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Abstract: Mismatch negativity (MMN) and loudness dependence of auditory evoked potentials
(LDAEP), which are event-related potentials, have been investigated as biomarkers. MMN indicates
the pre-attentive function, while LDAEP may be an index of central serotonergic activity. This study
aimed to test whether MMN and LDAEP are useful biological markers for distinguishing patients
with bipolar disorder (BD) and major depressive disorder (MDD), as well as the relationship between
MMN and LDAEP. Fifty-five patients with major depressive episodes, aged 20 to 65 years, who had
MDD (n = 17), BD type II (BIID) (n = 27), and BD type I (BID) (n = 11), were included based on medical
records. Patients with MDD had a higher MMN amplitude than those with BID. In addition, the MMN
amplitude in F4 positively correlated with the Korean version of mood disorder questionnaire scores
(r = 0.37, p = 0.014), while the MMN amplitude in F3 correlated negatively with LDAEP (r = −0.30,
p = 0.024). The odds ratios for the BID group and some variables were compared with those for the
MDD group using multinomial logistic regression analysis. As a result, a significant reduction of
MMN amplitude was found under BID diagnosis compared to MDD diagnosis (p = 0.015). This study
supported the hypothesis that MMN amplitude differed according to MDD, BIID, and BID, and there
was a relationship between MMN amplitude and LDAEP. These findings also suggested that BID
patients had a reduced automatic and pre-attentive processing associated with serotonergic activity
or N-methyl-D-aspartate receptor.
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1. Introduction

Many studies using various methodologies have been conducted to distinguish bipolar disorder
(BD) and major depressive disorder (MDD) [1]. However, no consistent results have been found yet.
Recently, the possibility that cognitive impairment is one of the distinguishing factors between BD
and MDD has emerged. Some studies have shown patients with BD in the euthymic state suffering
from cognitive impairment, similar to those with schizophrenia [2,3]. This has contradicted old claims
of a clear period of normalized functions in BD patients in inter-episodes, as opposed to those with
schizophrenia. Thus, cognitive impairment may be a distinguishing trait marker for BD but not for
MDD [4].

Mismatch negativity (MMN), an indicator of automatic change detection, is elicited by the
temporo-frontal network [5] in response to a rarely presented deviant sound interspersed with
frequently presented standard tones [6]. MMN research has been conducted on many neuropsychiatric
conditions [7]. While the MMN amplitude is increased in healthy people with a higher visual working
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memory [8], the MMN amplitude reduction is associated with cognitive and functional deficits in
patients with psychosis [9,10]. In particular, abnormally decreased MMN has often been reported
in schizophrenia [11,12]. Despite the schizophrenia-related specificity of MMN, mounting evidence
supports that MMN is a neurophysiological biomarker of intermediate effect in patients with BD [13].
MMN reduction is also associated with cortical thinning in temporal and frontal brain regions in
patients with schizophrenia and BD [12]. Recently, two meta-analyses have revealed moderate effect
sizes for MMN impairment in BD [14,15]. Additionally, MMN amplitudes have revealed negative
correlations with functional outcomes in schizophrenia and neurocognitive functions in BD [12].
Thus, this finding suggests that cognitive impairment in BD and schizophrenia comes from common
neurobiological disturbances [12]. On the contrary, MMN studies on MDD have shown mixed
results. MMN abnormality is not a pathognomonic finding in patients with MDD. To summarize,
MMN alterations can possibly be key distinguishing biomarkers between BD and MDD associated
with the presence of cognitive impairment.

The loudness dependence of auditory evoked potentials (LDAEP), calculated as the slope of
the linear regression using the peak-to-peak N1/P2 amplitudes elicited by five auditory stimuli
intensities, is a biological marker of central serotonergic activity in neuropsychiatric diseases,
despite gamma-aminobutyric acid and glutamate being also involved in generating auditory evoked
potentials [16–18]. For example, a higher baseline LDAEP is associated with a better clinical response
to the treatment with selective serotonin reuptake inhibitors and higher suicidality in patients with
MDD [19,20]. In addition, LDAEP is significantly higher in patients with MDD than in those with BD or
schizophrenia [21]. It suggests that people with BD and schizophrenia have a higher central serotonergic
activity, the reason why clinicians prescribe serotonin antagonists (atypical antipsychotics) in those
patients than to people with MDD. Furthermore, LDAEP has also been associated with childhood
trauma [22]. Depressed patients with childhood trauma have higher LDAEP than those without
childhood trauma. It suggests that childhood trauma may cause serotonin deficiency, affecting the
development and clinical outcomes of depression. Thus, LDAEP can be an indicator of disease
differentiation, treatment response, and association with childhood trauma.

