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Abstract

Motivation: Single-cell RNA sequencing (scRNA-seq) captures whole transcriptome information of individual cells.
While scRNA-seq measures thousands of genes, researchers are often interested in only dozens to hundreds of
genes for a closer study. Then, a question is how to select those informative genes from scRNA-seq data. Moreover,
single-cell targeted gene profiling technologies are gaining popularity for their low costs, high sensitivity and extra
(e.g. spatial) information; however, they typically can only measure up to a few hundred genes. Then another chal-
lenging question is how to select genes for targeted gene profiling based on existing scRNA-seq data.

Results: Here, we develop the single-cell Projective Non-negative Matrix Factorization (scPNMF) method to select in-
formative genes from scRNA-seq data in an unsupervised way. Compared with existing gene selection methods,
scPNMF has two advantages. First, its selected informative genes can better distinguish cell types. Second, it ena-
bles the alignment of new targeted gene profiling data with reference data in a low-dimensional space to facilitate
the prediction of cell types in the new data. Technically, scPNMF modifies the PNMF algorithm for gene selection by
changing the initialization and adding a basis selection step, which selects informative bases to distinguish cell
types. We demonstrate that scPNMF outperforms the state-of-the-art gene selection methods on diverse scRNA-seq
datasets. Moreover, we show that scPNMF can guide the design of targeted gene profiling experiments and the cell-
type annotation on targeted gene profiling data.

Availability and implementation: The R package is open-access and available at https://github.com/JSB-UCLA/
scPNMF. The data used in this work are available at Zenodo: https://doi.org/10.5281/zenodo.4797997.

Supplementary information: Supplementary data are available at Bioinformatics online.

Contact: jli@stat.ucla.edu

1 Introduction

The recent development of single-cell RNA sequencing (scRNA-seq)
technologies provides unprecedented opportunities to decipher tran-
scriptome heterogeneity among individual cells (Birnbaum, 2018;
Potter, 2018; Zhu et al., 2020). A typical scRNA-seq dataset con-
tains thousands to tens of thousands of genes; however, a subset of
genes, which we call informative genes, are usually sufficient for rep-
resenting the underlying biological variations of cells in the dataset
for two reasons. First, variations of many genes are not related to
the biological variations of interest. For instance, fluctuations in the
expression levels of housekeeping genes are irrelevant to cell types
(Eisenberg and Levanon, 2013; Thellin et al., 1999). Second, many
genes have strongly correlated expression levels, suggesting that one
gene may represent a group of genes without much loss of informa-
tion (Subramanian et al., 2017). Therefore, for scRNA-seq data

analysis, informative gene selection has three advantages: (i) enhanc-
ing biological signals by removing unwanted technical variations,
(ii) improving the interpretability of analysis results by focusing on
informative genes and (iii) reducing the number of genes to save
computational resources.

Besides scRNA-seq data analysis, informative gene selection is
also crucial for designing single-cell targeted gene profiling experi-
ments, which we define to include all technologies that measure
only a specific set of genes’ expression levels in individual cells.
Unlike scRNA-seq, targeted gene profiling requires a limited number
(often no more than hundreds) of genes to be specified before
sequencing. Examples of targeted gene profiling include spatial tech-
nologies [e.g. smFISH (Raj et al., 2008) and MERFISH (Moffitt
et al., 2016)] and non-spatial technologies [e.g. BART-Seq (Uzbas

VC The Author(s) 2021. Published by Oxford University Press. i358

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unre-

stricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 37, 2021, i358–i366

doi: 10.1093/bioinformatics/btab273

ISMB/ECCB 2021

https://github.com/JSB-UCLA/scPNMF
https://github.com/JSB-UCLA/scPNMF
https://doi.org/10.5281/zenodo.4797997
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab273#supplementary-data
https://academic.oup.com/


et al., 2019), HyPR-seq (Marshall et al., 2020) and 10x-Genomics
Targeted Gene Expression]. Compared with scRNA-seq, targeted
gene profiling technologies have advantages such as capturing spa-
tial information (by smFISH and MERFISH), having a lower cost
per cell (by BART-Seq), and exhibiting a higher sensitivity for
detecting lowly expressed genes (by HyPR-seq). However, it remains
an open and challenging question to optimize the gene selection for
targeted gene profiling under a gene number limitation.

