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Graphical Abstract

∙ Prevotella, Gemmiger, and Roseburia were significantly upregulated at the
genus level in NSCLC patients.

∙ Nervonic acid/all-trans-retinoic acid was negatively related to Prevotella.
∙ CRP, LBP, and CD14 were identified as potential biomarkers for NSCLC.
∙ Transplantation of faecal microbiota from patients with NSCLC or Pre-
votella copri-colonized recipient mice caused inflammation and immune
dysregulation in Lewis lung cancer (LLC) cells-bearing C57BL/6 mice.

∙ Nervonic acid/all-trans-retinoic acid improved the Prevotella copri-treated
LLC cells-bearing C57BL/6 mice phenotype.
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Abstract
Background: Accumulation of evidence suggests that the gut microbiome, its
specific metabolites, and differentially expressed proteins (DEPs) are related to
non-small cell lung cancer (NSCLC) pathogenesis. We now report the influ-
ences of the gut microbiota, metabolites, and DEPs on themediation of NSCLC’s
chronic inflammation and immune dysregulation.
Methods: We conducted 16S ribosomal RNA sequencing for the gut micro-
biome in healthy volunteers and NSCLC patients. Liquid chromatography–
mass spectrometry (LC–MS) analysis was employed to explore differences
between metabolites and DEPs in serum samples. Additionally, LC–MS-based
metabolomic analysis was conducted in 40 NSCLC tissues and 40 adjacent
tissues. The omics data were separately analysed and integrated by using Spear-
man’s correlation coefficient. Then, faecal microbiota transplantation (FMT)
assay was used to assess the effects of the gut microbiome and specific
metabolites in mice.
Results:Faecalmicrobiome analysis revealed gutmicroflora dysbiosis inNSCLC
patients with Prevotella, Gemmiger, and Roseburia significantly upregulated at
the genus level. Then, we identified that nervonic acid/all-trans-retinoic acid
level was negatively related to Prevotella. Additionally, a total of core 8DEPswere
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selected in the proteome analysis, which mainly participated in the production
of IL-8 and NF-κB pathways. CRP, LBP, and CD14 were identified as potential
biomarkers for NSCLC. Transplantation of faecal microbiota from patients with
NSCLC or Prevotella copri-colonized recipient in mice resulted in inflammation
and immune dysregulation. In turn, nervonic acid/all-trans-retinoic acid treat-
ment improved the phenotype of C57BL/6 mice bearing P. copri-treated Lewis
lung cancer (LLC).
Conclusions: Overall, these results pointed out that P. copri-nervonic acid/all-
trans-retinoic acid axis may contribute to the pathogenesis of NSCLC.

KEYWORDS
all-trans-retinoic acid, gut microbiota, lung cancer, metabonomics, nervonic acid, proteomics

1 BACKGROUND

Lung cancer (LC) is one of the commonest fatal malig-
nancies in most countries, with a 5-year overall survival
of 18.4%.1–3 Unfortunately, ∼75%–80% of LC patients are
first diagnosed with advanced or distant stages due to
ambiguous clinical symptoms and inadequate screening
methods.4,5 The NSCLC is closely associated with dif-
ferent risk factors, including genetic mutations, tobacco
consumption, chronic or dysregulated inflammation, and
immune dysfunction that may increase the incidence of
lung cancer.2,6 Although surgical and medical treatments
of NSCLC have advanced, the response rates of the current
therapeutic strategies are considered abysmal, even lead-
ing to hyperprogressive disease.7,8 Hence, it has strategic
significance to improve the understanding of pathogen-
esis and identify new molecular signatures that promote
lung cancer progression for early diagnosis and better
treatments of NSCLC.
Nowadays, the gut microbiome is recognized as the

‘second genome’ of humans.9,10 It has been found that
the diversity of the gut microbiota is closely related to
cancer initiation, progression, and response to therapy.11
Recently published studies in animal models and humans
have confirmed that the gut microbiome alters the tumour
microenvironment and the circulating metabolites that in
turn affect the general host physiology. For example, the
imbalance of gut microbiota contributes to the metastasis-
related secretory protein cathepsin K secretion by mediat-
ing toll-like receptor 4 (TLR4)-dependent M2 macrophage
polarization of tumour-associatedmacrophages.12 In addi-
tion, gut microbiota alteration has resulted in an increased
growth of intracranial glioma.13 Until now, there has only
been a limited study of the gut microbiome in NSCLC.
Zheng et al. confirmed that early-stage LC patients have
a significant alteration in the structural composition of

microbiota compared with the controls, and the specific
microbiota spectrum has been proved to be of importance
in the prediction of early-stage LC incidence.14 However,
the disturbances of the gut microbiome reported in these
studies mainly focus on the microbiota signature at a
single-omics level; thus it is difficult to achieve a compre-
hensive elucidation of the pathophysiological procedure
of NSCLC. Further insight into the systematic biological
changes of the microbiome, metabolome, and proteome
for NSCLC may help in understanding the development
and progression of NSCLC.
As we have known, systems biology focuses on the

integration of the multiple physical changes in the organ-
ism, including genes, proteins, and metabolites at differ-
ent molecular levels.15 The ongoing omics-based analy-
ses, including genomics, transcriptomics, proteomics, and
metabolomics, have been widely used in various diseases16
such as cancer,17 diabetic nephropathy,18 and cardiovascu-
lar disease.15 Among them, proteomics and metabolomics
are the most frequently used ‘omic’ techniques. Pro-
teomics is used to identify significantly changed proteins
that represent the contents of cells, tissues, organisms,
or biofluids.16,19 At present, liquid chromatography–mass
spectrometry (LC–MS) is a widely used method of pro-
teomics studies for exploring multiple diagnostic markers
in cancers. Integrative proteomics on lung adenocarci-
noma (LUAD) has revealed the plasma protein level of heat
shock protein-90β as a potential prognostic biomarker.20
Metabolomics is focused on the concentration of endoge-
nous metabolites in bio-fluids and/or tissues.16,21 In con-
trast to proteomics, metabolomics studies can help to
directly point out the unpleasant change in the human
body organism, and differential metabolites are widely
accepted as non-invasive and sensitive markers of physio-
logical activity.22,23 A study by Ruiying et al. has suggested
that hypoxanthine, indoleacrylic acid, acylcarnitine C10:1,
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and lysoPC (18:2) are potential biomarkers for NSCLC.24
However, due to the complexity of biological samples,
the metabolites appear to be readily influenced by carry-
ing great variability and various elements, such as age,
race, gender, and nutrition.25 Consequently, using a sin-
gle omics analysis is difficult to reveal the comprehensive
changes in the biological system. Thus, a holistic and inte-
grated analysis of genome, transcriptome, microbiome,
proteome, and metabolome from different layers may con-
tribute to augmenting understanding of the predisposing
causes of disease and may promote biomarker discovery.
For this reason, a combination of 16S ribosomal RNA

