molecules bound on liposomes’ surfaces that
allow them to be guided to specific targets, ultimately increasing the quantity of therapeutic
agent internalized in the neoplastic cell and limiting or preventing its internalization in
healthy, normal cells. Antifungal drugs, antibiotics, and small interfering RNA (siRNA),
among others, have already been considered as carriers for liposomes and used in studies
as therapy alternatives for various diseases [55].

There are two distinct methods in which one can integrate medications into liposomes:
passive and active drug packing techniques. While the passive envelopment strategy
implies that the bioactive molecules are entrapped in NPs during their assembly, in case of
the active loading, the therapeutic agents are packed into the intact liposomes [56]. The



Nanomaterials 2022, 12, 1376 5 of 26

capacity of drug entrapment through passive approaches greatly relies on the liposome’s
capability to take a specific volume of drug-containing solutions or solutes during the
vesicle auto-aggregation [42,44]. In the case of water-soluble drugs, the encapsulation
efficacy is directly dependent on the aqueous volume entrapped by the NPs, which, in turn,
is conditioned by the liposome’s morphology, concentration of phospholipids in the disper-
sion, and the number of the lamella. On the other hand, when we refer to lipophilic drugs,
a direct interaction with the phospholipid’s bilayer is found [57,58]. Consequently, the
envelopment efficiency depends on the variety and concentration of phospholipids. In this
case, morphological parameters do not influence the drug encapsulation efficacy. Conclu-
sively, the hydrophilic drugs are loaded inside the aqueous phase of the liposome [44,58],
while the hydrophobic drugs are trapped in the liposome’s bilayer (lipidic phase). The
bioactive agents become captured so the lipid-soluble segment will be fixed between the
constituting phospholipids of the NPs. The already manufactured unfilled liposomal vesi-
cles for active drug entrapment are combined with the concentrated solutions of the desired
drug [42,44,46,58]. After incubation, the drugs are uniformly dispersed in the liposomes
via diffusion. The convenience of this method is due to the high degree of permeability
for drug distribution characterizing the phospholipid’s bilayer, a fact that results in high
entrapment occurring within a suitable time [59]. The drugs enter the NPs pass through
the lipid bilayers, being guided solely by the concentration gradient until reaching the
optimum balance between the external environment and the core of the vesicles. During
dynamic loading, the hydrophilic drugs connect with the polar head groups of phospho-
lipids, being entrapped afterwards within the liposomes [8,60]. The number of fat-soluble
drugs that can permeate into a liposome is dependent on the packing constraints of the
lipid bilayer [44,61]. Thus, liposome manufacturing processes for this group of drugs un-
dergo considerable changes from one substance to another. Amphipathic medications pose
difficulties in remaining inside the NPs as they can easily diffuse through the lipid bilayers.
The active loading method has various conveniences, one of them being the fact that the
bioactive agent is absent during the assembly process of the liposomes [42,45]. As a result,
the safety precautions mandatory during the handling of toxic drugs will be diminished.
The limitation of this technique is that this procedure is restricted to a variety of drugs
having the properties of a weak amphiphilic base or acid which can diffuse through the
bilayers exclusively in the uncharged state [62]. The different loading strategies discussed
above are summarized in Figure 2.

Micelles

Micelles are colloidal particles, having nano-sized diameters and spherical shapes,
with a polar outer surface and a non-polar interior. This type of NP may carry bioac-
tive agents either within the hydrophobic center or bound covalently to the surface of
micelles [63]. The significant benefit of the micelles consists in the fact that they can be
designed and manufactured to carry fat-soluble medications very quickly. Just above their
threshold concentration, micelles are built due to the self-aggregation of the amphiphiles in
aqueous conditions, thus engulfing passively the fat-soluble bioactive compound partition-
ing into the hydrophobic medium of the micelle core [64–66]. If diluted below their critical
concentration, the micelles break apart, releasing the drug. The features of micelles are also
altered by the surrounding conditions. For example, blood contains specific compounds
that can influence the potential chemical gradient created between monomeric fraction
in the micelles and the surrounding aqueous phase, consequently increasing the critical
micelle concentration [64–66]. As a result, the stable micelles in saline solution may prove
to have poor stability in the blood and cause them to disperse and discharge the carried
drugs in advance [67,68].
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2.1.2. Polymeric Nanocarriers

