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� Rhizosphere microbial communities
are important for plant health.

� Specialized metabolites in the
rhizosphere influence the microbial
communities.

� Isoflavones and saponins are major
specialized metabolites secreted by
soybean.

� Secretion is regulated
developmentally and nutritionally.

� Possible links between specialized
metabolites and microbial
communities are highlighted.
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The rhizosphere is the region close to a plant’s roots, where various interactions occur. Recent evidence
indicates that plants influence rhizosphere microbial communities by secreting various metabolites and,
in turn, the microbes influence the growth and health of the plants. Despite the importance of plant-
derived metabolites in the rhizosphere, relatively little is known about their spatiotemporal distribution
and dynamics. In addition to being an important crop, soybean (Glycine max) is a good model plant with
which to study these rhizosphere interactions, because soybean plants have symbiotic relationships with
rhizobia and arbuscular mycorrhizal fungi and secrete various specialized metabolites, such as isofla-
vones and saponins, into the soil. This review summarizes the characteristics of the soybean rhizosphere
from the viewpoint of specialized metabolites and microbes and discusses future research perspectives.
In sum, secretion of these metabolites is developmentally and nutritionally regulated and potentially
alters the rhizosphere microbial communities.
� 2019 The Author. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Soybean (Glycine max) is a major crop worldwide, with over 300
million tonnes produced globally. In contrast to cereals such as
corn (maize; Zea mays), rice (Oryza sativa), and wheat (Triticum
aestivum), soybean produces seeds containing many proteins and
lipids, which make soybean particularly nutritious. In Japan,
soybean is used as a raw material for tofu, natto, soy sauce, and
miso, but elsewhere the seed is used mainly for oil and cattle feed.
Soybean also contains various plant specialized (secondary)
metabolites, such as isoflavones and saponins, as functional
ingredients [1,2]. Because soybean plants establish symbiotic
relationships with rhizobia and arbuscular mycorrhizal fungi, the
crop does not require much fertilizer to produce seeds. In reality,
however, a large amount of fertilizers is supplied to soybean fields
to maximize yield. Intensive use of fertilizers can lead to environ-
mental problems such as eutrophication of rivers and lakes and
global warming. Sustainable agricultural production requires that
both yield and environmental issues be considered. Thence, the
recruitment of rhizosphere microbes is necessary for sustainable
soybean production.
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The rhizosphere is defined as ‘‘the zone of soil surrounding the
root which is affected by it” [3,4]. Roots exert both physical influ-
ences, such as by root structure or heat generation, and chemical
influences, such as by the secretion of a wide variety of plant-
derived metabolites. Plant roots secrete metabolites into the rhizo-
sphere actively using the energy from ATP and passively through
diffusion [5,6]. Metabolites are also released into the rhizosphere
as root tissues such as border cells become detached from the main
root body [7].

Plants secrete both low-molecular-weight compounds, such as
amino acids, sugars, phenolics, terpenoids, and lipids, and high-
molecular-weight compounds, including proteins, polysaccharides,
and nucleic acids, depending on the growth stage and environmen-
tal conditions [6]. Upon secretion into the rhizosphere, most
metabolites are rapidly degraded by soil microbes, but some, espe-
cially specialized metabolites, remain in the soil and mediate bio-
logical communication [8,9]. The distribution of these metabolites
in the rhizosphere varies depending on their chemical properties,
with a relatively long-distance distribution of volatile compounds
such as sesquiterpenes [10].

Metabolites secreted by soybean roots that function in
biological communication in the rhizosphere are shown in Fig. 1.
Isoflavones and strigolactones are signal molecules for symbioses
with rhizobia and arbuscular mycorrhizal fungi, respectively [5].
Glyceollin is biosynthesized as a disease-responsive phytoalexin.
Glycinoeclepin A, which promotes hatching of soybean cyst
nematodes [11], has potential functions in communication.