(rRNA) sequencing analysis of the gut microbiome in fae-
cal samples, LC/MS-based proteomic analysis, and ultra-
performance liquid chromatography to quadrupole time-
of-flight mass spectrometry–based metabolomics analysis
was adopted to identify promising biomarkers in serum
samples of NSCLC patients. Furthermore, faecal micro-
biota transplantation (FMT) was recruited to further con-
firm the research conclusion of the multi-omics analysis.
We also illuminated the central metabolites and proteins
related to NSCLC, and FMT identified a critical relation-
ship of intestinal flora in NSCLC growth through the
nervonic acid/all-trans-retinoic acid–interleukin-8 (IL-8)
axis. These results may help to characterize the mech-
anism of NSCLC pathogenesis and to identify potential
biomarkers and therapeutic targets that interrupt NSCLC
development.

2 METHODS

2.1 Study subjects and specimen
collection

We consecutively recruited 15 healthy controls (CON) and
55 patients who were diagnosed with NSCLC made after a
biopsy at Zhejiang CancerHospital (Zhejiang, China) from
March 2019 to September 2019. The age, gender, history of
smoking, tumour stage, lymph node involvement, tumour
size, and tumour metastasis were recorded. The clinico-
pathological information of the 55 early NSCLC patients
included in the study is illustrated in Table S1. All patients
with other coexisting malignant tumours and healthy con-
trols using antibiotics within 2 months were excluded. All
the healthy volunteers had normal bowel habits. For all
subjects, after an overnight fast (≥8 h), blood samples from
all volunteers were collected on the day after admission.
Meanwhile, fresh stool specimens were self-collected after
defecation at the hospital using a special faecal collection
device andwere transported immediately to the laboratory,
followed by placement into a −80◦C chamber for further
omics testing.

In addition, the second cohort of 40 LC patients was
recruited at the Zhejiang Cancer Hospital (Zhejiang,
China). All LC patients and healthy control volunteers
voluntarily joined this study with informed consents.
Then, 40 pairs of LUAD tissues (T group) and adjacent
non-cancerous tissues (N group) were collected from the
participants for furthermetabolomics analysis. These stud-
ies were ratified by the Ethics Committee of the Zhejiang
Cancer Hospital (No. IRB-2018-219).

2.2 16S rRNA gene-sequencing

DNA of faecal microorganisms was separated and then
sent to the G-BIO Biotechnology Co., Ltd. (Hangzhou,
China) for sequencing. Amplified reactions were per-
formed using a polymerase chain reaction (PCR) instru-
ment (Light Cycler 96, Roche, Basel, Switzerland) and
quantified using QuantiFluor-ST (Promega, USA). Then,
the constructed library was analysed by the Illumina
MiSeq platform (Illumina, CA, USA).26 Operational taxo-
nomic units (OTUs)with≥97% similarity were determined
using VSEARCH software (v2.0.3) and annotated using the
Ribosomal Database Project classifier.27 At last, the func-
tions of intestinal flora were conjectured by using PICRUSt
software.28

2.3 Serum- and tissue-based
metabolomics analysis preparation

A volume of 100-μl serum from each sample was added
to 100 μl of 2-chlorobenzylamine in methanol solution.
The mixture was vortexed, incubated, and centrifuged.
The supernatant was filtered, dried, and resuspended for
subsequent LC–MS analysis.
For tissue-based metabolomics analysis, 10-mg LC tis-

sue samples were placed in 400-μl precooled methanol,
homogenized and centrifuged at 4◦C for 15 min at
12 000 rpm. Subsequently, 200 μl of the supernatant was
collected and 200 μl of water was added to the mix.
Next, the mix was freeze-dried, resuspended, and then
transferred for LC–MS analysis.

2.4 Metabolomics and data analysis

Metabolomics analysis of processed serum and tumour
samples was performed on Thermo Vanquish system.
The electrospray ion trap tandem mass spectrometry
experiments were executed on a Thermo Scientific Q
Exactive Focus mass spectrometer. The LC–MS raw data
of serum and tumour samples were converted to an
mzXML format by the ProteoWizard software (v3.0.8789,
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Palo Alto, CA, USA). Data pretreatment was performed
using package XCMS in R-3.3.2. The potential metabolite
was appraised by using the MassBank database (http://
www.massbank.jp/), LipidMaps database (http://www.
lipidmaps.org), mzCloud database (https://www.mzcloud.
org), and the in-house library of Suzhou SmartNuclide.
Co. Ltd. (Suzhou, China). Differential metabolites among
groups were screened out via VIP (variable importance
value) >1 and a value of p < .05 based on a Student’s t-test
andplotted by the Pheatmappackage inR (v3.3.2).Metabo-
Analyst 4.0 (http://www.MetaboAnalyst.ca/) was used to
analyse relatedmetabolic pathways of the identified differ-
ential metabolites. Additionally, receiver-operating char-
acteristic (ROC) curve analysis was performed to assess the
area under curve (AUC), sensitivity, and specificity of indi-
vidual metabolites within the tissue-based metabolomics
data set.

2.5 LC–MS/MS-based proteomics

All serum samples were prepared by the Pierce TOP 12
Abundant Protein Depletion Spin Columns (Thermo Sci-
entific) to remove the 12 most abundant proteins in the
serum according to the user manual. Then proteins were
denatured, reduced, and digested, and peptides purified on
a homemade reverse-phase C18 column in a pipet tip. The
MS analysis was performed in a DDA with full scans (m/z
350–1500) acquired using an Orbitrap mass analyser.

2.6 Identification of DEPs and
bioinformatic analysis

Proteome Discoverer (v.2.4, Thermo, America) was
employed to search all of the raw data thoroughly against
the UniProt database. The search parameters were set as
follows: type of quantification of precursor quantification,
max missed cleavage sites of 2, peptide mass tolerance of
±20 ppm, a fragment mass tolerance of .05 Da, dynamic
modification of oxidation/+15.995 Da (M), N-terminal
modification of acetyl/+42.011 Da (N Terminal), static
modification of carbamidomethyl/+57.021 Da (C), and
a peptide false discovery rate of ≤.01. p < .05 and fold-
changes lower than or higher than 1.5 were considered
to be differentially expressed proteins (DEPs). Volcano
plot and heat map of the DEPs were visualized using the
‘limma’ package of R. To further analyse the biological
meaning of DEPs, the clusterProfiler package of R was
used to carry out GO and KEGG analysis. A protein–
protein interaction (PPI) network was built by using the
STRING database29 to observe the interactions between
DEPs.