Polymeric NPs are versatile particles within the size range between 1 and 1000 nm,
and may be given in several dosage forms. Based on their structural organization or
preparation method, polymeric NPs can be classified in nano capsules or nanospheres.
Polymeric NPs can be carriers of several medications for specific conditions or distinct
types of treatment. The drug could be dispersed in a liquid core of oil or water, which is
encapsulated by a solid polymeric membrane or could be dispersed in the polymer matrix.
Among all the NPs, polymeric NPs exhibit enhanced stability and improved encapsulation
effectiveness, which may be controlled by the manufacturing techniques and characteristics
of the materials utilized in the formulation [50,69]. As already mentioned, a polymeric coat
of the NP can provide further shelter from potential alteration and in addition delivers steric
stability. Various techniques can prepare polymeric NPs using natural or synthetic polymers.
The structure of these NPs may change according to the components of the formulation,
developing nano capsules [69,70]. The nano capsules present a nucleus encircled by a
polymeric wall, the drug being either held within the particle’s walls or adsorbed. The
constituents can be functionalized and facilitate the particle’s targeting. Several polymers
are used to prepare polymeric NPs [71]. Polymers must present biocompatibility, stability,
suitable kinetics of biodegradation, facile processing, preservation of their characteristics for
a restricted time in vivo and a slow degradation into soluble compounds [72]. Furthermore,
these products must be hypotoxic after particle disassembly. Polymeric NPs can entrap a
wide array of drugs after being released from the NPs according to the polymeric matrix’s
solubility [69]. One of the drug release mechanisms could be via distension due to polymer
hydration, followed by drug discharge through diffusion. An alternative mechanism of
drug release appears through a chemical and enzymatic reaction that has as an outcome
the polymer’s degradation at the release site, removing the drug from the NPs’ core [73,74].
Polymeric nanocarriers are vehicles with possible usage in multiple treatments as they
can alter the diffusion of the bioactive compound, while providing excellent stability and
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increased absorption at the action site. They can deliver greater therapeutic efficiency and
reduce the implicit harmful effects of conventional therapy [2,75].

In addition, polymeric micelles have been developed, which remain for extended
periods in the systemic circulation, a property that can be conveniently used for continuous
drug release. Moreover, as in the case of liposomes, polymeric micelles can be further
functionalized if embossed with guiding ligand particles for targeted dispatch of drugs to
designated cells and can be developed to promote drug delivery [63,76].

There are also other strategies of drug delivery nano systems reported in the literature
such as the manufacturing of hybrid lipid−polymer NPs that incorporate the benefits of
both lipid and polymeric NPs [40,41].

2.1.3. Nano-Emulsion Technology

Nano-emulsion can be considered a protocol which uses small particles that vary
from 50 to 500 nm. By using the nano-emulsion technology, semitransparent and low
viscosity solutions can be obtained [77]. The main compounds used in the manufacturing
process are oil, water, and a surfactant or co-surfactant. The assembly procedure uses
surfactants that have already been authorized for human use, while also demanding a re-
duced concentration of surfactants in contrast to micro-emulsion technology. Furthermore,
these solutions may also be used in lamellar phases, forming thin liquid coats around the
nano-emulsion droplets, which may result in exclusive drug delivery characteristics [78,79].
Nano-emulsion technology has been advantageous in developing different delivery prod-
ucts, which include creams, liquid solutions, and foams. The procedure is also largely
utilized in solvents for lipophilic drugs, covering their unpleasant taste [80–82], but im-
proving bioavailability and absorption, while also suppressing irregularities in absorption.
Consequently, the drugs may be administered through multiple routes, therefore being
utilized to achieve immediate or late curative effects of the treatment [83,84]. It was also
proven that oil-soluble active substances used in nano-emulsion technology may lead to
enhanced cellular uptake of the bioactive content and protect the presumably unstable
drug molecules from harmful factors, such as light and enzymatic or oxidative degradation.
Through the nano-emulsion assembly protocols, controlled drugs with various chemical
and physical properties can be delivered to specific cells or tissues [21,85]. Consequently,
the final delivery system can solubilize the lipophilic drug and increase bioavailability
when the drug is orally administered [21].

2.2. Inorganic Nanocarriers

Inorganic elements, such as gold, are frequently considered as raw materials in the
production of metallic NPs. Metallic NPs can be largely characterized as greatly organized
structures, in a three-dimensional manner [86]. Being more malleable than other types of
NPs, these nano-sized particles have the possibility of regulating their shape, size, design,
composition, or encapsulation. Even if inorganic NPs show several benefits, a series of
weaknesses should be still considered with respect to biomedical applications. The most
important limitations of these inorganic NPs are the lack of ability to load drugs into
their configuration and the relatively well-known cytotoxicity and blood-related adverse
effects, facts that depend on the concentration of the carried agent, their size, and exposure
time [4,87,88]. The synergic combination of bioactive molecules and inorganic materials
in nanocarriers intends to overcome traditional challenges posed by the pharmaceutical
domain, as some classically-administered drugs exhibit low solubility and specificity, poor
bioavailability, and low treatment efficacy [2,21,89].