The communities and functions of rhizosphere microbes are
distinct from those in bulk soils. Microbial diversity is reduced
nearer to roots, with further reduction in the endosphere
[12–15]. Accumulating evidence suggests that plants affect miner-
als and microbes in the rhizosphere [16–19]. The enhancement of
the destabilization, solubilization, and accessibility of minerals in
Fig. 1. Metabolites in the
the rhizosphere by plants is summarized elsewhere [20,21]. This
review focuses on the metabolites and microbes of the rhizosphere
of soybeans grown in hydroponic culture and in fields. The charac-
teristics of the soybean rhizosphere in relation to sustainable agri-
culture are also discussed.

The keywords used in the search strategy, include rhizosphere,
microbiome, metagenome, soil microbe, root exudate, secondary
metabolite, specialized metabolite, and soybean field. The
extracted information was collected from PubMed, Web of Science,
and Google Scholar.
Metabolites

Plants produce a wide variety of low-molecular-weight com-
pounds. These metabolites include a diverse range of bioactive
compounds used in defence against both biotic and abiotic stresses
and as attractants or repellents of other organisms. From an evolu-
tionary perspective, most of these compounds are produced by cer-
tain species within a plant lineage and are called specialized
metabolites. Researchers have estimated that more than 200,000
specialized metabolites are produced by plants [22,23]. During
their evolution, plants acquire the ability to synthesize new
metabolites, which confer adaptive advantages in ecosystems [24].

Two classes of specialized metabolites dominate the root exu-
dates of soybean [25,26], namely, isoflavones and saponins. As
dietary components, soybean isoflavones have important functions
in reducing the risk of breast and prostate cancers [27], promoting
bone health [28], relieving menopausal symptoms [29], and pre-
venting coronary heart disease [30]. Soybean saponins also have
bioactive functions [2], such as anti-inflammatory effects [31],
free-radical scavenging activity [32], anti-allergic activity [33],
and immune modulatory activities [34]. This section focuses on
soybean rhizosphere.
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isoflavones and saponins, but the recent findings on the secretion
of other metabolites and their potential functions in the rhizo-
sphere are also summarized.
Isoflavones

Isoflavones are a subgroup of flavonoids found predominantly
in legume plants [35]. These flavonoids are produced via isoflavone
synthase. Isoflavones are well known for their function in plant–
microbe interactions, particularly in symbiosis and defence. In
symbiosis, soybean roots secrete isoflavones such as daidzein and
genistein into the rhizosphere as signal compounds for rhizobia
to establish nodulation [36]. In defence, daidzein serves as a pre-
cursor for the biosynthesis of glyceollins and phytoalexins that
have antimicrobial and/or anti-herbivore activities, and are
induced upon infection by pathogens such as Phytophthora sojae
and Macrophomina phaseolina [37]. Rhizosphere isoflavones also
play various roles in biological communication with soil microbes
[38,39]. Researchers have proposed two pathways for the secretion
of isoflavones in soybean: (1) ATP-dependent active transport of
isoflavone aglycones [40], and (2) secretion of isoflavone gluco-
sides (possibly stored in vacuoles) into the apoplast, followed by
the hydrolysis of glucosides with isoflavone conjugate-
hydrolysing beta-glucosidase (ICHG) [41] (Fig. 2).

In hydroponic culture, daidzein was the predominant isoflavone
in soybean root exudates throughout growth, with greater secre-
tion during vegetative stages than during reproductive stages
[25]. During reproductive stages, the secretion of malonylgluco-
sides and glucosides increased to levels similar to those of agly-
cones. Under nitrogen deficiency, when nodule symbiosis
occurred, the secretion of daidzein and genistein into the rhizo-
sphere increased approximately 10-fold [25].

In field culture, both daidzein and genistein were found in the
rhizosphere soil; the daidzein content was higher than that of
genistein, as was the ratio of daidzein to genistein in the roots
[42]. The isoflavone contents in rhizosphere soils were more than
100 times those in bulk soils at both the vegetative and reproduc-
tive stages. The degradation rate constant for daidzein in the soil
was calculated to be 9.15 � 10�2 (d�1), which corresponded to a
half-life of 7.5 days [42]. The degradation rates for malonyl-
Fig. 2. Synthesis of isoflavones in soybean root and their secretion. Aglycones (daidzein
(IF7GT), and further malonylated by malonyl-CoA:isoflavone 7-O-glucoside 600-O-malonyl
show two possible pathways for isoflavone secretion.
daidzein and daidzin were 8.511 (d�1) and 11.62 (d�1), respec-
tively, both of which corresponded to a half-life of less than 2 h
[42]. From the degradation kinetics and the amount of isoflavones
secreted in hydroponic culture during all growth stages, the rhizo-
sphere daidzein concentration in the field was estimated to be
maintained during the growth stages of soybean [42].
Saponins