2.7 Gut bacteria, metabolomics, and
proteomics data integration

To further analyse the correlations between intestinal
microorganisms and serummetabolites, as well as the cor-
relations between selected DEPs and serum metabolites,
a Spearman’s correlation analysis was performed by using
psych package in R, and the visual presentation of their
correlations was shown by a heat map using the ggplot2
package in R.

2.8 Experimental mice and faecal
microbiota transplantation

Male C57BL/6 mice (8-week old) were obtained from
Shanghai SLAC Laboratory Animal Co. Ltd. and were
housed in an SPF environment with a 12-h light/12-h
dark cycle and fed free with standard diet and water.
Experiments were approved by the Animal Care and Use
Committee of Zhejiang Chinese Medical University (Zhe-
jiang, China). The mice were treated with an antibiotic
cocktail at a dose of 10 ml/kg twice per day for 14 days in
drinking water to deplete the commensal gut microbiota
before human stool transplantation experiments. Fresh
stools were collected from volunteers and then homoge-
nized at a concentration of 20 mg/ml. A total of 200 μl of
the faecal supernatant was given to microbiota-depleted
mice for 21 days/twice per day through oral gavage. The
P. copri group was given oral gavage with P. copri (Bio-
70151, Biobw Biotechnology Co., Ltd., Beijing, China) at
a dose of 2 × 108 colony-forming units per 200 μl sus-
pended in sterile anaerobic PBS twice per day, and the
same volume of heat-killed P. copri as the control for 3
weeks. Tumour-bearing mice in the Lewis group were
established by subcutaneous injection of 2× 105 Lewis lung
cancer (LLC) cells suspended in 200-μl growth medium
into the right flank of microbiota-depleted mice. Another
tumour-bearing mice cohort was randomized into four
groups: (1) tumour control, (2) P. copri, (3) combination
of P. copri and 150 mg/kg/day nervonic acid (B28317,
Yuanye Co., Ltd., Shanghai, China), and (4) a combination
of P. copri and 10 mg/kg/day trans-retinoic acid (ENZO-
BML-GR100-5000, Shanghai ZZBIO CO., Ltd., Shanghai,
China). The tumour volume was measured weekly by
a digital caliper and was calculated with the formula
V = (length × width2)/2. On Day 22, the blood samples
were collected from retro-orbital venous and centrifuged at
3000 rpm/min for 15 min at 4◦C. All mice were sacrificed
humanely, and the tumours were removed and immedi-
ately weighed. Lung and tumour samples were obtained
for histological assessment. To assess intestinal inflam-
mation, the intestine and lung tissues were also collected

http://www.massbank.jp/
http://www.massbank.jp/
http://www.lipidmaps.org
http://www.lipidmaps.org
https://www.mzcloud.org
https://www.mzcloud.org
http://www.MetaboAnalyst.ca/
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for further quantitative real-time PCR and Western blot
analysis, respectively.

2.9 ELISA and flow cytometry

The serum samples were used to measure levels of inflam-
matory cytokines, including TNF-α, lipopolysaccharide
binding protein (LBP), CD14 molecule (CD14), IL-8, and
C-reaction protein (CRP) by using Quantikine enzyme-
linked immunosorbent assay (ELISA) kits (Mei Mian
Biotechnology Co., Ltd., Jiangsu China). Flow cytometry
was used to measure the T lymphocyte subtypes (CD3+,
CD4+, and CD8+) in the peripheral blood of the mice.

2.10 Histological analysis

Lung and tumour tissue samples from the mice were
cut into 4-μm thick sections. Then, the sections were
stained with haematoxylin–eosin (H&E). Finally, the sec-
tions were mounted with neutral gum and captured
by an Olympus microscope (Olympus Corp., Tokyo,
Japan).

2.11 Quantitative real-time PCR assay

Total RNA of intestine tissues (100mg) was acquired using
TRIzol (Invitrogen, USA). Quantitative real-time PCR
was then performed with Hieff qPCR SYBR Green Master
Mix (YEASEN, Shanghai China) on an ABI 7500 Fast
Real-Time PCR system. The PCR primers are as follows:
IFNG (forward 5′-TCGGTAACTGACTTGAATGTCCA-
3′ and reverse 5′-TCGCTTCCCTGTTTTAGCTGC-3′),
IL-18 (forward 5′-GTGAACCCCAGACCAGACTG-3′
and reverse 5′-CCTGGAACACGTTTCTGAAAGA-3′),
IL-1β (forward 5′-GAAATGCCACCTTTTGACAGTG-
3′ and reverse 5′-TGGATGCTCTCATCAGGACAG-3′),
IL-8 (forward 5′-ACACTGCGCCAACACAGAAATTA-3′
and reverse 5′-TTTGCTTGAAGTTTCACTGGCATC-
3′), TNF-α (forward 5′-AGCCGATGGGTTGTACCT-3′
and reverse 5′-TGAGTTGGTCCCCCTTCT-3′), TLR4
(forward 5′-AAGTTATTGTGGTGGTGTCTAG-3′ and
reverse 5′-GAGGTAGGTGTTTCTGCTAAG-3′), MyD88
(forward 5′-CTCCATTCCTCCTCCAGACACT-3′ and
reverse 5′-AAGGAGAGGCAGTTTGGCTTC-3′), NF-κB
(forward 5′-TTACGGGAGATGTGAAGAT-3′ and reverse
5′-ATGATGGCTAAGTGTAGGA-3′), and GAPDH (for-
ward 5′-GGAGCGAGATCCCTCCAAAAT-3′ and reverse
5′-GGCTGTTGTCATACTTCTCATGG-3′). The results
were normalized against GAPDH and were calculated
with the 2−ΔΔCT method.

2.12 Western blot analysis

Lung samples were homogenized and qualified with a
BCA detecting kit (Beyotime, China). Protein lysates
of 30 μg were separated by SDS-PAGE and transferred
onto the PVDF membrane (Millipore, USA). After being
blocked with 5% (w/v) nonfat milk, the membranes
were then incubated with primary antibodies against
TLR4 (1:500, ab13556, Abcam), MyD88 (1:1000, ab219413,
Abcam), NF-κB p65 (1:2000, ab32536, Abcam), Bax (1:1000,
ab182734, Abcam), Bcl-2 (1:2000, ab182858, Abcam), and
β-actin (1:5000, D191047, Sangon Biotech, China) at
4◦C overnight. Next, the membranes were incubated
with HRP-conjugated goat anti-rabbit secondary antibody
(1:2000, ab7090, Abcam) for 1 h at room temperature.
Finally, the optical density of bands was measured via
ImageJ software.