Given the importance of informative gene selection, researchers
have developed many gene selection methods for scRNA-seq data.
Most existing methods select genes based on the relationship be-
tween per-gene expression means and per-gene expression variances
(with the mean and variance of each gene calculated across cells).
Popular example methods include variance stabilization transform-
ation (vst) (Hafemeister and Satija, 2019) and mean–variance plot
(mvp) in the R package Seurat (Stuart et al., 2019), as well as
modelGeneVar in the R package scran (Lun et al., 2016). These
methods select highly variable genes that have large expression var-
iances in relation to their expression means. Other methods use vari-
ous metrics of gene importance instead of the per-gene expression
variance. For example, M3Drop selects the genes that have zero ex-
pression levels in many cells (Andrews and Hemberg, 2019);
GiniClust selects the genes with large Gini indices of expression lev-
els (Jiang et al., 2016); SCMarker selects the genes that have expres-
sion levels bi/multimodally distributed and are coexpressed or
mutually exclusively expressed with some other genes (Wang et al.,
2019). A common limitation of these existing methods is that they
are all designed to select a relatively large number of genes; thus,
their performance for selecting a small number of genes remains un-
clear. For instance, in Seurat, the default gene number is 2000;
SCMarker selects 700–900 genes in its exemplar applications (Wang
et al., 2019). All these gene numbers are much greater than 200, the
maximum gene number allowed by multiple targeted gene profiling
technologies. Therefore, existing gene selection methods may not be
suitable for selecting genes for targeted gene profiling. Another
drawback of these methods is that their selected genes lack function-
al interpretability; that is, their selected genes are not categorized as
functional gene groups.

In addition to these gene selection methods, linear dimensional-
ity reduction methods, such as principal component analysis (PCA)
and non-negative matrix factorization (NMF), can also be used for
gene selection. Specifically, genes can be selected based on their con-
tributions to the projected low dimensions found by PCA or NMF
(Baron et al., 2016; Macosko et al., 2015; Ye and Li, 2016; Zhu
et al., 2017). Although many variants of PCA and NMF algorithms
have been developed for scRNA-seq data analysis, they are not
designed for gene selection (Boileau et al., 2020; Duren et al., 2018;
Durif et al., 2019; Gao and Welch, 2020; Welch et al., 2019; Yang
and Michailidis, 2016; Zhang et al., 2020).

Here, we propose an unsupervised method scPNMF to simultan-
eously select informative genes and project scRNA-seq data onto an
interpretable low-dimensional space. Leveraging the Projective
Non-negative Matrix Factorization (PNMF) algorithm (Yuan et al.,
2009), scPNMF combines the advantages of PCA and NMF by out-
putting a non-negative sparse weight matrix that can project cells in
a high-dimensional scRNA-seq dataset onto a low-dimensional
space. Unlike the weight matrix (a.k.a., loading matrix) found by
PCA, the non-negative sparse weight matrix output by scPNMF cor-
responds to bases that each corresponds to a group of coexpressed
genes. Compared with the original PNMF, a unique feature of
scPNMF is basis selection: scPNMF uses correlation screening and
multimodality testing to remove the bases that cannot reveal poten-
tial cell clusters in the input scRNA-seq dataset. There are two func-
tionalities of scPNMF: (i) given a prespecified gene number and a
scRNA-seq dataset, scPNMF selects informative genes based on its
weight matrix; (ii) given a targeted gene profiling dataset containing
the informative genes, scPNMF projects this dataset onto the same
low-dimensional space of a reference scRNA-seq dataset containing
cell-type labels, thus enabling cell-type annotation on the targeted
gene profiling dataset. A comprehensive benchmark shows that
scPNMF outperforms existing gene selection methods in two

aspects. First, the informative genes selected by scPNMF lead to the
most accurate cell clustering. Second, the informative genes and
weight matrix of scPNMF lead to the best cell-type prediction accur-
acy for targeted gene profiling data. Therefore, scPNMF is a power-
ful gene selection method that can guide the experimental design
and data analysis of single-cell targeted gene profiling.

2 Materials and methods

The core of scPNMF is to learn a low-dimensional embedding of
cells so that the bases of the low-dimensional space correspond to
sparse and mutually exclusive gene groups, and that genes in each
group are coexpressed and thus functionally related. Figure 1 illus-
trates the workflow of scPNMF. The input of scPNMF is a log-
transformed gene-by-cell count matrix measured by scRNA-seq.
There are two main steps in scPNMF: (i) it learns a low-dimensional
sparse weight matrix by PNMF; (ii) it selects bases in the weight ma-
trix based on functional annotations (optional), correlation screen-
ing and multimodality testing to remove uninformative bases that
cannot distinguish cell types. The output of scPNMF includes (i) the
selected weight matrix, a sparse and mutually exclusive encoding of
genes as new, low dimensions and (ii) the score matrix containing
embeddings of input cells in the low dimensions. The selected weight
matrix has two main applications: extracting informative genes for
downstream analyses, such as cell clustering and new marker gene
identification, and projecting new targeted gene profiling data for
data integration and cell-type annotation.