However, to date, the relationship between MMN and LDAEP remains unknown. It has been
recently found that acute tryptophan depletion (ATD) increases LDAEP and MMN amplitudes and
shortens MMN latencies [23,24]. However, in another study, a selective serotonin reuptake inhibitor
has been shown to increase MMN amplitude [25]. Given the contradictory results from these two
studies, the question remains unanswered.

Thus, the aim of the current study was to test whether MMN and LDAEP are biological markers
distinguishing BD and MDD patients. In addition, this is the first study to investigate the relationship
between MMN and LDAEP.

2. Materials and Methods

2.1. Subjects and Study Design

In total, 55 patients with major depressive episodes, aged between 20 and 65 years, diagnosed either
with MDD (n = 17), BD type II (BIID) (n = 27), or BD type I (BID) (n = 11), based on their medical
records at the Ilsan Paik Hospital between 2016 and 2020, were included. The subjects with other
major psychiatric disorders or personality disorders, as per the Diagnostic and Statistical Manual
of Mental Disorders (DSM-5), were excluded. The subjects were divided into MDD, BIID, and BID
groups according to the DSM-5 criteria. Clinical information, such as the results for Beck Depression
Inventory (BDI), the Korean version of the Mood Disorder Questionnaire (K-MDQ), and the Korean
version of Childhood Trauma Questionnaire (K-CTQ), and event-related potentials (ERPs), such as
duration MMN and LDAEP, was obtained from the medical records. MMN and LDAEP were measured
within 2 weeks after the initiation of medication. The K-CTQ is a self-report questionnaire that has
five subscales of childhood abuse or neglect experience: physical abuse (PA), emotional abuse (EA),
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sexual abuse (SA), physical neglect (PN), and emotional neglect (EN). Each subscale consists of five
items rated on a 5-point scale, from 1 (never true) to 5 (very often true).

The study protocol was approved by the ethics committee of Inje University Ilsan Paik Hospital,
ethical approval code ISPAIK 2018-10-015.

2.2. MMN and Procedure

The patients were seated in a chair in front of a monitor (Mitsubishi, 22-inch CRT monitor) and
asked to watch a silent film. The auditory stimuli were delivered via MDRD777 headphones (Sony,
Tokyo, Japan) and consisted of sounds at 85 dB sound pressure level and 1000 Hz. Deviant tones
lasting 100 ms were randomly presented, interspersed with standard tones lasting 50 ms (probabilities:
10% and 90%, respectively), which is called duration MMN. In total, 750 auditory stimuli were
presented with an interstimulus interval of 500 ms. The experiment took about 10 min to complete.
The stimuli were generated using E-Prime software (Psychology Software Tools).

Electroencephalography (EEG) recordings were synchronized to stimulus presentation onset by
E-Prime. EEG was recorded using a NeuroScan SynAmps amplifier (Compumedics USA, El Paso, TX,
USA) with 64 Ag-AgCl electrodes mounted on a Quik-Cap using an extended 10–20 placement scheme.
The ground electrode was placed on the forehead, and the physically linked reference electrode was
attached to both mastoids. The impedance was maintained below 5 kΩ. EEG data were recorded
with a 0.1–100 Hz bandpass filter at a sampling rate of 1000 Hz, following the protocol described
elsewhere [12]. The MMN wave was generated by subtracting the standard ERP wave from the deviant
waves. MMN amplitude was measured as the mean voltage between 130 and 280 ms at three electrode
sites (F3, Fz, and F4). If any remaining epochs contained significant artifacts (amplitude exceeding
± 75 µV), they were removed from further analysis. Only artifact-free epochs were averaged across
trials and subjects for ERP analysis. The rejection rate was <1%. The number of epochs of deviant and
standard stimuli used for the analysis did not significantly differ among patients with three groups.

2.3. LDAEP and Procedure

After the MMN measurement, N100 and P200 were measured. The auditory processing consisted
of 1000 stimuli with an interstimulus interval of 500–900 ms. Tones at 1000 Hz and with a duration of
80 ms (with 10 ms rise and fall times) were generated by the same software at five intensities (60, 70,
80, 90, and 100 dB SPL) via the same headphones. EEG data were also recorded from 64 scalp sites,
following a protocol described elsewhere [26]. The peak-to-peak N1/P2 amplitudes were measured for
the five stimulus intensities, and the LDAEP was calculated as the slope of the linear regression curve.

