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The purpose of this work was to develop a mathematical model of the drug dissolution (𝑄) from the solid lipid extrudates based on
the empirical approach. Artificial neural networks (ANNs) and genetic programming (GP) tools were used. Sensitivity analysis of
ANNs provided reduction of the original input vector. GP allowed creation of the mathematical equation in twomajor approaches:
(1) directmodeling of𝑄 versus extrudate diameter (𝑑) and the time variable (𝑡) and (2) indirectmodeling throughWeibull equation.
ANNs provided also information about minimum achievable generalization error and the way to enhance the original dataset used
for adjustment of the equations’ parameters. Two inputs were found important for the drug dissolution: 𝑑 and 𝑡. The extrudates
length (𝐿) was found not important. Both GP modeling approaches allowed creation of relatively simple equations with their
predictive performance comparable to the ANNs (root mean squared error (RMSE) from 2.19 to 2.33). The direct mode of GP
modeling of 𝑄 versus 𝑑 and 𝑡 resulted in the most robust model. The idea of how to combine ANNs and GP in order to escape
ANNs’ black-box drawback without losing their superior predictive performance was demonstrated. Open Source software was
used to deliver the state-of-the-art models and modeling strategies.

1. Introduction

Mathematical description of the process of drug dissolution
from the dosage form is a widely discussed and analyzed
problem, just to name Higuchi [1] or Korsmeyer and Peppas
[2] and more recent works of Siepmann [3, 4]. Modeling
based approach allowed classification of controlling mech-
anism of the drug release process into three main groups:
diffusion-, swelling-, and chemically-based, respectively [5].
Such classification is a tool allowing for dissolution rate
and mechanism prediction in order to characterize pharma-
ceutical formulation. However presence of the vast number

of excipients, formulation technologies, and manufacturing
processes, quantitative characterization of the dissolution
process, and its correlation make characterization challeng-
ing.The artificial neural networks (ANNs), which are usually
computer programs designed to simulate biological neural
systems in both their functional activity and structure, are
useful data analysis tools to handle such complex, nonlinear
relationships. ANNs were utilized in multiple applications
in various areas of science and technology [6] along with
pharmaceutical sciences, including but not limited to devel-
opment of nimodipine consisting floating tablets [7], min-
imisation of the capping tendency during tableting process
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[8], optimization of galenical dosage form technological
process [9], prediction of dissolution from ketoprofen con-
sisting solid dispersions [10], analysis of parameters of direct
compression tableting [11], control of quality attributes of
tablets manufactured by wet granulation [12], prediction of
gentamicin [13], remifentanil [14] and aminoglycosides [15]
serum concentrations, analysis of pharmacokinetic popula-
tion data [16], evaluation of an in vitro-in vivo correlation
for nebulizer delivery of salbutamol [17], oral verapamil
products [18], sustained release paracetamol matrix tablet
formulations [19], and nifedipine osmotic release tablets [20].
However they are also considered the so-called black-box
models as it is not possible to provide analytical solution
of their way of data processing; what stays in contradiction
to the idea that the model purpose is to reveal information
about the analyzed system. According to the U.S. Food
and Drug Administration’s (FDA) Process Analytical Tech-
nologies (PAT) initiative, successful modeling is especially
important for identification of the mechanisms underlying
analyzed process, that is, drug dissolution, which is usually
performed via statistical modeling. When there is no a priori
knowledge about the analyzed problem such procedure based
on finding optimal shape of mathematical function is faced
with a problem of unlimited design space without border
conditions. This is the obstacle, which ANNs overcome by
their ability of self-adaptation to the data. There is however
a gap between statistical modeling and ANNs which does
not allow the advantages of both approaches to explore
simultaneously without encountering their drawbacks. Fuzzy
logic and so-called neurofuzzy systems (NFs), where the
ANN’s structure is encoded in the table of the logical rules
[21, 22], are an attempt to overcome this obstacle. The logical
rules of NFs are easy to follow, provided that they were built
with a reasonably small number of rules. Yet the predictive
performance of NFs is sometimes below the level achieved
by multilayered perceptron artificial neural networks (MLP-
ANNs), due to the structure of NFs designating them mostly
to the classification problems. A possible solution might be
the use of genetic programming (GP), a tool belonging to
the computational intelligence empirical modeling systems,
founded on the ground of evolutionary computation and able
to automatically generate mathematical equations, based on
the data [23–25].Themost important GP drawbacks are large
computational power demand and tendency to create very
complex equationswhich can be controlled by a priori limited
length of the chromosome; however this parameter is to be
adjusted by trial and error.