Saponins occur widely throughout the plant kingdom and have
various functions [43,44]. The typical structure of saponins is a
combination of a hydrophobic aglycone to various functional
groups and hydrophilic sugar moieties, which results in
surface-active amphipathic compounds. Saponins appear to have
physiological functions in defence against pathogens, pests, and
herbivores [44].

Legumes commonly synthesize triterpenoid saponins called
soyasaponins, which are composed of aglycones, soyasapogenols,
and oligosaccharides. Soyasaponins are classified into four groups
depending on the aglycone structure: glycosides of soyasapogenol
A (Group A), glycosides of soyasapogenol B (Group B), glycosides of
soyasapogenol E (Group E), and glycosides of soyasapogenol B, the
C22 of which is bound to 2,3-dihydro-2,5-dihydroxy-6-methyl-4H-
pyran-4-one (DDMP) residues [2] (Fig. 3). Saponins may play roles
in allelopathy in alfalfa (Medicago sativa) [45–47]. However, the
secretion of saponins into the rhizosphere and their functions in
biological communication remain largely unknown, except for
the recent identification of soyasaponins in root exudates of
legume species [26].

In hydroponic culture, the amount of soyasaponins secreted into
the rhizosphere per plant peaked at the V3 growth stage (3 weeks of
age) and decreased in reproductive stages. The composition of soy-
asaponins in hydroponic culture medium varied with growth stage,
with predominant secretion of Group A soyasaponins at stages V3
and V7 (5 weeks of age) and higher secretion of Group B soyas-
aponins at reproductive stages. At the VE stage (1 week of age),
when soyasaponin secretionwas the highest per amount of root tis-
sue (dry weight), the soyasaponin composition differed from that of
other growth stages, with greater secretion of deacetyl soyasaponin
Af, soyasaponin Ab, and soyasaponin Bb [26]. DDMP saponins were
and genistein) are glucosylated by UDP-glucose:isoflavone 7-O-glucosyltransferase
transferase (IF7Mat). These (malonyl)glucosides accumulate in vacuoles. The arrows



Fig. 3. Chemical structures of saponins in soybean root exudates.
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detected only in trace amounts throughout the growth stages,
although they are a major class of soyasaponin in root tissues
[26]. These results suggest mechanisms that regulate soyasaponins
secretion. The amounts and functions of saponins in the soybean
rhizosphere are currently under investigation.
Other metabolites

Besides isoflavones and saponins, soybean roots secrete a
diverse range of metabolites, but the function of most of these
metabolites in the rhizosphere has not been thoroughly analyzed.
Capillary electrophoresis mass spectrometry of soybean root exu-
dates identified 79 metabolites belonging to organic and amino
acids such as adipic acid, gluconic acid, glutaric acid, glyceric acid,
glycine, L-alanine, L-asparagine, and L-serine [48]. Divergent
responses of these metabolites were found during development
and under phosphorus deficiency [48]. Highly variable forms of
sugars, including glucose, pinitol, arabinose, galactose, sucrose,
kojibiose, and oligosaccharides, were detected in soybean root exu-
dates; these sugars are a potential carbon source for rhizosphere
microbes [49]. Osmolytes such as proline and pinitol were found
in soybean root exudates under drought stress [50].