Gold nanostructures have been used due to their remarkable optical properties. Be-
yond their optical properties, gold nanoparticles (GNPs) exhibit low reactivity and toxicity,
biocompatibility, and high capacity of functionalization, becoming great candidate mate-
rials for biomedical applications [90,91]. Currently, diverse strategies for gold nanoparti-
cle synthesis with specific architectures have been reported, spherical nanoparticles and
nanorods being the most used gold nano-sized structures in the biomedical field [92,93]. In



Nanomaterials 2022, 12, 1376 8 of 26

addition, they may be great candidates for in vivo experiments. A modified method is to
coat nanoparticles with PEG, a polymer that enhances stability and prevents opsonization
in biological environments [94–96]. The combination of molecules and polymers on the
GNPs’ surface is an excellent approach to amplify their half-life in the bloodstream and,
ultimately, to promote their biodistribution and tissue-targeting capacities. GNPs exhibit
convenient water solubility, excellent photostability, and a high surface-to-volume ratio,
increasing surface functionalization ability [97,98]. Various cargo molecules can be encased
within this type of nanocarrier, varying from anticancer drugs to proteins and nucleic acids.
In addition, they can be conjugated with a large array of materials, linked through covalent
bounds via thiol/amine groups, producing functionalized gold nanoconjugates [99–101].
Moreover, their bioinert properties and the versatility of surface modification make GNPs
strong candidates for drug delivery purposes. Certainly, a good trigger for the controlled
release of the engulfed bioagents would be their photothermal conversion [102–104]. Drug-
delivery systems, as already known, rely on the entrapment of a drug inside a carrier or
on the conjugation of drugs on the surface of these carrier particles. Thus, therapeutic
agents may enhance their selectivity, pharmacokinetics, and effectiveness overall, while
having fewer side effects [1,16,21,105]. By targeting therapeutic agents in functionalized
GNPs, a synergic effect may be further obtained. Despite all the progress made in re-
cent decades regarding the surface modification and synthesis procedures of gold-based
NPs, their biological stability for in vivo factual utilization in the clinical field remains
challenging [106–108].

Other promising inorganic nanoparticles for biomedical applications are silica NPs.
Currently, the literature describes two types of silica NPs: mesoporous and solid. Both are
promising drug delivery systems: the surface can be functionalized to interact specifical
with cells or receptors, whereas the internal structure can be modified to assure the control
of releasing the drug payload. Besides drug delivery systems, other applications of silica
NPs include: gene delivery, protein delivery, bar-coding tags, DNA detection, imaging, and
diagnosis [109].

Carbon NPs can vary in form, ranging between different carbon-based NPs and
nanocomposites: carbon nanotubes, carbon nanofibers, grapheme, and fullerenes. Due to
their capacity of being functionalized, they can be used in medical or industrial applications.
Although showing advantageous characteristics (tensile strength, specific surface area,
electrical conductivity), carbon NPs present certain weaknesses: they are insoluble in
aqueous or organic solvents and tendency to form agglomerates. These limitations can be
rectified by functionalization [110].

In biomedical applications, magnetic NPs have an essential role because of their
exclusive magnetic properties. Particularly important are iron oxide nanoparticles, due
to their properties of manipulating particle motion, useful in imaging external magnetic
fields. Other important properties include high biocompatibility, low cytotoxicity, and high
drug loading capacity. Iron oxide nanoparticles are widely used in magnetically triggered
drug release, magnetic particle imaging, and cancer therapies [89,111].

As a conclusion, Table 1 summarizes the characteristics, strengths and weaknesses, as
well as data on the clinical use of all the organic and inorganic NPs discussed above.
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Table 1. A brief overview of organic and inorganic nanocarriers.

Type of Particles Strengths Weaknesses Features Biocompatibility Clinical Uses References

Organic nanocarriers

Liposomes

Facilitate the transport of
specific medications;

Prevent deterioration of the
loaded drug;

Increased half-life when coated;
High permeability of

drug distribution.

Sensitive to extrinsic and
intrinsic stimuli;

Limited variety of drugs
that can be delivered.

Small, round vesicles;
Amphipathic particles;

Bilayer structure of phospholipids
and cholesterol;

Functionalization with PEG.

High Controlled release of therapeutic
agents in a specific tissue or organ. [8,42,44–58,60–62]

Micelles
Prolonged, continuous drug release;

Carry fat-soluble medications
very quickly.

Poor stability in blood;
Use only for

lipophilic drugs.

Colloidal particles;
Nano-sized diameters;

Spherical shapes;
Polar outer surface;
Non-polar interior.

High Drug-delivery systems. [64–66,112]

Polymeric

Versatile;
Enhanced stability;

Improved encapsulation efficacy;
Steric stability;

Great therapeutic efficiency.

Poor drug encapsulation for
certain hydrophilic drugs;

Possible drug leakage;
Toxic degradation,

monomer aggregation.

May differ in concentration and
composition, in size, shape,

surface characteristics,
dispersion state.

Depends on the
polymer used

Ocular drug delivery;
Cancer diagnosis;

Oncologic treatment;
Stimuli-responsive and triggered

release systems.

[42–49,113]

Inorganic nanocarriers

Gold

Low reactivity and toxicity;
High capacity of functionalization;

Soluble in water;
High surface-to-volume ratio

and photostability;
Bioinert;

Carry different types of molecules.

Decreased biological
stability in vivo.