This work objective was to show how to use ANNs
and GP cooperatively in order to create effectively a simple
mathematical model of the drug dissolution from the dosage
form, based on the empirical approach.

2. Materials and Methods

2.1. Dataset. The dataset contains results of dissolution tests
carried out for 5 various formulations of lipid extrudates.
Extrudates consisting of diprophylline (Diprophylline Base,
BASF, Ludwigshafen, Germany), tristearin (Dynasan 118,

Table 1: Dimensions of the extrudates: 𝑑: diameter, 𝐿: length.

𝑑 [mm] 𝐿 [mm]
0.6 14
1.0 10
1.5 29
2.7 8
3.5 5

Sasol, Witten, Germany), and polyethylene glycol of a mean
molecular weight of 20000 (Polyglykol 20000, Clariant,
Sulzbach, Germany) in a 50 : 45 : 5%-ratio (w/w/w) were
produced by solid lipid extrusion [26]. Extrudateswere varied
by their length (𝐿) and diameter (𝑑), where 𝐿was in the range
from 5mm to 18mm and 𝑑 between 0.6mm and 3.5mm
(Table 1). Both 𝐿 and 𝑑were established as time-independent
variables characterizing particular formulation.

Dissolution experiments were carried out according to
the USP 32 method 1 up to the 1000 minutes with sampling
interval of 5 minutes. All the assays were run in triplicate.
Totally, the database consisted of 1000 records of the data.
There were originally 3 inputs of the system: the length (𝐿)
and the diameter (𝑑) of the extrudate and the dissolution
time (𝑡).The output (𝑄) was the amount (%) of diprophylline
released at the time (𝑡) specified at the input. The dataset was
preprocessed in several ways:

(i) noise addition to prevent models from overfitting:
the noised data records were generated numerically
from the continuous distributionwithin range of±5%
amplitude of the each variable value;

(ii) data records balancing according to the output mini-
mum/maximum values ratio: the number of the data
records was multiplied by increasing the number
of data records with smaller values of the output
variable;

(iii) linear scaling using either output range of ⟨0.2, 0.8⟩
or ⟨−0.8, 0.8⟩, in order to match nonlinear activation
functions domains, was used for ANNs only.

2.2.Modeling. Modeling was carried out with the use of com-
putational intelligence tools, namely, MLP-ANNs and GP,
along with nonlinear regression tools. The whole procedure
was carried out in the following steps (Figure 1):

(i) ANNs modeling to reduce the input vector and to
create black-box predictive models,

(ii) GP modeling based on the reduced input vector to
create mathematical equations,

(iii) multivariate optimization to fit parameters of the
equations to the available data.

The following activation functions were tested for MLP-
ANNs: linear, logistic, hyperbolic tangent, and logarithmic
function (fsr) and their architectures consisted of 1 to 7 hid-
den layers. In addition to theMLP-ANNs, NFs of the simplest
Mamdani type were employed [22] and contained from 5
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Figure 1: Workflow diagram presenting modeling methodology.

to 100 nodes in the hidden layer. All models were multiple-
input-single-output (MISO) type and the backpropagation
training algorithm had few modifications:

(i) momentum technique with the factor 0.3;
(ii) delta-bar-delta algorithm with the initial learning

factor 0.65;
(iii) jog-of-weights technique designed to prevent of get-

ting stuck in the local minima of the cost function; a
simple noise addition to the weights while the ANN
was not improving its efficiency during the 100,000
epochs (the patience criterion).