2.1 scPNMF Step I: PNMF
In this section, we review the PNMF algorithm (Yuan et al., 2009;
Yang and Oja, 2010) as the foundation of scPNMF. We first com-
pare the formulation of PNMF with that of PCA and NMF, and we
show that PNMF has the advantages of both PCA and NMF so that
it can be a useful tool for scRNA-seq data analysis. Next, we intro-
duce our PNMF implementation.

Given a log-transformed count matrix X 2 R
p�n
�0 , whose p rows

correspond to genes and whose n columns represent cells, and a posi-
tive integer K � p, PNMF aims to find a K-dimensional space,
whose dimensions correspond to non-negative, sparse and mutually
exclusive linear combinations of the p genes, so that projecting the n
cells onto the K-dimensional space does not cause much information
loss (i.e. projecting the K-dimensional embeddings of the n cells back
to the original p-dimensional space can largely restore the original n
cells). PNMF tackles this task by solving the optimization problem:

min
W2R

p�K
�0

jjX�WWTXjj ; (1)

where jj � jj denotes the Frobenius matrix norm. The solution W is
referred to as a weight matrix. Each column of W is a basis, whose p
entries are the weights of the p genes. PNMF requires all weights to
be non-negative, leading to a sparse W with most weights as zeros.

PCA is similar to PNMF but does not require all weights to be
non-negative. We can write the optimization problem of PCA as

min
W2Rp�K ;WT W¼I

jjX�WWTXjj ; (2)

whose solution W is also a weight matrix but not sparse, and W is
often referred to as the loading matrix.

A common property of PNMF and PCA is that the transpose of
their weight matrix, WT 2 RK�p, can be used to project a new cell
with p gene measurements, x 2 R

p, onto the K-dimensional space as
WTx.

In contrast to PNMF and PCA, NMF finds two non-negative
matrices W and H so that their product approximates the original
matrix X. NMF solves the optimization problem:

min
W2R

p�K
�0

;H2RK�n
�0

jjX�WHjj ; (3)

whose solution W still has K columns representing bases, and H has
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n columns as K-dimensional embeddings of the n cells. Due to the
non-negative constraint on W and H, W is a sparse matrix (Lee and
Seung, 1999). However, the transpose WT cannot be used as a pro-
jection matrix from the original p-dimensional space to a K-dimen-
sional space. The reason is that, if WT is a projection matrix, then by
the definition of H we have WTX ¼ H, which would convert the ob-
jective function (3) of NMF to the objective function (1) of PNMF.
In other words, PNMF is a constrained version of NMF by requiring
WT to be a projection matrix. Hence, PNMF inherits the property of
NMF by having non-negative, sparse bases that are mostly mutually
exclusive (i.e., different bases correspond to different gene groups).
Moreover, based on the similarities of the objective functions of
PNMF (1) and PCA (2), we can see that PNMF also resembles PCA
by finding a weight matrix whose transpose can serve as a projection
matrix and whose bases are largely orthogonal to each other. Table
1 summarizes the properties of PNMF, PCA and NMF.

In the context of scRNA-seq data analysis, the above advantages
of PNMF lead to an interpretable and useful weight matrix W. First,

the high sparsity of W makes each basis (column) depend on only a
small set of genes, which has been defined as a meta-gene for NMF
(Brunet et al., 2004). Second, the mutual exclusiveness of W makes
different bases correspond to different gene sets, easing the interpret-
ation of bases as meta-genes or functional units. Third, the projec-
tion matrix WT allows the alignment of new data to reference data,
thus facilitating cell-type annotation on the new data.Algorithm 1
summarizes the key steps of PNMF implementation in scPNMF.
Our implementation mainly follows the two papers that proposed
the PNMF algorithm (Yang and Oja, 2010; Yuan et al., 2009), and
we change the initialization of W to the weight matrix found by
PCA, WPCA, with the absolute value taken on every entry. Our ini-
tialization is motivated by the desired orthogonality of bases (i.e.
columns of W).