Glyceollins are phytoalexins synthesized in response to patho-
gens such as Phytophthora megasperma and herbicides [51]. More
than 50% of glyceollins synthesized in soybean roots are secreted
into hydroponic solution [52], but their fate and function in the rhi-
zosphere remain to be characterized. Glycinoeclepin A and related
compounds from a root extract of common bean (Phaseolus vul-
garis) stimulate hatching of soybean cyst nematodes [11,53]; how-
ever, the synthesis of these compounds in soybean and their
identification in the soybean rhizosphere have not been reported.
The bona fide functions of glycinoeclepin in plants as well as in
the rhizosphere are still to be elucidated. Functions of strigolac-
tones were identified as signals for arbuscular mycorrhizal fungi
and phytohormones years after their identification as signals for
parasitic weeds. Strigolactones are also secreted into the soybean
rhizosphere, but their composition and dynamics in the rhizo-
sphere have not been reported in soybean [5,54].
Microbes

Rhizosphere microbial communities have prominent effects on
plant growth and health, including nutrition, disease suppression,
and resistance to both biotic and abiotic stresses [55–58]. Numerous
studies support the idea that, in addition to the climate, soil type,
plant species, plant genotype, and growth stage are among the fac-
tors that regulate the diversity and composition of rhizosphere
microbial communities [59–61]. There have been several reports
on themicrobial communities (both bacterial and fungal) of the soy-
bean rhizosphere [62–64], and most such communities show a
higher abundance of symbiotic rhizobia than does bulk soil [65,66].

During the growth of soybean in the field, bacterial communi-
ties change in the rhizosphere [66] but they did not change in bulk
soil. These findings suggest that variation in rhizosphere bacterial
communities is more influenced by plant growth than by environ-
mental factors. Bradyrhizobium spp. and other potential plant-
growth-promoting rhizobacteria, such as Bacillus spp., are more
abundant in the rhizosphere than in bulk soil. In one soybean field,
both Bradyrhizobium japonicum and Bradyrhizobium elkanii were
the predominant species that formed nodules on roots [67]. In
another study, although the resolution of the sequence analysis
was insufficient to distinguish members of Bradyrhizobium in the
field at the species or strain level, Bradyrhizobium spp. showed dif-
ferential responses at the operational taxonomic unit level [68].

Rhizosphere fungal communities are rather stable during soy-
bean growth at the phylum level, with the highest abundance of
Ascomycota and Basidiomycota [69], but community analysis
based on the internal transcribed spacer region revealed that the
growth stage of soybean determined the diversity of the fungal
communities [70]. Fungal communities are also affected by fertil-
izer application and rhizobium inoculation [70]. Continuous crop-
ping altered fungal composition, with 38 genera increased and
17 decreased; these genera include both potentially pathogenic
and beneficial fungi [71].

A study of field-grown black soybean suggested the involvement
of rhizosphere bacterial communities in soybean production [72].
Yields of black soybean grown in the mountainous region around
central Kyoto have decreased with no clear symptoms of pathogen
infection; therefore, the involvement of microbial communities
was investigated [73]. Variations in the bulk soil bacterial commu-
nities among farms with similar climate suggested the effect of
management practices on the communities. The rhizosphere bacte-
rial communities at each farm differed significantly from those of
bulk soil, with the dominance of Bradyrhizobium spp. and Bacillus
spp. Network analysis using the Confeito algorithm showed a pos-
sible connection between rhizosphere bacteria and soybean
growth, although more detailed analysis is necessary [72].



Fig. 4. Secretion and fate of metabolites in the rhizosphere and their effects on
microbes.
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Linking metabolites and microbes

In vitro studies have been conducted to dissect the effects of
metabolites on microbial communities. The effects of root exudates
of three generations of Arabidopsis thaliana andMedicago truncatula
on the soil fungal community were qualitatively and quantitatively
similar to the effects of growing plants [74]. Root exudates of Ara-
bidopsis fractionated to obtain natural blends of phytochemicals
were also applied to soil. It was found that phenolic compounds
from Arabidopsis root exudates showed positive correlation with
the number of bacteria in soil [75]. The flavonoid 7,40-
dihydroxyflavone from alfalfa root exudates, which functions as a
nod-gene-inducing signal, influenced the interaction with a diverse
range of soil bacteria (not limited to rhizobia) when added to soil
in vitro [76]. Linkage between root-secreted metabolites and
microbial communities were also reported in the metabolome
and microbiome analyses during development, which indicate a
link between root-secreted metabolites and microbial communi-
ties [59,77]. Such a link is also suggested by the comparative geno-
mics and exometabolomics analysis in Avenabarbata, in which
root-secreted aromatic organic acids are key factors for the assem-
bly of the rhizosphere microbiome [78].