The 5-fold cross-validation applied during the study is a
derivative of the bootstrap technique. It means that each
model was trained 5 times, each time on different dataset.The
procedure of the datasets preparation is based on a simple
data records withdrawal with replacement. The amount of
the withdrawn data was 20% of the original database each
time and it resulted in the testing dataset accompanied by
the remaining 80% of the data consisting the training dataset.
Once withdrawn, the data record could not be used for the
testing dataset anymore. Thus, at the end of the process
there were 5 pairs of the training-testing datasets created.
In this work an enhanced scheme of the data partitioning
was employed, where each time all the data belonging to
the particular formulationwere excluded, thus simulating the
real application of themodel forced to predict behavior of the
unknown formulation. 5-fold cross-validationwas employed,
and not the usually applied 10-fold cross-validation scheme,
as there were 5 variants of the dimensions of the extrudates
present in the database.

Totally, there were 208 types of ANNs models developed,
where the type of the model differed from all others for

(i) architecture of ANN (MLP-ANNs and NFs),

(ii) training dataset modifications.

Considering 5-fold cross-validation, it added up to 1040
models trained in the single run. Each model was trained
up to 1,000,000 epochs with several stop points, where the
generalization error was assessed in order to find the most
optimal training conditions. The stop-points were as follows:
5 000, 10 000, 15 000, 20 000, 30 000, 50 000, 100 000, 150 000,
200 000, 300 000, 500 000, 750 000, and 1 000 000 epochs.The
epoch size was equal to 1. Sensitivity analysis was used for
reduction of the inputs number. It was carried out according
to the Żurada’s method [28] with further modifications by
Mendyk [10, 29]. The latter included use of collective results
from the set of the best trained ANNs instead of the single
ANN model like in the original approach.

Mathematical equations were generated by means of
GP and the symbolic regression mode available in the rgp
package [30] of the Open Source statistical environment 𝑅
[31]. Two modeling approaches were applied:

(i) direct mapping of the input versus output variables;

(ii) indirectmapping through arbitrary preselectedmath-
ematical equation.

The direct mapping means that GP was working with the
original dataset, attempting to create functional relationship
between the amount (%) of the drug released (Q) and the
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vector of parameters containing the time variable (t) accom-
panied by geometric characteristics (𝜃) of the formulation:

𝑄 = 𝑓 (𝜃, 𝑡) , (1)

where 𝑄 is the amount of the drug released (%) at 𝑡 time
and 𝜃 is a vector of the parameters characterizing formulation
(diameter and length of the extrudates).

Indirect mapping was carried out with the use of Weibull
equation:

𝑄 = 100 ⋅ (1− exp(−𝑡
𝐴

𝐾
)) , (2)

where 𝑄 is the amount of the drug released (%) at 𝑡 time and
𝐴, 𝐾 are Weibull equation constants.

In the first step, the profiles were fitted to Weibull
model. The second stage involved GP to find the relation-
ships between Weibull’s constants relevant to the dissolution
profiles and the geometric characteristics of the respective
formulations (3) and (4). New datasets were created: one for
𝐴 versus 𝜃 (3) and the second for𝐾 versus 𝜃 (4). Consider

𝐴 = 𝑓1 (𝜃) , (3)

𝐾 = 𝑓2 (𝜃) , (4)

where 𝐴, 𝐾 are Weibull equation constants and 𝜃 is a vector
characterizing geometry of the formulation.

Both datasets contained 5 data records as each dissolution
profile was characterized by single set of theWeibull𝐴 and𝐾
constants.

In order to ensure mathematical models simplicity, GP
runs were carried out with the solution complexity control,
where the maximum tree depth (the chromosome length)
was minimized with regard to the prediction error yielded by
the model. Thus, the parameter “individualSizeLimit” of the
rgp package was varied from 10 to 300 and was subject of the
optimization with regard to the goodness of fit expressed as
the root mean squared error (RMSE):

RMSE = √
∑
𝑛

𝑖=1 (pred𝑖 − obs𝑖)
2

𝑛
, (5)

where obs
𝑖
and pred

𝑖
are the observed and predicted values

respectively, 𝑖 is the data record number, and 𝑛 is the total
number of records.