With the weight matrix W 2 R
p�K
�0 learned by PNMF, we obtain

the score matrix S ¼WTX 2 RK�n
�0 , whose K rows correspond to

the bases and whose n columns represent the cells. Specifically, the
jth column of S is the K-dimensional embedding of the jth cell; the

Fig. 1 An overview of scPNMF. Taking a log-transformed gene-by-cell count matrix as the input, scPNMF first learns a low-dimensional sparse weight matrix W and a low-di-

mensional cell embedding matrix S. Second, it removes the bases irrelevant to cell-type variations by examining bases’ functional annotations (optional), Pearson correlations

with cell library sizes, and multimodality. Given a user-defined gene number M, scPNMF performs M-truncation to facilitate two main applications: (1) selecting the desired

number of informative genes; (2) projecting new targeted gene profiling data onto the low-dimensional space defined by reference scRNA-seq data. The details are in the

Methods section.

i360 D.Song et al.



kth row of S, denoted by sk
T , contains the scores (i.e. coordinates)

of all n cells in the kth basis:

sk
T ¼ wk

TX; (4)

where wk is the kth column of W, k ¼ 1; . . . ;K.
The low rank K needs to be prespecified in PNMF, same as in

PCA and NMF. A larger K preserves more information in X but also
removes less noise (technical variation of cells that is not of biologic-
al interest), impedes the interpretation of W (more bases are more
difficult to interpret) and increases the computational burden. To
choose K in a data-driven way, we propose an orthogonality meas-
ure, which shows that K¼20 is a reasonable choice for multiple
scRNA-seq datasets (Supplementary Section S1.1).

2.2 scPNMF Step II: basis selection
The second key step of scPNMF is to select informative bases among
the K bases found by PNMF (i.e. columns of W and rows of S) to re-
move unwanted variations of cells (e.g. variations irrelevant to cell
types). The columns of W enjoy high sparsity and mutual exclusive-
ness; that is, each column contains positive weights corresponding
to a unique small set of genes, so it is expected to reflect a certain
biological function. However, some biological functions may not be
relevant to the cell heterogeneity of interest, for example, cell-type
composition. Motivated by this, we propose three strategies for
selecting informative bases (columns of W and rows of S): functional
annotations (optional), correlations with cell library sizes and tests
of multimodality.

2.2.1 Strategy 1: examine bases by functional annotations (optional)

The first, optional strategy is to annotate the biological function(s)
of each basis in the weight matrix. For example, scPNMF may apply
gene ontology (GO) analysis to the top 10% genes with the highest
weights in each basis (column of W) and record the enriched GO
terms as the basis’ functional annotation. Then, users with prior
knowledge can interpret the functional annotation on each basis and
decide whether or not to remove the basis. For example, if the goal
is to delineate cell types in scRNA-seq data, a basis corresponding to
cell-cycle genes should be removed because they would obscure the
distinction of cell types.

However, it is worth noting that filtering bases by biological
annotations is optional in scPNMF. Conservative users can keep all
K bases output by PNMF and directly use data-driven basis selection
(Section 2.2.2). For our results in this article, scPNMF removes the

bases corresponding to well-known housekeeping genes
(Supplementary Section S2).

2.2.2 Data-driven strategies

2.2.2.1 Strategy 2: examine bases by correlations with cell library

sizes. Note that the input of scPNMF is a log-transformed unnor-
malized count matrix for users’ convenience. Hence, scPNMF does
not adjust for cell library sizes in the computation of W and S in
Step I. (For a detailed discussion on why scPNMF uses unnormal-
ized data as input, see Supplementary Section S6.) Given that the
variance of cell library sizes contributes to unwanted variations of
cells (Hafemeister and Satija, 2019), it is necessary to remove the
bases whose corresponding rows in S are strongly correlated with
cell library sizes.

We use the total log-transformed counts to approximate the li-
brary size of each cell, and we calculate the Pearson correlation be-
tween each sk and the library sizes of n cells. The strategy is to retain
the bases whose Pearson correlations are under a pre-defined thresh-
old, which we set to 0.7 based on empirical observations
(Supplementary Section S1.2).

2.2.2.2 Strategy 3: examine bases by multimodality tests. Another
data-driven strategy is to retain the bases whose corresponding
scores are multimodally distributed. If a basis’ score vector (row in
S) contains n scores with a multimodality pattern, then it is likely to
distinguish cell types and should be retained. To implement this
strategy, we use the ACR test (Ameijeiras-Alonso et al., 2019) to
check the multimodality of each basis’ score vector. The null hy-
pothesis is that the score vector contains n scores sampled from a
unimodal distribution, and the alternative hypothesis is that the dis-
tribution has more than one mode. After performing multiple multi-
modality tests, one per basis, we use the Benjamini–Hochberg
procedure to set a P-value threshold by controlling the false discov-
ery rate under 1%. The bases whose P-values are under this thresh-
old will be retained.

In summary, scPNMF step II allows users to use Strategy 1 to fil-
ter out uninformative bases based on functional annotations if avail-
able; then it implements data-driven Strategies 2 and 3 to further
remove bases that have strong correlations with cell library sizes and
exhibit unimodality patterns. The retained bases will have their cor-
responding columns in W selected and stacked into the selected
weight matrix WS 2 R

p�K0

�0 , where K0 is the number of selected
bases.