Different shapes: spherical, rods;
Functionalized with PEG. High

Biomedical
applications—Genomics,

Immunoassays, etc.
Photothermal therapy;

Drug carriers.

[93–96,98–111,114]

Silica

Versatility;
High surface area;

Homogenous distribution;
Non-toxicity;

Flexible;
High drug load capacity;
Easy functionalization.

Surface density of
silanol groups;

Metabolic changes.
Functionalized with PEG. High

Biological imaging;
Delivery of drugs, genetic

material, proteins.
DNA barcoding

[115,116]
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Table 1. Cont.

Type of Particles Strengths Weaknesses Features Biocompatibility Clinical Uses References

Carbon
Tensile strength;

Electrical conductivity;
Specific surface area.

Tendency to agglomerate;
Insoluble in aqueous and

organic solvents.

Different properties depending on
shape, interactions
between carbons;

Functionalized with PEG.

Graphene NPs are
biocompatible.

Biomedical;
Industrial. [117]

Iron Oxide
Low cytotoxicity;

Magnetic properties;
Low price.

Conjugation with DNA,
proteins, organic dyes Spherical or irregular shape. High

Cancer therapies;
Imaging and diagnosis;
Magnetically triggered

drug release.

[92,118]



Nanomaterials 2022, 12, 1376 11 of 26

3. Nanocarriers for Delivery of Vitamin D and K
3.1. Vitamin D Metabolism: A Brief Overview

The fat-soluble vitamin D is associated with the metabolism of calcium and phospho-
rus by facilitating the absorption of calcium from the intestine and contributing to bone
mineralization. Vitamin Ds are a group of sterols that have a hormone-like action [119–121].
The active molecule 1,25-dihydroxycholecalciferol binds to nuclear receptor proteins. The
dietary vitamin D compounds (D2 and D3) are absorbed into the enterocytes of jejunum
and ileum, from where the nascent chylomicrons will carry vitamin D into the blood-
stream [122]. After being synthesized in the epidermis, the endogenous vitamin D3 is
attached to the vitamin D-binding protein present in the plasma and transferred to the liver
for further processing. The processing pathways of vitamin D2 and D3 are alike. Briefly,
vitamin D is hydroxylated to 25-hydroxyl vitamin D (25-OHD) by hepatic 25-hydroxylase
in the endoplasmic reticulum compartment of the hepatocyte [123–125]. The 25-OHD
synthesized in the liver further undergoes hydroxylation, the responsible enzyme being
1-alpha-hydroxylase, and 1,25-dihydroxy vitamin D is produced, which is the active type
of vitamin D. This bioactive form of vitamin D stimulates the intestinal absorption of im-
portant minerals, such as calcium and phosphorus [123,126,127]. Vitamin D and its analogs
have been shown to induce apoptosis of tumor cells or promote their differentiation into
a mature and less-aggressive form of the cell lines. Although there are mounting studies
on this topic, the evidence is conflicting in terms of the beneficial effects of vitamin D in
several malignancies [125,126,128,129].

3.2. Synopsis on Vitamin K Metabolism

Vitamin K is an essential fat-soluble vitamin whose crucial role is in post-translational
modification of a set of proteins referred to as vitamin K-dependent proteins, or Gla
proteins (due to the presence of gamma carboxyglutamic residues), which are engaged in
several physiological and pathological mechanisms in the human body such as coagulation,
vascular calcification, and bone metabolism [130]. There are several known isoforms of
vitamin K: phylloquinone or vitamin K1 (found in green leafy vegetables), menaquinones
or vitamin K2 (found in fermented cheese and soybeans), and the synthetic compounds
menadione or vitamin K3. The absorption of vitamin K depends on its integration into
mixed micelles in the intestinal lumen, demanding the presence of both bile acids and
products of pancreatic enzymes [131,132]. Dietary vitamin K is absorbed in the proximal
small intestine by active transport and is integrated into chylomicrons, which are then
secreted into the lymph and enter the bloodstream. Chylomicrons and very-low-density
lipoproteins transport phylloquinone through the bloodstream, which is then taken up by
the extrahepatic tissues to synthesize menaquinone, the main vitamin K deposit form found
outside the liver [133]. In the terminal ileum area where bile salts are present, menaquinone
is absorbed. It is worth mentioning that menaquinones developed by the colonic bacteria
are poorly absorbed, since they remain firmly bound to the membranes of the bacterial cells
due to the lack of bile salts [134,135]. On the other hand, menadione is rapidly metabolized
so that only a small ratio is transformed to menaquinone-4, the bioactive form [136].