In order to ensure variability of the population, the
number of subjects in the population (populationSize) was set
to 10,000. Other parameters of rgp were as follows:

(i) myfunctionSet, a set of prototype functions, was
restricted to the simplest arithmetic operators like
addition, subtraction, multiplication, and division
together with power, natural logarithm, square root,
and exponent function;

(ii) the algorithm stop condition makeFitnessStopCondi-
tion (RMSE) was equal to 5.0 and 0.01 for 𝐾 and 𝐴
Weibull’s constants, respectively, but for the direct GP
modeling it was set to 1.0;

(iii) makeTimeStopConditionwas set to 1 hour for indirect
and 120 hours for direct modeling mode.

Both of the above mentioned modes of GP runs were
performed on the whole original datasets without any mod-
ifications or preprocessing. As GP provides the model with
optimized values of its parameters, the final stage of themod-
eling was multivariate optimization used to fit parameters
of the created equations de novo, starting from the constant
values (0.1). Fitting was performed either for the whole
database or in the mode of 5-fold cross-validation. Non-
linear optimization was performed by multistage approach
programmed in the 𝑅 script. Two 𝑅 packages were employed
in the following sequence:

(i) optimwith SANN (simulated annealing) optimization
method;

(ii) optimx with directives: all.methods = TRUE and
follow.on = FALSE [32].

The rationale behind such complicated procedure was to find
the best possible model starting from the random values
of parameters. The first stage of the optim method was
the simulated annealing algorithm, a global optimization
nongradient method. It was used to provide better start-
point to the following optimx procedure, which was carried
out with all the algorithms available (all.methods = TRUE).
However, optimx was run not in the sequence but separately
(follow.on = FALSE), each optimizationmethod starting from
the parameters set previously by SANN method. At the end,
the best model’s parameters were selected and the resulting
model was tested on the separate dataset (the testing dataset)
to assess its generalization ability. The parameters’ selection
criterion was the model goodness of fit expressed as the
RMSE obtained on the training dataset. Noise addition to the
data and its balancing were employed in the same manner
as for ANNs based approach. Additionally, ANNs were
also used for the data preprocessing. The new (enhanced)
datasets were created by interpolation and extrapolation
of the original training datasets used in the 5-fold cross-
validation procedure (Figure 1). Sampling of the design space
was carried out with a step of 3.33% of the minimum-
maximum range of the variable. The boundaries were set
between minimum and 110% of the maximum variable value,
thus allowing for the extrapolation of the original dataset.
If, by any chance, the artificial training data records over-
lapped with the respective test dataset, they were discarded,
thus ensuring pure generalization assessment. The original
datasets were merged with the artificially created data. The
final sizes of the enhanced training datasets were between
7400 and 7800 records.

The predicted and observed dissolution profiles were
compared using similarity factor, 𝑓

2
, computed according to

the FDA:

𝑓2 = 50 ⋅ log{[1+(1
𝑛
) ⋅

𝑛

∑
𝑡=1
(𝑅
𝑡
− 𝑇
𝑡
)
2
]

−0.5

⋅ 100} , (6)

where 𝑛 is the number of time points, 𝑅 is the dissolution
value (%) of the prechange batch at time 𝑡, and 𝑇 is the
dissolution value (%) of the postchange batch at time 𝑡.
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Table 2: Best results of the 5-fold cross-validation procedure
conducted for various input vectors based ANNs models.

Input vector RMSE
2 inputs: diameter (𝑑) and time (𝑡) 2.18
2 inputs: length (𝐿) and time (𝑡) 8.58
3 inputs: diameter (𝑑), length (𝐿), and time (𝑡) 2.28

All computations were performed on 21 PC workstations
organized into the grid structure and working under Linux
operating systems control. An own-written ANNs simulator
Nets2012 [10, 29, 33] was used in this study for neural
modeling. KinetDS 3.0 software was used for fitting the
dissolution profiles [34].

3. Results and Discussion

3.1. Results. The first stage of the research was neural mod-
eling, where ANNs were trained to create black-box models
connecting dissolution profile with the time (𝑡), the diameter
(𝑑), and the length (𝐿) variables. As a result of the sensitivity
analysis procedure, ANNs selected two the most important
inputs: the time variable and the diameter of the extrudate.