2.3 Applications of scPNMF output: informative gene

selection and new data projection
The selected weight matrix WS output by scPNMF has two main
applications: selection of a desired number of informative genes and
projection of new targeted gene profiling data onto the low-dimen-
sional space defined by WS. Given a gene number M (e.g. 200),
scPNMF uses M-truncation, a step to select M rows in WS, resulting
in M informative genes and a truncated, selected weight matrix
WS;ðMÞ 2 R

M�K0

�0 for new data projection.

2.3.1 M-Truncation and informative gene selection

We denote the desired number of informative genes by M 2 N, with
M � of nonzero rows in WS. M-truncation has three steps.

1. For each gene i, calculate its largest weight wi across bases in WS:

Table 1 Comparison of the properties of PNMF, PCA and NMF

Optimization problem Non-negativity Sparsity Mutual exclusiveness New data projection

PNMF minW jjX�WWTXjj s:t:W � 0 Yes Very high Very high Yes

PCA minW jjX�WWTXjj s:t:WTW ¼ I No Low Low Yes

NMF minW;H jjX�WHjj s:t:W;H � 0 Yes High High No

Algorithm 1 Pseudocode of PNMF implementation in

scPNMF

Initialize: W ¼ absðWPCAÞ 2 R
p�K
�0

1: while not converge do

2: for i ¼ 1; . . . ;p; k ¼ 1; . . . ;K do

3: Wik  Wik
2ðXXT WÞik

ðWWT XXT WÞikþðXXT WWT WÞik
4: end for

5: W 1
jjWjj2

W

6: end while

Output: W 2 R
p�K
�0 ; S ¼WTX 2 RK�n

�0
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wi ¼ max
k¼1;...;K0

ðWSÞik; i ¼ 1;2; . . . ; p: (5)

2. Order genes by their maximum weights wð1Þ � wð2Þ � � � � � wðpÞ
and set the truncation threshold as wðMÞ. Identify the first M

genes as informative genes.

3. Construct the truncated, selected weight matrix WS;ðMÞ:

3.1. Truncate the selected weight matrix WS by setting all

ðWSÞik < wðMÞ to be 0;

3.2. Keep the M rows with nonzero entries; stack them by row

into WS;ðMÞ based on the order of the informative genes.

In short, scPNMF selects informative genes based on their max-
imum weights in the selected bases. The rationale is that a gene’s
maximum weight reflects the gene’s contribution to the establish-
ment of the K0-dimensional space, which preserves the n cells’ bio-
logical variations of interest. Hence, genes with larger maximum
weights are more informative in the sense of encoding cells’ biologic-
al variations. An important application of informative gene selection
is to guide the design of targeted gene profiling experiments.

2.3.2 New data projection

Given the selected M informative genes, once new cells are measured
by targeted gene profiling on these genes, WS;ðMÞ can be used to pro-
ject the new cells onto the K0-dimensional space where the cells in
the input scRNA-seq data are embedded in. If the input data has cell-
type annotations, we refer to the input data as reference data, then
we can predict the new cells’ types from the types of the cells in the
reference data. In detail, new data projection has the following steps:

1. Apply scPNMF with M-truncation to input, reference data X 2
R

p�n
�0 with n cells to obtain the truncated, selected weight matrix

WS;ðMÞ. Construct XðMÞ 2 R
M�n
�0 as a submatrix of X, with rows

corresponding to the rows of WS;ðMÞ, that is, the M informative

genes. Hence, the K0-dimensional embeddings of the n cells in

the reference data are the columns of

SRef
ðMÞ ¼WS;ðMÞ

T �XðMÞ 2 RK0�n : (6)

2. Denote the targeted gene profiling data of n0 new cells with M in-

formative genes measured by XNew
ðMÞ 2 R

M�n0
�0 . Note that XNew

ðMÞ
contains log-transformed counts and has rows (genes) corre-

sponding to the rows of XðMÞ. Project the n0 cells to the K0-di-

mensional space by

SNew
ðMÞ ¼WS;ðMÞ

T �XNew
ðMÞ 2 RK0�n� : (7)

3. (Optional) Normalize SNew
ðMÞ and SRef

ðMÞ to remove batch effects, if

existent, by using a single-cell data integration method such as

Harmony (Korsunsky et al., 2019).

Now the n reference cells and the n0 new cells are in the same K0-
dimensional space with biological variations preserved. Then, a clas-
sifier can be trained on the n reference cells’ types and SRef

ðMÞ for cell-
type prediction, and it can be used to predict the n0 cells’ types from
SNew
ðMÞ .