2.13 Statistical analysis

All data are shown as mean± standard deviation. Sig-
nificant differences between groups were analysed by
two-tailed Student’s t-test or one-way analysis of variance
followed by Bonferroni post hoc tests. A value of p < .05
was considered significant.

3 RESULTS

3.1 Analysis of gut microbiota

The intestinal flora composition of NSCLC patients was
investigated by measuring faecal 16S DNA. A total of
2112 130 reads and 2104 029 (99.6%) effective reads were
obtained from 58 samples (12 healthy controls and 46
NSCLC patients) from two groups, with an average of
36 276 reads per sample (Table S2). As illustrated in
Figure 1A, the rarefaction curves revealed that the curve
of each sample gradually flattened out with the increas-
ing number of reads, suggesting that the sequencing data
were sufficient to perform further analysis. Moreover, the
α-diversity indexes, including Chao 1, Observed_species,
Shannon, and Simpson were used to assess the diversity
and community richness in the samples. Unexpectedly,
there were no significant differences in α-diversity indexes
between the LC and healthy control groups in this study.
Additionally, β-diversity analysis was used to reveal the
gut microbiota structure of LC patients. The PCoA was
analysed by the weighted and unweighted UniFrac metric.
As shown in Figure 1B, the results demonstrated the gut
microbiota structure between the LC group and the control
group with no differences.
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F IGURE 1 The preliminary comparison on diversity of gut microbiota in human adults withNSCLC and healthy controls. (A)
Rarefaction curves for the reads number in the NSCLC (n = 46) and control (n = 12) groups after 100 random samplings. Each curve
represents a sample, marked with blue and yellow colours, respectively. Indexes of Chao 1, Observed_species, Shannon, and Simpson were
used to assess the α-diversity of the gut microbiota between LC patients and healthy controls. (B) Principal coordinates analyses based on
weighted (left) and unweighted (right) UniFrac distances between gut bacterial communities of LC and healthy control patients

In total, 3275 OTUs (Table S3) were annotated for
subsequent analyses, including 16 phyla (Table S4), 31
class (Table S5), 55 order (Table S6), 118 family (Table S7),
and 289 genera (Table S8) of gut microbes. A total of 13 and
199 OTUs were shared by the two groups at the phylum

and genus level, respectively. As shown in Figure S1A,
the Venn diagrams also display the difference between
each group, exhibiting specific 69 OTUs in NSCLC and 21
OTUs in the control group, respectively. The results of the
analysis at the phylum level are illustrated in Figure S1B.
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F IGURE 2 Compositional differences of the gut microbiota between NSCLC and healthy control groups. (A) Heat map of gut
microbiota showed that the genus in LC patients is different from healthy controls (Wilcoxon rank-sum test). Comparison of relative
abundance of significantly altered bacterial taxa, including phylum (B) and genus (C) levels between LC patients and healthy controls.
Wilcoxon rank-sum test was employed to measure the significance between groups.

Four phyla, including Actinobacteria, Proteobacteria,
Firmicutes, and Bacteroidetes, were measured in all of
the faecal samples. Among them, in the NSCLC group,
the abundance of Actinobacteria and Proteobacteria was
decreased and that of Firmicutes and Bacteroidetes was
increased. In addition, themost abundant genera in the LC
group were Megamonas, Gemmiger, Roseburia, Prevotella,
and Bacteroides. Furthermore, the results of the correla-
tion analysis of several taxa in LC patients are shown in
Figure S1C. Thus, we found that Prevotella and Collinsella
had the strongest negative correlation; Gemmiger and
Roseburia had the strongest positive correlation in
this study.
From the community heat map diagram and the box

plots, we soon realized that the chief genera in NSCLC
patients were Planctomycetes, Escherichia/Shigella, Pre-

votella, Roseburia, f_Enterobacteriaceae, and Gemmiger
(Figure 2A–C). Among them, the abundance of Pre-
votella, Roseburia, and Gemmiger was markedly increased
in NSCLC patients. Between LC patients and healthy con-
trols, seven bacteria were discriminative in healthy con-
trols from the family level to the genus level, as depicted
in the cladogram (Figure S2A). Compositional analysis by
LefSe revealed that faecal samples of healthy controls were
enriched with the genus Gardnerella, Exiguobacterium,
Microbacterium, and Solimonas, whereas therewas no pre-
dominant microbiota in the NSCLC group (Figure S2B).
The PICRUSt method was selected to predict the KEGG
pathways between the microbiome of NSCLC patients and
healthy controls. In the NSCLC group, it is noteworthy
that the microbiome takes part in sporulation and thi-
amine metabolism (Figure S2C). Taken together, these
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results demonstrate that the genera Prevotella, Roseburia,
and Gemmiger could be associated with the pathological
process of NSCLC.

3.2 Significant differences in the
serum-based metabolomics of NSCLC
patients

More than 80% of RSDs < 30% for QC samples are
shown in positive (Figure S3A) andnegativemodes (Figure
S3B), respectively. Base peak chromatograms of serum-
basedmetabolomics of LC patients are presented in Figure
S4. A total of 13 402 precursor molecules in the positive
mode and 3578 precursor molecules in the negative mode
were obtained for subsequent analysis. The PCA score
plot clearly showed a complete separation of the serum
between the LC and control groups in positive (Figure 3A)
and negative (Figure 3B) ion mode. Also, in the Orthog-
onal projections to latent structure-discriminant analysis
(OPLS-DA) of LC and control groups, the score plots
exhibited distinct clusters between two groups in both pos-
itive (Figure 3C) and negative modes (Figure 3D), which
revealed that the metabolic patterns were remoulding in
LC patients.
A total of 49 significantly changed metabolites between

the LC group and control group samples were identi-
fied, as illuminated in the heat map (Figure 3E), of
which, 42 showed a downward trend, and 7 showed an
increasing trend (Table S9). Briefly, 49 metabolites could
mainly be classified into 7 amino acids, 3 steroids, 8 fatty
acids, 1 retinoid, 2 nucleosides, and 28 other classified
metabolites. m-Coumaric acid, 13-l-hydroperoxylinoleic
acid, allocholic acid, 13S-hydroxyoctadecadienoic acid,
palmitic acid, 5-hydroxyindoleacetic acid, eicosadienoic
acid, pyroglutamic acid, 3-(2-hydroxyphenyl)propanoic
acid, nervonic acid, arachidic acid, l-glutamic acid, and
oxoadipic acid exhibited lower concentrations in LC
patients than in controls (Figure S5). Notably, the metabo-
lites in serum samples were basically related to alanine,
aspartate, and glutamatemetabolism, arginine and proline
metabolism, retinol metabolism, caffeine metabolites, d-
glutamine and d-glutamate metabolism, and glutathione
metabolism (Figure S6).