Root-secreted metabolites of soybean have been studied in the
context of interaction with plant growth promoting rhizobacteria
and degradation of hazardous pollutants, polycyclic aromatic
hydrocarbons (PAHs) [79,80]. Inoculation of Pseudomonas oryzi-
habitans affects the profiles of root exudates of soybean in
genotype-dependent manner, with the decrease of sugars and
amino acids [79]. Application of soybean root exudates to PAH-
contaminated soil resulted in a significant enhancement in the
degradation of PAHs by soil bacteria [80]. It has been also reported
that in a 13-year experiment of continuous soybean monocultures
daidzein and genistein concentrations in the rhizosphere of soy-
bean has a correlation with soil microbial communities, especially
the possible linkage between genistein and the hyphal growth of
arbuscular mycorrhizal fungi [81,82]. Genetic link between the
root exudation of flavonoid and the interaction with rhizobia has
been suggested from the study on the identification of quantitative
trait loci controlling both the affinity to rhizobacterial strains and
genistein secretion [83]. The analysis of rhizosphere bacterial com-
munities of hairy roots silenced in isoflavone synthetase revealed
that isoflavones exert small but significant influence on the bacte-
rial communities, especially for Comamonadaceae and Xan-
thomonadaceae [38]. Taken together the above literatures point
out the linkage between root-secreted metabolites and microbes
in the rhizosphere. The molecular basis on this linkage in the soy-
bean rhizosphere is still to be elucidated.
Conclusions and future perspectives

In the past few decades, many studies have shown the impor-
tance of plant metabolites and microbes in the rhizosphere. Recent
advances in sequencing technologies have further deepened the
understanding of plant–microbe interactions in the rhizosphere.
Despite this progress, however, most of the key metabolites that
facilitate these interactions remain to be characterized at the
molecular level, mostly owing to difficulties in the spatiotemporal
analysis of metabolites in the rhizosphere. Traditionally, analyses
of root exudates or metabolites that are functional in the rhizo-
sphere have been performed in hydroponic culture or in plate
media [7,84]. To utilize the functions of these molecules for sus-
tainable agriculture, it is necessary to analyse them in the rhizo-
sphere of field-grown plants [85].

For the spatiotemporal analysis of metabolites and microbes in
the rhizosphere, non-destructive analysis using sensors is one
promising possibility. Various sensors are used in rhizoboxes for
the spatiotemporal analysis of metabolites, minerals, and oxygen
[86–88]. Their use could be expanded to analyse the rhizosphere
of field-grown plants to monitor the changes of rhizosphere condi-
tions. The use of coloured molecules is another possibility. Shiko-
nin, a naphthoquinone biosynthesized by members of the
Boraginaceae, exhibits a red colour in the rhizosphere [89] and
has antimicrobial properties [90]. The production of shikonin in
cell cultures has been well characterized [91], and its function as
an allelochemical in the rhizosphere of the invasive weed Echium
plantagineum has been reported. Juglone from black walnut
(Juglans nigra) is another prominent candidate, because it is yellow
and is allelopathic [92].

The dynamics and their interactions of metabolites and
microbes are of particular importance for improving our under-
standing of plant–microbe interactions (Fig. 4). The stability of
metabolites varies with the composition of soils. To simulate
metabolite dynamics in the rhizosphere, analysis of their move-
ment, degradation, and adsorption onto soil organic matter and
clay minerals is needed to be analysed in various soil types,
because the stability of metabolites varies with the composition
of soils. The spatiotemporal distribution of metabolites and chem-
icals can be validated and analysed using rhizoboxes in combina-
tion with various sensors. As the definition of the rhizosphere is
not quantitatively rigorous, the area influenced by plant roots var-
ies with soil conditions, such as the abundance of organic matter,
water content, and types of minerals, in addition to the metabolites
and microbes in the soil. Defining the functions and area of the rhi-
zosphere at the molecular level could pave the way towards the
use of these metabolites and microbes for sustainable agriculture
in the era of climate change.
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