3 Results

3.1 scPNMF outputs a sparse and functionally

interpretable representation of scRNA-seq data
We first demonstrate that scPNMF Step I, PNMF, outputs a sparse
and functionally interpretable gene encoding of cells. We use the
FregGold dataset (Freytag et al., 2018), which consists of three cell
types (three human lung adenocarcinoma cell lines), and set the basis
number K¼5 for demonstration purpose. Both PCA and PNMF
learn a weight matrix that can project the original scRNA-seq data

onto a 5D space. Unlike the weight matrix of PCA that has no zero
entries, the weight matrix of PNMF is non-negative, highly sparse,
containing 42.6% of entries as zeros, and has bases that are largely
mutually exclusive (i.e. nonzero entries in different columns corres-
pond to different rows/genes) (Fig. 2a). Compared with NMF,
PNMF also has greater sparsity and mutual exclusiveness in bases
(Supplementary Section S7). GO enrichment analysis shows that
high weight genes in each PNMF basis are enriched with conceptual-
ly similar GO terms, and high weight genes in different PNMF bases
are enriched with conceptually different GO terms (Fig. 2b). This re-
sult indicates that PNMF bases correspond to gene groups with dis-
tinct functions. On the contrary, the PCA bases do not have good
functional interpretations: the high weight genes in each PCA basis
are not enriched with conceptually similar GO terms, and different
PCA bases share many high weight genes (Supplementary Fig. S8).

To further analyze the PNMF bases, we list the top 10 high
weight genes in each basis (Supplementary Table S2), from which
we identify many well-known genes with important functions. For
instance, basis 1 contains classic housekeeping genes, such as
GAPDH (Barber et al., 2005) and ribosomal protein genes (RP-)
(Silver et al., 2006); basis 3 contains well-known tumor-related
genes, including EGFR (Blakely et al., 2017) and CDK4 (O’Leary
et al., 2016). In particular, the cells of the HCC827 cell line (one of
the three cell types) have overall high scores in basis 3
(Supplementary Fig. S9), a reasonable result because the HCC827
cell line contains an EGFR activating mutation (Della Corte et al.,
2017). In summary, scPNMF step I outputs bases representing
sparse and functionally interpretable gene sets.

3.2 Basis selection is an essential step in scPNMF
Here, we explain why basis selection is an essential step in scPNMF.
In the last section, we show that each PNMF basis of the FregGold
dataset approximately represents one functional gene group. It is
well known that housekeeping genes (basis 1) and cell-cycle genes
(basis 4) are usually irrelevant to cell-type distinctions. However,
such biological knowledge is not always available or certain.
Therefore, scPNMF mainly relies on the two data-driven strategies:
correlations with cell library sizes and multimodality tests (Section
2.2.2) for selecting informative bases.

Figure 2c visualizes the two strategies: cell scores in bases 1 and
4 are highly correlated with cell library sizes (Pearson correlations >
0.9); cell scores in bases 2 and 3 show strong evidence as multimo-
dally distributed (adjusted P-value < 0.05). Hence, Strategy 1 will
not retain bases 1 and 4, and Strategy 2 will not retain bases 1, 4
and 5; together, bases 1 and 4 will be removed, and bases 2, 3 and 5
will be selected. To verify the effectiveness of basis selection, we use
UMAP to visualize cells based on the top 50 high weight genes in
the unselected bases 1 and 4 versus those in the selected bases 2, 3
and 5 (Fig. 2d). We observe that the top genes in the unselected
bases completely fail to separate the three cell types, while the top
genes in the selected bases perfectly distinguish the three cell types.
This result strongly supports that basis selection is a necessary step
of scPNMF. If cell-type labels are provided, users may use a strategy
alternative to ‘correlations with cell library sizes’ by regressing out
the cell library sizes in a cell-type-specific manner from every basis
(see Supplementary Section S6).

3.3 scPNMF outperforms state-of-the-art gene selection

methods on diverse scRNA-seq datasets
In this section, we demonstrate scPNMF’s capacity for informative
gene selection. We comprehensively benchmark scPNMF against 11
other single-cell informative gene selection methods (Supplementary
Table S3) on seven scRNA-seq datasets (Supplementary Table S4)
using three clustering methods (Louvain clustering, K-means cluster-
ing and hierarchical clustering). For fair benchmarking, the seven
scRNA-seq datasets cover both unique molecule identifier (UMI)
and non-UMI protocols and include various biological samples.
Using the adjusted Rand index (ARI) as the metric of clustering ac-
curacy, we calculate the ARI values of the three clustering methods
on each dataset using 100 informative genes selected by each gene

i362 D.Song et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab273#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab273#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab273#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab273#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab273#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btab273#supplementary-data


selection method, as 100 genes are commonly used in targeted gene
profiling.