3.3. Vitamin D and K Awareness

Dedicated research conducted by the Centers for Disease Control and Prevention
(CDC) and other institutes has shown that the deficiencies of critical vitamins seem to be
even more dramatic than we may believe [137]. Specifically, a study organized by the CDC
between 2015 and 2016, and another investigation carried out from 1999 to 2014, concluded
that vitamin D supplements taken by the US population are greatly unbalanced [138–140].
With more than 18% of the population taking 1000 IU or more of vitamin D daily (considered
as a high dose) between 2013 and 2014 and with only a total of 28% of all individuals taking
vitamin D supplements in the next year interval, it was clear that the US population is not
properly informed on the appropriate administration of vitamin D [141–144].
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A study on a large population carried out in 2019 by Lips et al. [145], showed similar
unfortunate results with regard to serum concentration of vitamin D in Europe and even
worse tendencies in the Middle East countries. Briefly, while in Europe 20–60% of the
population suffers from vitamin D hypovitaminosis, in the Middle East the demographic
share of this deficiency may reach 80%. In the case of vitamin K, mainly due to dietary
habits, the common European generally has higher intakes than the superior recommended
limits widely agreed [146].

Due to poor dietary perspectives and inadequate medical advice, African and Asian
countries have the worst prognoses for vitamin D and/or K hypovitaminosis. This has
been scientifically proven repeatedly, culminating with data showing a high prevalence
of Vitamin K deficiency bleeding (VKDB) among Asian countries and rickets in African
populations (which occurs especially in infants) [133,146–148]. As regards Australia and
New Zeeland, the inhabitants mainly take their necessary dose of vitamin D through sun
exposure, and only a few groups of people are at risk of hypovitaminosis due to job-related
activities. Concerning vitamin K levels, both countries have relatively clear governmental
policies that encourage the administration of vitamin K to neonates, in order to prevent
VDKB development. The same governmental support is also given in case of vitamin D
supplements intake for those found at risk of hypovitaminosis [149–151].

All things considered, even if developed countries benefit from an appropriate dietary
intake, superior medical care, and protective governmental measures, hypovitaminosis
conditions may still pose concerns, while in the underdeveloped nations, these deficits
have serious implications, as presented above. However, although both compounds can be
acquired from food, beverages, or synthesized endogenously, it is safe to assume that the
current levels of vitamins D and K globally predict some rather threatening perspectives,
which may be greatly alleviated through the use of nanocarriers in dietary supplements.

3.4. Delivery of Vitamin D and K Using Nanocarriers

With more than 409 clinical trials and more than 50 approved formulations by the
Food and Drug Administration (FDA) involving nanomedicine concepts in the past
12 years, the development of nano-based therapies can still be considered a highly emer-
gent field [152,153]. Even if this field may have been overpromoted, it is our strong belief
that with revenues, nanobiotechnology will finally thrive and dramatically improve the
quality of life worldwide.

Until now, nanocarriers have been mainly designed to fight infections, cancers, rare
diseases, or even serve as bone substitutes. With the polymer-based formulations being
the most frequent choice for the already approved drugs, these NPs can have different
matrices, from nanocrystals to liposomes or inorganic complexes [21,154,155]. The most
common benefits brought by NPs in the already approved formulations are reported to be
decreased (systemic) toxicity and increased delivery to the disease site, implicitly, greater
stability of the loaded agent (mainly proteins), and prolonged release. These benefits, as
expected, also overlap with the main reasons for which nanocarriers were considered as
drug carriers in the first place [156,157]. We emphasize this information, even if it seems
redundant, as it may help to put in proper context the current chapter.

It is worth mentioning that even if nano-sized carriers were mainly developed for
rather complex health issues, like those mentioned above, they may also find applicability
in enhancing the delivery of vitamins [158–160]. Considered as an important subtype
of supplements, these compounds are frequently chosen as efficient prophylactic agents,
being ubiquitously available, generally procured with no need of a specialized medical
prescription [161]. However, since vitamin deficiency can lead to serious health concerns,
such as anemia, vision or memory loss, fractures, or increased risk of several types of cancer,
this medication segment cannot be neglected.

Falling under the category of lipophilic vitamins, both vitamin D and vitamin K may
present poor bioavailability, due to the enzymes and an improper chemical environment
found in the gastrointestinal tract [162]. As the main way of supplements delivery is
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via oral administration, the usable intake quantities may be much lower than expected
due to absorption, solubility, and molecular stability concerns [163,164]. In addition, the
absorption of these two nutrients may further interfere with host diseases (especially liver
or gut disorders), diet, the age of the host, or the usage of anti-obesity drugs. In addition, it
was proven that vitamin D and K share the same pathways for their uptake, so they may
be considered competitors with regard to their intestinal absorption [165]. Taking all the
possible aspects into account, the importance of developing novel delivery strategies using
nano-dimensioned shells to protect these molecules and improve their systemic assimilation
remains conclusive. Thus, we summarize the NP-based formulations appropriate for the
encapsulation of vitamins D and K in Tables 2 and 3.

Table 2. Nanoparticle-based formulations for the encapsulation of vitamin D.