3.3 Metabolomics analysis of tumour
samples from LC patients

More than 90% of RSDs were less than 30%, suggest-
ing that the acquired data were reasonable for further
analysis (Figure S7). The total ion chromatograms of
tissue-based metabolomics analysis are shown in Figure

S8. A total of 23 683 metabolite ions were extracted from
all LC cancerous and non-cancerous tissue samples, and
after normalization, 22 291 ions were remained. The PCA
(Figure 4A,B) and OPLS-DA (Figure 4C,D) results in posi-
tive and negative ionmodes showed an obvious separation
of the tissues between the non-cancerous group and the
tumour groups.
A total of 55 metabolites were identified, among

which 40 metabolites were significantly increased, and 15
metabolites showed a downward trend in cancerous tis-
sues of LC patients (Table S10). The heat map revealed
that LC cancerous tissue has a different metabolic pat-
tern from non-cancerous tissue based on these 55 differ-
ential metabolites (Figure 4E). In particular, the levels
of p-aminobenzoic acid, azelaic acid, 4-hydroxycinnamic
acid, l-lactic acid, N-acetyl-α-neuraminic acid, gluconic
acid, hydroxyphenyllactic acid, gamma-aminobutyric acid,
adenylsuccinic acid, citramalic acid, glutaric acid, and pro-
pionic acid were significantly increased in LC patients,
whereas hippuric acid, adipic acid, 5-aminopentanoic acid,
16-hydroxy hexadecanoic acid, and citric acid were evi-
dently reduced, as they could play a decisive role in the
development of LC (Figure S9).
As shown in Figure S10, MetaboAnalyst 4.0 indicated

that 55 endogenous metabolites-related metabolic path-
ways were GABAergic synapse, intestinal immune net-
work for IgA production, glutamatergic synapse, small cell
lung cancer, glutathione metabolism, nicotine addiction,
African trypanosomiasis, gastric cancer, Th17 cell differ-
entiation, alanine, aspartate and glutamate metabolism,
d-glutamine and d-glutamate metabolism, and ferrop-
tosis. To further elucidate the common characteristics,
the overlapping metabolites and metabolic pathways were
also identified using a Venn diagram. A total of 28 over-
lapping metabolic pathways were screened, as shown in
Table S11. We screened six common metabolites in serum-
(Figure S11A) and tissue-based metabolomics (Figure
S11B), respectively, including 9(S)-HPODE, l-glutamic
acid, xanthine, l-glutamine, all-trans-retinoic acid, and
gamma-glutamylcysteine. Interestingly, results showed
that 9(S)-HPODE and all-trans-retinoic acid showed a
similar trend of downregulation, and xanthine showed
a similar trend of upregulation in LC patients in both
metabolomic analyses.
To explore the role of overlapping metabolites on the

predictive performance of metabolites in LC, we deter-
mined the AUC of the ROC curve on each metabolite
(Table S12). Among them, the predictive performance of
six overlapping metabolites was selected as diagnostic
biomarkers with satisfactory predictive accuracy, espe-
cially all-trans-retinoic acid (Figure 5). The previous results
may illustrate that all-trans-retinoic acid may be involved
in LC progression.
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F IGURE 3 The metabolic profiles of serum samples in LC patients. PCA score plot of serum metabolite profiling between the LC and
control groups in (A) positive mode (seven principal components, R2 × .525) and (B) negative mode (10 principal components, R2 × .509).
OPLS-DA score plot of serum samples and the differentiation of the metabolome between two groups in (C) positive mode (four principal
components, R2 × .43, R2Y .974, Q2 .745) and (D) negative mode (four principal components, R2 × .271, R2Y .985, Q2 .734). (E) The heat map
shows the expressive pattern of 49 differential metabolites (VIP > 1, p < .05).
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F IGURE 4 The metabolic profiles of tumour samples in LC patients. PCA score plot of tumour tissue-based metabolite profiling
between the LC and control groups in (A) positive mode (10 principal components, R2 × .484) and (B) negative mode (10 principal
components, R2 × .488). OPLS-DA score plot of tumour samples discrimination of the metabolome between two groups in (C) positive mode
(three principal components, R2 × .255, R2Y .988, Q2 .901) and (D) negative mode (three principal components, R2 × .268, R2Y .975, Q2 .888).
(E) The heat map shows the expressive pattern of 55 differential metabolites (VIP > 1, p < .05).



QIAN et al. 11 of 19

F IGURE 5 Overlapping metabolites in both serum- and tissue-based metabolomics. Receiver operating characteristic curves of (A)
9(S)-HPODE, (B) l-glutamic acid, (C) xanthine, (D) l-glutamine, (E) all-trans-retinoic acid, and (F) gamma-glutamylcysteine in tissue-based
metabolomics. Control group versus LC group; N group versus T group, *p < .05, **p < .01, ***p < .001

3.4 Protein identification and
bioinformatics analysis

Serum-based proteomics analysis found that 392 proteins
were identified, of which 225 proteins were identified
and quantified with at least one unique peptide and had
quantitative values in at least 50% of the samples (Table
S13). Importantly, a total of eight DEPs were screened

out between the LC and control groups, respectively
(Figure 6A,B, Table S14).
To explore the biological functions of those DEPs, a

bioinformatics analysis of these DEPs was performed
(Figure 6C). Significantly enriched biological process (BP)
included a regulation of IL-8 production, cellular response
to lipoteichoic acid, a regulation of superoxide anion gener-
ation, TLR4 signalling pathway, and a positive regulation
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F IGURE 6 Proteomics analysis of serum samples in LC patients: (A) volcano plot of differentially expressed proteins (DEPs). The
threshold set for DEPs was a fold-changes (FC) >1.5 and a p < .05. Five proteins are upregulated (red) and three proteins are downregulated
(green). (B) Heat map of the nine DEPs between the LC and control groups, with folds >±1.5 and p < .05. The columns represent DEPs and
the rows indicate the samples. The colours from violet to red indicate the increasing content of DEPs. (C and D) GO analysis and KEGG
pathway enrichment analysis of the nine DEPs. Terms in the same category were ranked based on the p-values. (E) protein–protein
interaction (PPI) networks of the identified DEPs. Red ellipses surrounded dots are associated with the regulation of interleukin (IL)-8
production and peptidase activity, respectively.

of TNF production. DEPs were primarily concerned with
lipoteichoic acid binding, lipopeptide binding, lipopolysac-
charide binding, peptide binding, amide binding, serine
hydrolase activity, and peptidase regulator activity. In
addition, the most enriched GO terms in the cellular com-
partment category were the lipopolysaccharide receptor
complex, anchored/intrinsic component of the external
side of the plasma membrane, and collagen-containing

extracellular matrix. KEGG analysis revealed that the
DEPs were only enriched in the NF-κB and TLR pathways
(Figure 6D).
The PPI network was consisting of eight nodes and five

edges in the STRING database. Among the eight nodes,
CRP, LBP, and CD14 were mainly involved in the regula-
tion of IL-8 production; cystatin C (CST3) and procollagen
C proteinase enhancers (PCOLCE) were associated with
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the regulation of peptidase activity (Figure 6E). These find-
ings imply that CRP, LBP, and CD14 may mediate the IL-8
production, which aggravates tumour growth in LC.