Figure 3a shows that scPNMF has overall the highest ARI values
across datasets and clustering methods. In particular, scPNMF has
the highest average ARI value with each clustering method
(Louvain: 0.83; K-means: 0.74; hierarchical clustering: 0.69) and
the highest overall average ARI (0.75) across datasets and clustering
methods. Note that the mean of the overall average ARI values of all
methods except scPNMF is only 0.66.

We further show the UMAP visualization of cells in the Zheng4
dataset based on the informative genes selected by each of the 12

gene selection methods (Fig. 3b). Only scPNMF leads to a clear sep-
aration of naive cytotoxic T cells and regulatory T cells, while the
informative genes selected by other methods except corFS and
irlbaPcaFS cannot distinguish the two cell types at all.

We also compare the 12 methods under a varying number of in-
formative genes: 20, 50, 200 and 500, the commonly used gene
numbers in targeted gene profiling. We observe that the overall aver-
age ARI values of scPNMF are consistently higher than those of
other methods, across all informative gene numbers (Supplementary
Fig. S11). We apply the same benchmarking framework to scPNMF
and its variant, where PNMF is replaced by NMF, and find that

Fig. 2 Illustration of the sparse and interpretable projection found by scPNMF. We use the FregGold dataset as an example. (a) Comparison of the weight matrices of PCA and

PNMF. Heatmaps visualize the learned weight matrices of PCA (top) and PNMF (bottom), where rows are genes and columns are bases. Red represents positive weights while

blue represents negative weights. The rows are ordered by gene-wise hierarchical clustering. Compared to PCA, the weight matrix of PNMF is strictly non-negative, much

more sparse and mutually exclusive between bases. (b) GO analysis result of each basis in the weight matrix of PNMF. Texts in black boxes summarize the functions of genes

in each basis. The enriched GO terms are almost mutually exclusive, implying that each basis represents a unique gene functional cluster. (c) Statistical tests on each basis in

the score matrix of PNMF. Top row: scatter plots of scores and total log-counts (cell library sizes). Each dot represents a cell. Cell scores in bases 1 and 4 are highly correlated

with cell library sizes. Bottom row: histograms of cell scores in each basis. Scores in bases 2 and 3 show strong multimodality patterns (adjusted P-value � 0:05). (d) UMAP

visualizations of cells based on high weight genes in the unselected bases 1 and 4 and those in the selected bases 2, 3 and 5. Genes in the unselected bases completely fail to dis-

tinguish the three cell types, while genes in the selected bases lead to a clear separation of the three cell types.
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scPNMF performs consistently better (Supplementary Section S7).
Moreover, compared with other methods, scPNMF leads to more
stable overall average ARI values under varying numbers of inform-
ative genes, indicating its stronger robustness to the gene number
constraint of targeted gene profiling. These results strongly support
the superior performance of scPNMF as an informative gene selec-
tion method.

3.4 scPNMF guides targeted gene profiling

experimental design and cell-type prediction
In this section, we demonstrate how scPNMF can guide the selection
of genes to be measured in a targeted gene profiling experiment, and
how scPNMF enables subsequent cell-type annotation on the tar-
geted gene profiling data. We design two case studies with paired
scRNA-seq reference data and ‘pseudo’ targeted gene profiling data,
whose per-cell sequencing depth is higher than that of the corre-
sponding scRNA-seq data.

In the first case study, we use the Zheng8 dataset (measured by
the 10x Genomics protocol) as the reference dataset. To generate
the pseudo targeted gene profiling data, we use a new single-cell
gene expression simulator that captures gene correlations, scDesign2
(Sun et al., 2021), to generate data with a 100-time higher per-cell
sequencing depth. In the second case study, we use the PBMC10x
dataset (measured by 10x Genomics protocol) as the reference data-
set, and we use PBMCSmartseq (measured by Smart-Seq2) as the
pseudo targeted gene profiling data because Smart-Seq2 has a higher
per-gene sequencing depth than 10x Genomics does. In both case
studies, for each gene selection method, the corresponding pseudo
targeted gene profiling datasets only contain the M informative
genes selected by the method.