The best ANN yielded generalization error RMSE = 2.18.
For the comparison, there were additionally two types of
ANNs models trained: (1) based on the three original inputs
and (2) based on the two inputs including the sampling
time (𝑡) and the length of the extrudate (𝐿). The above
variants of input vectors were prepared to challenge results of
sensitivity analysis with ultimate objective of the best possible
predictability of the model achieved with minimum number
of variables. In all cases the same conditions of 5-fold cross-
validation were retained. A comparison of the generalization
errors of the abovementioned three types of models supports
sensitivity analysis choice of the crucial variables, where the
length of the extrudate (𝐿) was found to be not important for
the drug release profile (Table 2).

Regarding the two elements input vector (𝑑 and 𝑡), ANNs
model optimization based on the 5-fold cross-validation
procedure was performed, where the best architecture was
chosen based on the criterion of its generalization ability.The
best neural model found consisted of two hidden layers with
20 and 10 nodes, respectively, and hyperbolic tangent activa-
tion function (Figure 2). The training iterations number was
1,000,000 and the training dataset was noised and scaled into
the range of ⟨−0.8, 0.8⟩.

BothGP runs, the direct and indirect one, were successful
in terms of finding representative model. This means that
the system was able to assign mathematical formulas to the
relationships presented as the modeling goals. Based on the
selection criteria, the following mathematical models were
chosen (7)–(10). One has

𝑄 =
(ln (𝑑) + 𝑑 + 𝑐1) ⋅ (𝑡 + 𝑐2)

𝑡 − √𝑡 + 𝑐3 ⋅ 𝑑
2 +𝑑

2
, (7)

where𝑄 is the amount of drug released (%) in time 𝑡, 𝑑 is the
extrudate diameter, and 𝑐

1–3 are adjustable parameters.

Figure 2: Optimal ANN architecture containing 20 and 10 nodes in
the hidden layer and the 2 elements based input vector: the diameter
of the extrudate (𝑑) and the sampling time (𝑡).

In case of the direct GP modeling (7) was selected as the
best model. It was relatively simple, with three parameters (𝑐

1
,

𝑐
2
, and 𝑐

3
) and contained no pyramids of the powers like that

in (9).
The indirect GP modeling resulted in the two equations

describing relationships between the constants of theWeibull
equation and the diameter of the extrudates:

𝐾 = 𝑐1 ⋅ 𝑑
𝑑
+ 𝑐2 ⋅ 𝑑,

𝐴 = 𝑐
√𝑑

3 ,

(8)

where𝐴,𝐾 areWeibull equation constants, 𝑐
1–3 are adjustable

parameters, and 𝑑 is the diameter of the extrudate.
Substituting constants of the original Weibull equation

with (8) resulted in the finalmodel relating directly the release
of the drug substance to the time variable and the extrudate
diameter:

𝑄 = 100 ⋅ (1− exp( −𝑡
𝑐
√𝑑
3

𝑐1 ⋅ 𝑑
𝑑 + 𝑐2 ⋅ 𝑑

)) , (9)

where𝑄 is the amount of drug released (%) in time 𝑡, 𝑑 is the
extrudate diameter, and 𝑐

1–3 are adjustable parameters.
The above equations are even simpler than previously

reported (10) [27]. This is the result of more thorough
investigation of the GP stopping conditions and also longer
run times extended up to 120 hours per CPU core

𝑄

= 100

⋅(1− exp( −𝑡
𝑐
√(𝑑+𝑐6)
5

exp (𝑐1 ⋅ 𝑑 + 𝑐2 ⋅ 𝑑ln(𝑐3 ⋅𝑑) + 𝑐4)
)) ,

(10)

where𝑄 is the amount of drug released (%) in time 𝑡, 𝑑 is the
extrudate diameter, and 𝑐

1–5 are adjustable parameters.
Equations (7), (9), and (10) were fitted to the various

datasets: the original one and its preprocessed derivatives
(noised, balanced, and enhanced with ANN model predic-
tions). The models fitting procedure resulted in the gener-
alization errors estimation (Table 3), which accounted for
each model’s robustness. It is clearly seen that (7) is the
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Table 3: Generalization errors (RMSE) obtained in the 5-fold
cross-validation procedure for three equations fitted to the various
datasets.