3.5 Correlation among gut microbiota,
serum-based metabolomics, and
proteomics

As shown in a heat map (Figure S12), nervonic acid and
all-trans-retinoic acid were negatively correlated with
Prevotella. Oxoadipic acid, ornithine, and l-glutamic
acid were negatively correlated with the abundance
of Gemmiger. 3-(2-Hydroxyphenyl)propanoic acid was
negatively correlated with Roseburia, but beta-d-fructose
and tryptamine were correlated positively with the
Roseburia. Similarly, the potential relationships between
DEPs and serum metabolites were evaluated. Moreover,
we found that the level of CD14 was positively corre-
lated with leukotriene C4, palmitic acid, eicosadienoic
acid, arachidic acid, 5-hydroxyindoleacetic acid, and
4-hydroxytamoxifen, but negatively correlated with
9,10-12,13-diepoxyoctadecanoate and 9(S)-HPODE; LBP
showed highly positive correlations with cortolone,
whereas 9(S)-HPODE had the opposite correlation with
the DEP (Figure S13). More importantly, there were no
significant correlations between DEPs and nervonic acid
or all-trans-retinoic acid. To a certain extent, we found that
nervonic acid and all-trans-retinoic acid were negatively
associated with CD14, CRP, and LBP, thereby indicating
that understanding the relationships between these DEPs,
bacteria, and metabolites may broaden our knowledge of
the development of LC.

3.6 Effects of FMT and Prevotella copri
on inflammation and immune function in
mice

To observe the functions of the gut microbiota on the
inflammation and immune function in the host, the
microbiota-depleted mice were treated with stools from
LC patients or healthy controls. As expected, in the trans-
LC group, the amounts of TNF-α, LBP, CD14, IL-8, and
CRP were markedly increased in the serum as compared
to that in the trans-control groups (Figure 7A). Inter-
estingly, mice transplanted with stool from LC patients
showed immunity functional disorder, as revealed by
decreased CD3+ and CD4+, and increased CD8+ T-cell
counts (Figure 7B). Lung sections collected from mice
transplanted with healthy control stool microbiota exhib-
ited normal bronchial, alveolar, and vascular structures,
and the proliferation of bronchial epithelial cells was not

observed. However, mice transplanted with stool micro-
biota from LC patients showed an extensive infiltration of
inflammatory cells into the alveolar space, with increased
mucous secretion and epithelial cell proliferation in the
lung tissues (Figure 7C). In addition, the VIP score for the
gut microbiota showed that P. copri was beneficial to the
group separation (Figure 7D). Importantly, the abundance
of P. copri was dramatically increased in the LC group
compared with those in the control group (Figure 7E).
Therefore, we speculated that the changes in nervonic
acid and all-trans-retinoic acid might connect Prevotella
dysbiosis to malignant behaviours of LC.
To address the role of P. copri in the pathogenesis of

LC, mice were intragastrically administered P. copri for 21
days, and heat-killed P. copri-treated mice were used as
normal control. LLC-bearing mice were used as tumour
control to assess the effects of P. copri on LC pathogene-
sis. Similarly, oral gavage with P. copri caused aggravating
inflammation and destroyed the immune balance and lung
morphology in recipient mice (Figure 7F–H). The gut
microbiota may help LC pathogenesis through impact on
immune responses and inflammation.10 Thus, intestinal
immune cell-produced cytokines, including interferon-
gamma (IFNG), IL-18, IL-1β, and TNF-α, as well as
TLR4/NF-κB signalling-related targets, were measured in
the intestinal samples. As indicated in Figure 7I, signifi-
cant increases in IFNG, IL-18, IL-1β, IL-8, TNF-α, TLR4,
MyD88, and NF-κB levels were found in the P. copri and
tumour control groups. These resells suggested that the
intestinal flora from LC patients, especially P. copri, may
contribute to the chronic inflammation and immunity
functional disorder of LC patients.