We benchmark scPNMF against the 11 gene selection methods
in terms of cell-type prediction on the pseudo targeted gene profiling
data. To avoid the bias for a specific classification algorithm, we
apply three popular algorithms for cell-type prediction: random for-
est (Breiman, 2001), k-nearest neighbors (KNN) (Boser et al., 1992)
and support vector machine (SVM) (Boser et al., 1992). In each case
study, we first train each classification algorithm on the low-dimen-
sional embeddings of the reference cells SRef

ðMÞ given the M¼100 in-
formative genes selected by each gene selection method. Then, we

apply the trained classifier to the low-dimensional embeddings of
the cells in the pseudo targeted gene profiling data SNew

ðMÞ . Table 2
shows that scPNMF leads to the highest average prediction accuracy
(0.81) across six combinations (two case studies � three classifica-
tion algorithms). Moreover, scPNMF achieves the highest accuracy
in each combination except Zheng8þ random forest where it is the
second best. These results confirm that scPNMF effectively guides
the selection of genes to measure in targeted gene profiling experi-
ments, and it enables accurate cell-type annotation on newly gener-
ated targeted gene profiling datasets.

4 Discussion

We propose scPNMF, an unsupervised gene selection and data pro-
jection method for scRNA-seq data. The major goal of scPNMF is
to select a fixed number of informative genes to distinguish cell types
and guide gene selection for targeted gene profiling experiments.
Moreover, scPNMF can project a new targeted gene profiling dataset
with the selected genes to the low-dimensional space that embeds a
reference scRNA-seq dataset. We perform a comprehensive bench-
mark to evaluate scPNMF in terms of informative gene selection
against the state-of-the-art gene selection methods. Our results show
that scPNMF consistently outperforms 11 existing methods for a
wide range of informative gene numbers (from 20 to 500) on diverse
scRNA-seq datasets. We also demonstrate that the informative genes
selected by scPNMF can effectively guide gene selection for targeted
gene profiling and lead to accurate cell-type annotation on targeted
gene profiling data based on reference scRNA-seq data. In addition
to the 11 methods, we compare scPNMF to the factorial single-cell
latent variable model (f-scLVM) (Buettner et al., 2017), both concep-
tually and empirically, to clarify their differences and further illus-
trate the unique strength of scPNMF (see Supplementary Section S8).

Besides gene selection and data projection, scPNMF also works
as a dimensionality reduction method with good interpretability.
Each dimension in the low-dimensional space found by scPNMF can
be considered as a new functional ‘feature’ (as a linear combination
of correlated and thus functionally related genes). Moreover, the
mutual exclusiveness makes the PNMF bases used in scPNMF ad-
vantageous over the PCA bases in terms of removing confounding

Fig. 3 Benchmarking scPNMF against 11 informative gene selection methods on seven scRNA-seq datasets. (a) Clustering accuracies (ARI values) of three clustering methods

based on the informative genes selected. Gene selection methods are ordered from left to right by their average ARI across the three clustering methods and the seven datasets.

(b) UMAP visualization of cells in the Zheng4 dataset based on 100 informative genes selected by each method. Genes selected by scPNMF lead to a clear separation between

naive cytotoxic T cells and regulatory T cells, while the genes selected by others methods do not.
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effects. For example, cell-cycle genes obscure the identification of
cell types and should be removed from low-dimensional embeddings
of cells. For PCA, cell-cycle genes affect many PCA bases, so the
popular scRNA-seq pipeline Seurat implements a complicated ap-
proach that first calculates ‘cell-cycle scores’ and then regresses each
basis (principal component) on these scores to remove the effects of
cell-cycle genes (Stuart et al., 2019). In contrast, cell-cycle genes are
concentrated in only one PNMF basis, so it is easy to remove that
basis to clear the effects of cell-cycle genes. Therefore, scPNMF has
great potentials in deciphering cell heterogeneity in single-cell data
by working as an interpretable dimensionality reduction method.

The current implementation of scPNMF focuses on single-cell
gene expression data. Considering the rapid development of single-
cell multiomics technologies, we plan to extend scPNMF to accom-
modate other technologies that measure other genomics features
such chromatin accessibility landscapes measured by single-cell
ATAC-seq (Pott and Lieb, 2015), or even to integrate data across
multiomics datasets. Another note is that the multimodality test for
basis selection in scPNMF only accounts for discrete cell types but
not continuous cell trajectories. Therefore, other tests or strategies
are needed to select informative bases to capture biological varia-
tions along continuous cell trajectories.

An important question for gene selection is: how many genes
should be selected as informative genes to fully capture the biologic-
al variations of interest? In our studies, we observe that, after the in-
formative gene number reaches 200, the clustering accuracies based
on the selected informative genes plateau for most gene selection
methods including scPNMF. Therefore, 200 genes may be sufficient
for capturing biological variations in scRNA-seq data. However, it
remains challenging to decide the minimum number of informative
genes, given that the underlying cell subpopulation structure is data-
specific and might be complex. We plan to explore this problem in
the future with the possible use of information theory.
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