Dataset Equation (7) Equation (9) Equation (10)
Original 2.32 21.02 10.58
Balanced 2.45 37.98 5.32
Noised 2.29 24.17 5.36
ANN-enhanced 2.33 2.19 2.13

Table 4: Similarity factor (𝑓
2
) of predicted versus observed curves

for (7) and previously derived equation by Güres et al. [27].

Extrudate diameter [mm] Equation (7) Güres et al. [27]
0.6 53.0 51.7
1 70.3 50.7
1.5 76.7 56.0
2.7 73.7 57.2
3.5 90.0 67.6

Table 5: Comparison of the parameters of (7) across the 5-fold
cross-validation.

Number 𝑐
1

𝑐
2

𝑐
3

1 97.76 −1.08 23.81
2 97.25 −1.79 23.26
3 97.05 −1.96 23.08
4 96.72 −1.73 22.40
5 97.14 −1.62 23.36
CV 0.39% 20.42% 2.21%

most robust as its predictive performance is not impaired by
preprocessing of the training dataset. The above mentioned
fitting procedure followed the 5-fold cross-validation scheme;
therefore it might be directly compared to the results of the
ANNs modeling (Table 2). It was noted that mathematical
equations are comparable to the ANNs in their predictive
performance. Another performance verification of (7) was
based on the mechanistic modeling presented by Güres et
al. [27], where similarity factors (𝑓

2
) were computed for the

simulated and observed data (Table 4).
Graphical representation of the generalization results of

(7) were presented as Figure 3, where overall relationship
of predicted versus observed accounts for all 5-folds of
cross-validation gathered together. Another illustration of (7)
robustness was depicted in Table 5, where parameters of (7)
resulted from the fitting procedure performed by means of
the 5-fold cross-validation.

3.2. Discussion. According to Figure 1, there were two main
branches of the conducted research: ANNs and GP based
approach. They were applied simultaneously yet not com-
pletely separately. Following Figure 1 it might be noticed that
ANNs and GP were building the models based on the same
datasets and procedures (5-fold cross-validation), with three
distinct exceptions:

(1) input vector reduction was performed by ANNs only;

(2) GP runs were enhanced by the knowledge about the
problem, namely, Weibull equation used as a frame-
work for the mathematical equations development;

(3) mathematical models created by GP were improved
by the use of ANNs-enhanced datasets.

The procedure of the input vector reduction was carried out
with ANNs due to their effectiveness in this task. Although,
GP is capable of the crucial variables selection by pure
empirical approach, it would take very long time to optimize
mathematical function shape, number of its parameters,
and independent variables simultaneously. Therefore, use
of ANNs was recognized here as a simple management of
computational resources. ANNs provided not only themeans
of the crucial variables selection but also justification of the
claim that for this problem the diameter (𝑑) and the sampling
time (𝑡) variables are the crucial ones. Based on the estimation
of generalization abilities of ANNs models trained on the
datasets with different input vectors, it could be concluded
that the extrudate length (𝐿) variable is not important. The 𝐿
is not improving the predictive power of ANNs based on the
3-element input vector and is certainly not enough as a single
variable along with the 𝑡 in the models with the 2-element
input vector (Table 1).

Once the input vector was established, the modeling was
conducted both ways: with the use of ANNs and GP. It is
noteworthy that predictive modeling with ANNs was also the
element of the validation and justification of the input vector
reduction procedure. It is another point to the discussion
about the cost-effectiveness of the neural modeling. In case
of GP runs, the indirect mode was originally meant to be
primary as it was assumed that inclusion of the external
knowledge about the problem should be beneficial to the
model. Indeed, it was possible to find several well-predicting
models with Weibull equation used as a framework. Choice
of Weibull model requires clarification. It was mainly due
to its flexibility and ability to create good representation
of the dissolution profiles. However, more deep rationale
was of methodological nature, as this work was dedicated
to the empirical modeling, where the Weibull model is a
good example, thus not introducing any a priori knowledge
into the presented results. The simplest model found in the
indirect modeling procedure was presented in (9). It contains
only 3 adjustable parameters (𝑐