3.7 Restoration of nervonic acid and
trans-retinoic acid reversed the effects of
Prevotella copri in LLC-bearing mice

Next, we investigated whether P. copri promotes lung can-
cer progression through nervonic acid and trans-retinoic
acid. P. copri-treated LLC-bearing mice were administered
nervonic acid and trans-retinoic acid for 21 days. Tumour
size was measured every 7 days. Results showed that
nervonic acid and trans-retinoic acid led to a decrease
in tumour size and weight; however, no obvious differ-
ence was noticed between the treated groups and P. copri
group (Figure 8A–C). Unexpectedly, we found that the
administration of nervonic acid or trans-retinoic acid to
P. copri-treated LLC-bearing mice decreased inflamma-
tory reaction and reversed the immunologic imbalance,
as revealed by a significant decrease in TNF-α, LBP,
CD14, IL-8, and CRP levels (Figure 8D), and accompanied
by marked increase in the proportions of CD3+, CD4+
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F IGURE 7 Effects of LC faecal microbiota or Prevotella copri transplantation deteriorated inflammatory response and immunologic
derangement. The mice transplanted with stool suspensions from LC patients and healthy controls were defined as trans-LC and
trans-control, respectively. After treatment with antibiotics in drinking water for 2 weeks, the mice were given oral gavage with stool
suspensions twice per day for (A)–(C). (A) Enzyme-linked immunosorbent assays (ELISAs) were used to measure levels of TNF-α,
lipopolysaccharide binding protein (LBP), CD14, interleukin (IL)-8, and C-reaction protein (CRP) in serum samples. (B) The percentages of
CD3+ T cells, CD4+ T cells, and CD8+ T cells in peripheral blood. (C) The histological analysis of lung tissues evaluated by
haematoxylin–eosin (H&E) staining. (D) VIP scores of OPLS-DA. VIP scores were used to rank the discriminating power of different taxa
between the LC and control groups. If VIP>1, the taxon was considered significant in the discrimination. (E) P. copri species abundance in LC
and healthy controls (p = 1.55478E−07; the p-value was determined by two-tailed Wilcoxon rank-sum test and data are presented as means ±
standard deviations). For (F)–(I), mice were divided into three groups (normal control, P. copri, and tumour control). For the P. copri group,
the mice were administered P. copri by oral gavage for 21 days. For the tumour control group, the right flank of mice was injected
subcutaneously with Lewis lung cancer (LLC) cells to prepare a subcutaneous tumour model. Heat-killed P. copri was used as a control in the
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T lymphocytes, and the ratio of CD4+ to CD8+ cells
(Figure 8E). Unfortunately, no significant difference was
found in the histopathologic examination of xenograft
tumours among groups with densely packed tumour
cells and apparent cell heteromorphosis (Figure 8F).
To investigate the formation of inflammatory injury
to the lungs, TLR4/MyD88/NF-κB signalling pathway-
/apoptosis-related protein levels were detected by the
Western blot. The resulting data indicated that TLR4,
MyD88, NF-κB p65, and Bcl-2 protein levels weremarkedly
increased and Bax levels reduced after P. copri treatment
compared with the tumour control group. Compared with
the P. copri group, protein levels of TLR4, MyD88, NF-κB
p65, and Bcl-2 were decreased significantly, accompanied
by promoted Bax levels in the nervonic acid or trans-
retinoic acid-treated groups (Figure 8G). Thus, nervonic
acid or trans-retinoic acid might be considered effective in
the treatment of chronic inflammation and dysimmunity
in LLC-bearing mice administered with P. copri.

4 DISCUSSION

Recent evidence suggests that gut dysbiosis contributes
to immune dysregulation, chronic inflammation, and
progression of various tumours, including lung cancer,
through the ‘gut–lung’ axis.30–32 In this study, we system-
atically investigated the gut microbiota profiles, serum-
/tissue-basedmetabonomics, and serum-based proteomics
in early NSCLC patients using 16S rDNA sequencing
and LC–MS approach. Our findings indicated that the
gut microbiota richness and diversity had no differences
between LC patients and healthy controls. This result is
inconsistent with a study by Liu et al.10 investigating the
gut microbiota in 16 healthy individuals and 30 lung can-
cer patients. Also, an increase in gut microbiota diversity
has been found in some patients with other malignant
tumours, such as thyroid carcinoma,33 gastric cancer,34
and oesophageal cancer.35 At the phylum level, the faecal
samples of LC patients show a higher abundance in Bac-
teroidetes and Firmicutes compared to that of the healthy
control group, similar to the study results of Yu et al.36
but different from that of a study by Zhuo et al.37 As we
know, the Firmicutes to Bacteroidetes ratio is often used
to determine health status and may indicate the bacterial
population balance of the gastrointestinal tract.33 Thus,
we speculated that increased Firmicutes to Bacteroidetes

ratio may contribute to the pathogenesis of LC. Notably,
we also found that the microbiome of LC groups demon-
strates a relatively lower abundance of Proteobacteria and
Actinobacteria than healthy controls. However, Proteobac-
teria is a potential pathogen, resulting in the imbalance
of gut microbiota in LC patients.10 Similar to our study,
Zhuang et al. found apparently decreased Actinobacteria
sp. as a promising biomarker in LC.38 These findings may
imply that the gut microbiota participated in the immune
imbalances of LC.
Additionally, we found that the abundances of Pre-

votella,Gemmiger, and Roseburia in the guts of LC patients
were remarkably increased compared with healthy vol-
unteers, consistent with Liu et al.,10 Cheng et al.,39 and
Zhang et al.40 This shows that the gut microbiome of
LC patients changed dramatically. Prevotella belonging
to the Prevotellaceae family was found to be associated
with immune responses and chronic inflammatory dis-
eases, such as severe asthma,41,42 rheumatoid arthritis,43
and carboplatin-induced gut toxicity.44 The genus Gem-
miger was reportedly associated with a decreased risk of
Clostridioides difficile acquisition45 and was enriched in
early hepatocellular carcinoma.39 The role of Gemmiger in
the development of LC remains to be further explored in
a larger sample cohort. However, Gui et al. also reported
that the gut butyrate-producing bacteria, Roseburia, were
significantly decreased in NSCLC patients and may affect
lung cancer progression and prognosis, which contributed
to inhibition of harmful gastrointestinal bacteria growth
and intestinal homeostasis by improving the intestinal
barrier function.46 Therefore, Prevotella, Gemmiger, and
Roseburia may serve as a possible diagnostic, prognostic,
or therapeutic target in LC therapy. Meanwhile, the KEGG
pathway analyses indicated that the dysbiosis of gut bacte-
ria in LC is significantly related to thiamine metabolism.
Therefore, we speculated that gut microbiota influences
the host via the metabolites, impacting immunologic bal-
ance in LC and in which we may identify some promising
diagnostic and therapeutic biomarkers.
Metabonomics is becoming one of the most active

research areas in the biomedical field, including in
cancers.47 With the integration of metabolomics in serum
and tumour tissue samples, we identified multiple dif-
ferential metabolites in patients with NSCLC, suggesting
that LC pathogenesis may involve an extensive metabolic
disturbance. In serum samples, the prominent metabo-
lites were mostly associated with aspartate, alanine, and