Encapsulated Vitamin Nanocarrier Type Findings References

Vitamin D

Nanostructured lipid carriers
(NLCs)

D3-NLC formulations determined faster systemic
absorption and prolonged presence of the

bioactive compound in plasma.
[166,167]

Poloxamer407 was proven as the best non-ionic
surfactant to stabilize D3-containing NPs. [168]

Combined with doxorubicin, vitamin D-loaded
NLCs can enhance the efficacy of chemotherapy in

breast cancer.
[169]

Micelles

Casein micelles protect the encapsulated vitamin
D2 against UV-light induced deterioration. [170]

Vitamin D2 presents a great affinity for caseins
(which may auto-assemble in micelles). [170]

Chitosan use in micelles formulations may
diminish vitamin D bioavailability by up to 37%. [171]

Liposomes

Liposome-D3 loaded nano capsules were
successfully used as anti-photoaging agents when

applied directly on the skin
[172]

NPs membrane stability was reported to be
affected by vitamin D3; the issue was amended by

chitosan coating.
[173]

Polymers

Tyro sphere formulations carrying vitamin D3,
already used to entrap other drugs, such as

paclitaxel, exhibited a much greater skin
permeation for topical administration.

[174]

The encapsulation of vitamin D in the so-called
BMC polymer protected the bioactive compound
even after the remarkable challenge of standing

two hours in boiling water.

[175]

Poly (lactic-co-glycolic acid)
(PLGA)

PLGA NPs loaded with calcitriol were proven to
be prominent enhancers of calcitriol antineoplastic

activity in vitro.
[176]

Inorganic NPs

Vitamin D-loaded gold NPs proved to greatly
enhance osteogenic differentiation in vitro. [177]

Stable CaCO3-NP-based Pickering emulsion
containing vitamin D3 can be regarded as the

ultimate supplements since they combine both
calcium and vitamin D3, crucial for its absorption.

[178]

The encapsulation of vitamin D in nano-graphene
oxide NPs seems to be dependent on the presence

of TW 80 surfactant.
[179]
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As we note in Table 1, in an expected manner, organic NPs are largely preferred for
vitamin D delivery to inorganic ones, primarily due to the safety concerns raised by the
second category.

Still, besides the examples mentioned in Table 1, it is worth mentioning that inorganic
NPs made of calcium phosphate, or from copper oxide or selenium, were successfully used
to regulate the vitamin levels in serum of rheumatoid patients or in women with infertility,
respectively [180].

Thus, nano-sized systems may also be used as tools that act rather indirectly in
therapies, and punctually in health conditions that may be affected by detrimental
vitamin D levels.

Table 3. Nanoparticle-based formulations for the encapsulation of vitamin K.

Encapsulated Vitamin Nanocarrier Type Findings References

Vitamin K

Nanostructured lipid carriers
(NLCs)

NLCs may not be the best nanocarriers to
transport vitamin K1, since the encapsulation yield
of the bioactive substance seems to be poor (<5%).

[181]

Due to its hydrophobic character, similar to
vitamin D, vitamin K tends to incorporate into the
lipidic matrix of the NPs, which not only reduces
the concentration of the load but may also pose

issues related to the NP stability and size.

[182]

Micelles

Vitamin K encapsulated in micelles made of EPC,
DSPE-PEG 2000 and glycocholic acid showed
enhanced stability in an acidic environment

(mimicking gastric fluid) when compared to other
traditional orally administered

vitamin K supplements.

[183]

The PEG coating was highly recommended for
micelles containing this compound, in order to

avoid the coalescence of vitamin K-containing NPs
due to the low intragastric pH.

[184]

The ability to overcome malabsorption of vitamin
K under cholestatic conditions by using micelles

loaded with this nutrient was considered in at
least two independent studies.

[185]

Liposomes

Liposome−vitamin K formulations were designed
as an aerosol for topical delivery, expected to
overcome acneiform reactions, that may also

prevent the formation of wrinkles.

[186]

The simil-microfluidic method is regarded as a
highly efficient procedure to obtain stable and

highly loaded NPs that encapsulate vitamin D3,
K2, E, and other compounds
(such as curcumin extract).

[187]

The entrapment efficiency of vitamin K2 into
nanoliposomes is greater than the encapsulation of

vitamin D3.
[188]

Inorganic NPs

Biomimetic hydroxyapatite/poly xylitol sebacic
adibate/vitamin K nanocomposites proved to
have the appropriate roughness to adhere to

natural damaged bone and enhance its
regeneration through vitamin K activity.

[189]

As for the alternatives available for vitamin K encapsulation, we note there are only a
few relevant studies. Surprisingly, there are no pertinent investigations on the inorganic
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NPs that could be used for vitamin K delivery. The slightly reduced interest in vitamin K
transportation via nano-sized shells, in comparison to vitamin D nanocarriers, could be
explained either by the less frequent occurrence of vitamin K deficiency in the population
or through less investigation related to it.

Many of the formulations mentioned in Tables 1 and 2 have a generous range of uses,
from beverage or food fortification with vitamins to the production of cosmetic products,
anti-tumoral medications, and bone regeneration. There are also commercially available
liposomal formulations that encapsulate both vitamins D3 and K2.