1
, 𝑐
2
, and 𝑐

3
); thus it is not

much more complex than the original Weibull equation and
certainly less complex than previously reported (10) [27].The
direct GP run was meant to be the control for the indirect
mode and yet, unexpectedly, it produced a very compact
equation (7) with good predictive abilities (Table 3 versus
Table 2) and againwith only three adjustable parameters.This
outcome required further investigation. In order to compare
(7) with (9), both equations’ parameters were optimized on
the differently preprocessed datasets resulting in different
models but tested according to the 5-fold cross-validation
on the same sets of testing data. The results summarized in
Table 3 revealed poor stability of (9) demonstrated in the large
differences between generalization errors achieved bymodels
optimized on different datasets. On the contrary, satisfactory
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Figure 3: Generalization results for (7).

robustness against themodified datasets was observed for (7),
which was the final indication for the best model choice.

ANNs played an important role in this stage of the work.
The enhanced dataset was used for the optimization of the
parameters of (7) and (9) among the other preprocessed
datasets (Figure 1). It was nothing else but the response sur-
face of the best ANNsmodel with regard to the artificial input
data created by the deliberate sampling of the experimental
design space (plus limited extrapolation). Use of ANNs-
enhanced datasets was meant to provide mathematical equa-
tions with all the knowledge of the ANNs. This was clearly
beneficial to the less robust (9), which achieved predictive
abilities at the level of ANNs only for this type of the data

preprocessing (Table 3). Equation (7) was also compared in
its predictive abilities to the previously derived mechanistic
equation [27] by means of similarity factor (𝑓

2
) computed

for the modeled versus observed results (Table 4).The results
of this comparison favor (7) over mechanistic model and
are in the same time in accordance with the conclusions
presented by Güres et al. [27], namely, the low importance of
the extrudates length parameter (𝐿). Another confirmation
of (7) robustness was delivered by comparison of the values
of its parameters fitted during the 5-fold cross-validation. It
is noteworthy that the value of the coefficient of variation
(CV) exceeded 5% only in case of the parameter 𝑐

2
(Table 5).

It is also an indication for the importance of this parameter.



8 Computational and Mathematical Methods in Medicine

Judging by the position of 𝑐
2
in (7) it might be hypothesized

that it is associated with the time variable and thus might
be directly associated with the drug release kinetics. This
hypothesis would require further insight in the future.

It is also worth noting that all the above presented results
were obtained with the use of the Open Source software,
namely, 𝑅 statistical package. The ANNs simulator Nets2012,
although not released as Open Source, was own-written
with use of Lazarus, the Open Source Rapid Application
Development (RAD) for the freepascal language [35]. The
same applies to the KinetDS software which was released
under GPLv3 license [34]. This study is an example of how
Open Source might be exploited to create sophisticated
models and modeling strategies. Use of these tools is worth
of consideration in order to provide reliable and reproducible
solutions at low cost of their development.

4. Conclusions

By careful combination of two major heuristic techniques,
namely, ANNs and GP, it was possible to build a classical
mathematical model of the drug release from the solid lipid
extrudates. It is a proof of concept that careful use of both
tools might be beneficial to the final model structure and its
performance.

GP was enhanced by ANNs in three different ways:

(1) sensitivity analysis of ANNs models allowed reduc-
tion of the input vector;

(2) ANN-enhanced datasets improved predictive perfor-
mance of some classical models;

(3) ANNs modeling results provided knowledge about
achievable models’ predictive performance for this
particular problem, thus creating an endpoint for the
mathematical modeling.

The above mentioned ANNs functions make them valuable
tools for modeling in pharmaceutical sciences despite their
“black-box” nature. Moreover, presented methodology based
on the machine learning tools introduces good data process-
ing abilities to themathematical modeling, whichmight be of
help in the future development of the mechanistic models of
drug dissolution, when more physical factors would be taken
into the consideration.
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[18] J. Opara, S. Primožič, and P. Cvelbar, “Prediction of pharma-
cokinetic parameters and the assessment of their variability in
bioequivalence studies by artificial neural networks,” Pharma-
ceutical Research, vol. 16, no. 6, pp. 944–948, 1999.
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