normal control group. (F) TNF-α, LBP, CD14, IL-8, and CRP levels. (G) Quantitative analysis of CD3+ T cells, CD4+ T cells, and CD8+ T cells.
(H) H&E staining of representative lung tissues. Scale bar: 100 μm. (I) Relative expression of interferon-gamma (IFNG), IL-18, IL-1β, IL-8,
TNF-α, toll-like receptor 4 (TLR4), MyD88, and NF-κB in the intestinal tissues determined by qRT-polymerase chain reaction (PCR). All data
are presented as the mean ± standard deviations, n = 6, *p < .05, **p < .01, compared with the control groups.
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F IGURE 8 Effects of Prevotella copri and combination of nervonic acid or trans-retinoic acid on Lewis lung cancer (LLC)-bearing mice.
(A) Xenograft tumours in mice from the four treatment groups (tumour control, P. copri, P. copri + nervonic acid, P. copri + trans-retinoic
acid) after subcutaneous injection of LLC (n = 5 for each group). (B and C) Volume and weight of tumours were measured in tumour control,
P. copri, P. copri + nervonic acid, and P. copri + trans-retinoic acid groups. (D) The expression levels of TNF-α, lipopolysaccharide binding
protein (LBP), CD14, interleukin (IL)-8, and C-reaction protein (CRP), as determined by enzyme-linked immunosorbent assays (ELISAs). (E)
The percentages of CD3+ T cells, CD4+ T cells, and CD8+ T cells in peripheral blood, as measured by flow cytometry. (F)
Haematoxylin–eosin (H&E) staining of LLC tumours in each group (×100). (G) In lung tissues, the expression of toll-like Receptor 4 (TLR4),
MyD88, NF-κB p65, and Bcl-2 decreased and the expression of Bax increased after treatment with nervonic acid or trans-retinoic acid,
measured by the Western blot. β-Actin was used as an endogenous control. The data represent the mean ± standard deviations, *p < .05,
**p < .01, compared with the P. copri group.
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glutamate metabolism. In tissue samples, the outstanding
metabolites were primarily related to GABAergic synapse,
intestinal immune network for IgA production, gluta-
matergic synapse, small cell lung cancer, and so forth.
Additionally, intersected metabolic pathways of differ-
ential metabolites in serum-/tissues-based metabolomics
were closely related to arginine, proline, retinol, and caf-
feine metabolism. Amino acid metabolism is one of the
basic metabolic pathways in cancer growth,48 and a study
has clarified that amino acid metabolism was significantly
altered in the T790M-mutant NSCLC.49 Retinol (vitamin
A), a fat-soluble nutrient obtained from diet, can affect cell
differentiation, proliferation, and apoptosis-related BPs.50
Caffeine (1,3,7-trimethylxanthine) is a xanthine alkaloid
found in a wide variety of dietary products. But its role
in cancer cells is controversial. Xu et al. reported that
patients receiving taxanes treatment should avoid con-
suming caffeinated beverages or foods,51 whereas others
found caffeine heightened chemo-sensitivity in NSCLC,52
breast cancer,53 and prostate cancer cell lines.54 Our results
suggest that caffeinemetabolism is associated with the ini-
tiation and progression of NSCLC. However, these results
should be verified in randomized clinical trials due to
the observational nature, bias and confounding of stud-
ies. In addition, the metabolites, including 9(S)-HPODE,
xanthine, and all-trans-retinoic acid, were synchronously
observed in serum-/tissue-based metabolomics with high
diagnostic validity. On the other side, the levels of l-
glutamic acid, l-glutamine, and gamma-glutamylcysteine
were reversed between serum and tumour tissue sam-
ples. Glutamine, a multifunctional amino acid, was used
as an essential nutrient to support cell growth and prolif-
eration in many types of cancers.55 Studies have revealed
that the tumour cells consume excess glutamine in vivo,
which has also resulted in a decrease of glutamine in
blood circulation.56,57 Consistent with the previous stud-
ies, our study also suggests that glutamine blockadewithin
the solid tumour microenvironment might serve as a
candidate therapeutic strategy for LC.
It has previously been reported that the all-trans retinoic

acid attenuates cancer resistance of gefitinib in NSCLC.58
Therefore, it is important to investigate the effects of all-
trans retinoic acid, amino acids, and xanthine in LC. To
further augment our understanding of the relationship
betweenmetabolites andmicrobiota, a correlation analysis
was performed. Spearman’s correlation analysis revealed
that there was a possible link between Prevotella and
nervonic acid and all-trans retinoic acid in LC patients.
However, themode of action of Prevotella on nervonic acid
and all-trans retinoic acid is not yet well understood in LC.
The proteomics alterations might help explore the

underlying pathological mechanisms of LC.59 We also
performed an LC/MS-based proteomics analysis to iden-

tify the DEPs of serum in LC patients. It was found
that most of the DEPs were mainly involved in the
regulation of IL-8 production, TLR4 signalling pathway,
positive regulation of TNF production, and lipopolysac-
charide receptor complex. For this study, we selected CRP,
LBP, and CD14, which are related to IL-8 production. A
recent study described that CRP could improve the early
diagnostic sensitivity of NSCLC,60 and CRP was also sig-
nificantly changed in our study. LBP is produced by lung
parenchyma, and Chalubinska-Fendler et al. have pro-
posed that LBP may be a marker for evaluating radiotox-
icity in NSCLC patients.61 CD14, a well-known glyco-
sylphosphatidyl inositol–anchored co-receptor for TLRs, is
dramatically associated with the TLR4-dependent inflam-
matory signalling pathways inmacrophages.62 To this end,
proteomics and metabolomics were combined to high-
light the connection between the DEPs and metabolites
at a higher level. The results showed that CRP, LBP, and
CD14 were inversely related to nervonic acid and all-trans
retinoic acid.
In this study, we found that gut microbiota from

patients with NSCLC enriched with P. copri modulates
chronic inflammation and immune dysfunction in the
LLC-bearing mice. To investigate the possible preventive
effects of nervonic acid and all-trans retinoic acid on
xenotransplanted tumours in P. copri-treated LLC-bearing
mice, nervonic acid and all-trans retinoic acid administra-
tion was initiated at the same time as P. copri gavage to
mice. Nervonic acid and all-trans retinoic acid treatment
attenuated the inflammatory reaction, the abnormal lung
morphology, and corrected the immune disorder induced
by P. copri. These data indicate that nervonic acid and all-
trans retinoic acid administration improved inflammatory
reaction and immunologic function in the P. copri-treated
LLC-bearing mice. Thus, we demonstrated that the regu-
lation of Prevotella, nervonic acid, all-trans retinoic acid,
CRP, LBP, and CD14 could be an underlying therapeutic
strategy for the inflammatory treatment of NSCLC.

5 CONCLUSION

In summary, our results suggested that both the abnormal-
ities of gut microbiota, metabolism, and proteomics were
closely linked with the occurrence and development of
NSCLC. We further discovered the vital role of intestinal
flora in the progression of NSCLC and a possible rela-
tionship among P. copri, nervonic acid, all-trans retinoic
acid, CRP, LBP, and CD14 in NSCLC pathogenesis, pro-
viding the basis for future studies on the pathogenesis
and treatment of NSCLC. However, the current studies
are still limited. A larger sample cohort experiment is
needed in the future to identify an ideal biomarker for
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lung cancer. The serum- and tissue-based metabonomics
analyses were conducted in different batches of lung can-
cer patients, leading to variable results. Furthermore, we
only revealed a preliminary correlation among lung cancer
intestinal microbiota, metabolites, and proteomics, but the
causal relationship among P. copri-nervonic acid and all-
trans-retinoic acid-CRP, LBP, and CD14 axis needs further
investigations.
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