Even if each nanocarrier type presents both advantages and disadvantages under
certain conditions, in perspective we are looking forward to comparative experimental
studies to outline the benefits and drawbacks of NPs with different matrices. As the
acknowledgment of the need for a healthier lifestyle and the importance of micronutrients
is rising, even due to the pandemic situation, we expect that comparative studies would be
further considered. Nevertheless, this is a pioneer review on nanocarriers that have proven
to be suitable for vitamin D and K transport to tissular level.

An interesting, yet niche topic, regarding the evolution and characteristics of various
types of NPs is represented by lipid NP formulations. More than three decades ago, when
they were first produced, these nanocarriers presented several advantages over other
conventional carriers (like liposomes), including but not limited to improved site-specificity
of drug delivery or a precisely controlled release of the loaded compounds [181,190,191].
The first generation of these lipid NPs, known as solid lipid nanoparticles (SLNs), was
developed in parallel in 1991 by different specialists in Italy and Germany [163,192–195].
With regard to vitamin delivery through SLNs, although studies are showing a good
loading capacity of the vitamin D2 and vitamin K1 in such nanostructures and relatively
good storage stability of these NPs, the general tendency is to consider these nanocarriers
as rather primitive, unstable and inefficient structures [196,197]. This is the reason why
we decided to rather exclude these formulations from our tables, but still mention them
to provide an evolutionary view of the lipid-matrix-based NPs in the context of possible
nano-sized systems used for vitamin delivery [198,199]. Consisting of a blend of solid
and liquid lipids, NLCs came to solve mainly the poor loading capacities of SLNs and the
long-storage issues related to these first-generation NPs [34,40]. According to the literature,
there are still concerns related to the usage of these NLCs as nanocarriers, although the
improvements over SLNs cannot be denied, a fact reflected as well in Tables 1 and 2. The
dramatic improvement brought by these novel structures comes from their very structure,
which is much more flexible, allowing a greater quantity of drugs/vitamins to be loaded,
while also preventing the lipid crystallization phenomenon that would ultimately lead to
the expulsion of the bioactive compound, a process that occurs frequently in the case of
SLNs [200–202]. Still, both types of NPs share a common incapacity: the poor integration
of hydrophilic drugs. For this purpose, lipid drug conjugates were developed in 2001 in
order to facilitate the delivery of bio-compounds having any polarity [203].

In Figure 3 we envisage the use of oral formulations with NPs for vitamin D and K
delivery. Oral administration of NPs delivering vitamin D and K is an efficient route of
administration, as other delivery methods are associated with various issues: adipose tissue
accumulation or decreased biocompatibility [204]. Depending on the delivery system used,
digestion of the NPs and release of the vitamins can be made by different mechanisms.
Protein digestive enzymes in the stomach can release the vitamins from the protein-based
delivery systems, decreasing their bioavailability. If the NPs are lipid-based, they are hy-
drolyzed by lipases directly in the intestinal lumen, exposing the vitamins to the enterocytes,
increasing the intestinal passive absorption and the their bioavailability [205].

Another perspective that was not encountered in the consulted studies, but may be
very effective as a clinical approach, would be a hybrid strategy for the gavage of the
two vitamins in parallel [161,162]. Specifically, because these two lipophilic compounds
may be competitors when it comes to their intestinal absorption, taking a conventional
orally-given capsule could provide a fast systemic release of vitamin D while a nanocarrier
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with prolonged release of vitamin K would serve as a mediator that would prevent the
two vitamins from being absorbed in the same time [206]. Even if we could not find any
mention of such strategy, this approach should be at least considered for further in vivo
studies, if not tried to be applied as a clinical plan.
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There are also alternative nanocarriers not included in our tables, since they rather
represent isolated efforts to discover emerging formulations, which are not yet validated or
widely used. An example in this respect, consisting of NPs made from alginate derivatives,
was proved to be not only resistant to a simulated gastric fluid, but also partly immune to
an experimental intestinal juice, a fact that would ultimately lead to a sustained, prolonged
absorption of a high dose of vitamin D3 [207].

Recently, vitamin D-loaded nano emulsions were also considered in several studies as
a viable solution for its delivery, with promising results in humans and rats [208]. Besides
the expected advantages, such as improved systemic intake for patients suffering from
malabsorption diseases and offering a great candidate for food fortification, remarkably
these vitamin D-engulfing nano emulsions were proven to mediate hepatoprotective ac-
tivity in rats with liver injury caused by a high-fat diet [166,209]. Corroborating with the
usual hypovitaminosis D observed in coexistence with the non-alcoholic fatty liver disease
(NAFLD), nano-emulsions based on fish oil may dramatically improve the prognosis of
NAFLD patients [210–212]. This is because such kind of fat was already shown to improve
vitamin D bio accessibility in the first place when compared to this nutrient found in the
free form, and secondly, due to the great quantity of ω−3 fatty acids found in fish oil,
compounds already largely known for their hepatoprotective effects, especially when we
refer to NAFLD prevention or alleviation [213,214].

Nano-emulsion formulations showed promising results also regarding the delivery
of vitamin K. Even more interestingly, in the case of vitamin K1, scientists successfully
developed an aqueous solution containing the bioactive element, which could be sprayed
on the skin and absorbed into it [215]. Having also enhanced stability in different storage
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conditions, this experiment could provide a factual, attractive variant for the materialization
of commercial products that facilitate topical administration of vitamin K1 [186,216,217].
Furthermore, as in vitamin D nano emulsions, this kind of formulation can have collateral
benefits, other than providing the necessary quantities of supplements in hypovitaminosis
cases. In this respect, nano-based emulsions containing vitamin K2, conjugated with a
sialic acid (SA)–cholesterol complex, exhibited clear and specific anti-tumoral activity in a
murine sarcoma cell line, due to the known antineoplastic activity of this vitamin and the
high affinity of the SA-cholesterol conjugate for tumoral markers [218].

All the above examples clearly outline the versatility of the nano-sized formulations
involving each of these two families of compounds (vitamin D and/or vitamin K), inviting
intense research on the matter, while also highlighting the opportunities that may emerge
from these studies.

Despite still exhibiting safety issues, inorganic NPs may still create favorable circum-
stances for the delivery of vitamins. Even though this segment was poorly represented
in Tables 1 and 2, it is worth briefly mentioning some of the most promising experiments
performed on nano-sized inorganic particles. For example, by conjugating vitamin D with
GNPs, Shi et al. [219] proposed a system that not only inhibits the osteoclast differentiation
process but also dramatically decreases the quantity of the local reactive oxygen species
in cases of osteoporosis [219–221]. Due to these antioxidant properties, we might also
assume that this technology could be largely tested and applied as a therapeutic agent in
other oxidative stress-induced conditions, such as cancers, diabetes, Alzheimer’s disease,
Parkinson’s disease, or others [222]. Vitamin D-conjugated GNPs can also play a vital role
in nano-based bone tissue engineering, which was partially confirmed by Nah et al. [223],
since great enhancements have been achieved in this domain lately, with GNPs being
recognized as important actors in the field. In favor of this hypothesis, we also want to
evoke an experiment that used vitamin D-loaded hydroxyapatite nanocomposites [224].
Ingeniously built, these nanocomposites can provide not merely the necessary vitamin
levels for sustained bone mineralization, but also inorganic agents, such as Ca2+ and PO4

3−,
contained in the matrix of the NPs, that is crucial for bone tissue regeneration [225].

Unfortunately, as already mentioned, we could not find any relevant examples of nano-
based formulations for vitamin K delivery that are based on inorganic materials. This fact
strengthens the premise that this niched approach of delivery for these specific classes of
compounds is still largely unexplored, presumably posing rich opportunities. However, it
is our conviction that similar strategies used in the case of vitamin D can also be considered
for the development of inorganic NPs carrying vitamin K. This assumption is mainly based
on the similar polarity of these two vitamins, as well as on the already-existing commercial
formulations that encapsulate both these vitamins under the same conditions and in a
single common process. Moreover, the actual manufacturing strategies used to obtain
organic NPs are largely similar in the cases of both vitamins D and K. However, even if one
could rely on the existing experiments that describe the synthesis of inorganic nano systems
used for vitamin D delivery, notable struggles may occur when trying to obtain conjugates
between vitamin K and mineral substrates through the same techniques used for vitamin
D composites. This is because, even if these two classes of compounds are both fat-soluble,
sharing some physiological functions, and largely found in synergistic processes, their
chemical structures present many differences, which may lead to incompatible associations
with very same inorganic conjugates.

Considering all the above, it is safe to assume that there are still many opportunities
in this field, from both perspectives of academic research and industry innovation. As
already stated, we believe that these nano-based solutions could, at least partially, solve
the factual issue of vitamin D and K deficiency or hypovitaminosis worldwide. Even if
we consider bioactive-containing nano emulsions incorporated in common topical creams,
and loaded micelles that overcome malabsorption or GNPs as a solution for bone tissue
engineering, it is clear that these innovative products hold some answers for current global
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vitamin intake issues. Therefore, further investment and research on this field can lead to
productive outcomes.

4. Conclusions

With the growing understanding of vitamins’ health effects and the harmful risks
associated with vitamin D and K deficiency, discovering new solutions has become critical
within the scientific community. Consequently, nanotechnology has emerged as a suitable
answer via the capacity to engineer carriers at nanoscale level which presents numerous
beneficial characteristics encapsulated into one multifunctional NP.

This is a pioneer review on nanocarriers for vitamin D and K, which could be helpful
to optimize the already-described systems and make them more efficient and specific to a
target tissue. Nanocarriers for drug delivery represent a novel medical entity, thus further
techniques are required to facilitate the translation of NP-based medications from discovery
to development, accelerating the transformation of nanotechnology-proven advantages
into real solutions for patients.
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