2.4. Statistical Analysis

The subjects were divided into MDD, BIID, and BID groups according to their clinical diagnosis,
based on DSM-5. The Kolmogorov–Smirnov test was used to check whether the clinical variables
were normally distributed. Kruskal–Wallis test, Analysis of variance (ANOVA), Fisher’s exact
test, and Spearman’s correlation test were used for group comparisons and relation strength.
Differences between the three groups were calculated with subsequent post hoc analysis. Multinominal
logistic regression was used to identify the association between MMN and clinical diagnosis. All tests
were two-tailed, and the cutoff for significant group differences was p < 0.05. The statistical analysis
was carried out using the SALT 2.5 software package (Istech Inc., Goyang, Korea).

3. Results

We evaluated a total of 17 patients with MDD, 27 with BIID, and 11 with BID. They were
divided into three groups according to their clinical diagnoses (Table 1). MMN amplitude in F3, Fz,
and F4 differed among the three groups. A post hoc analysis revealed that MMN amplitude differed
significantly between patients with MDD and BID (Table 1). In contrast, age, K-CTQ, BDI, and LDAEP
did not differ among these three groups. In addition, the size of MMN amplitude negatively correlated
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with K-MDQ scores (F4) (r = 0.37, p = 0.014), while it positively correlated with LDAEP (r = −0.30,
p = 0.024) (Figures 1 and 2). However, these correlations were not found within each group. Figures 3–5
show the MMN amplitude and LDAEP according to MDD, BIID, and BID. Table 2 lists the results
of multinominal logistic regression. After adjusting for confounding factors (age, sex, and LDAEP),
a significant MMN amplitude (F3) reduction was observed in BID patients compared to MDD patients
(reference), although this association was not revealed in F4 and Fz. The odds ratio was 2.17 (p = 0.015).
However, BIID diagnosis did not have a significant odds ratio for MMN amplitude compared to MDD
diagnosis (reference). There was a significant relationship between F4 and Fz.

Table 1. Comparison of demographic and clinical variables among groups with major depressive
disorder, bipolar I disorder, and bipolar II disorder classified according to clinical diagnosis based on
the DSM-5.

Variable MDD (n = 17) BIID (n = 27) BID (n = 11) F p Post Hoc
(Tukey)

a Age, years 40.94 ± 17.81 33.00 ± 15.49 39.64 ± 10.44 3.67 0.16
b Sex, males/females 13/4 19/8 5/6 n/a 0.23

a LDAEP (µV/10dB), Cz 1.25 ± 0.96 1.02 ± 0.85 0.86 ± 0.85 1.32 0.52
c MMN latency, F3 227.35 ± 17.16 226.96 ± 20.55 243.00 ± 25.49 2.60 0.084

a MMN amplitude, F3 −4.92 ± 1.77 −4.16 ± 2.34 −2.87 ± 1.44 8.54 0.014 * MDD > BID
a MMN latency, Fz 227.65 ± 17.37 230.59 ± 18.16 241.18 ± 25.99 1.89 0.39

c MMN amplitude, Fz −5.37 ± 1.59 −4.51 ± 2.41 −3.16 ± 1.60 3.93 0.026 * MDD > BID
cMMN latency, F4 226.06 ± 17.88 229.37 ± 18.03 235.09 ± 24.64 0.72 0.49

a MMN amplitude, F4 −5.17 ± 1.57 −4.33 ± 2.31 −3.13 ± 1.54 9.03 0.011 * MDD > BID
c BDI 27.18 ± 14.38 27.28 ± 14.56 26.25 ± 13.53 0.008 0.992

a K-CTQ 47.07 ± 21.33 44.32 ± 17.83 30.25 ± 20.66 0.96 0.62
a Emotional abuse 10.07 ± 6.83 10.00 ± 5.10 6.67 ± 0.58 0.71 0.70

a Physical abuse 8.86 ± 5.67 9.38 ± 5.13 8.33 ± 3.06 0.24 0.89
a Sexual abuse 5.14 ± 0.54 6.17 ± 2.01 6.00 ± 1.73 4.28 0.12

c Emotional neglect 14.29 ± 6.68 12.38 ± 5.47 9.67 ± 3.22 0.95 0.40
a Physical neglect 8.71 ± 4.25 8.25 ± 3.14 9.67 ± 5.69 0.11 0.95

* p < 0.05. Data are shown as mean standard deviation or percentage values. a Kruskal–Wallis test, b Fisher’s exact
test, c ANOVA. Abbreviations: MDD = major depressive disorder; BIID = bipolar II disorder; BID = bipolar I disorder;
LDAEP = loudness dependence of auditory evoked potentials; BDI = Beck Depression Inventory; K-CTQ = Korean
version of the Childhood Trauma Questionnaire; MMN = mismatch negativity; DSM-5 = Diagnostic and Statistical
Manual of Mental Disorders.
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Figure 5. LDAEP (loudness dependence of auditory evoked potential) waveforms and LDAEP
topographic maps in the Cz electrode in the MDD, BIID, and BID groups (Time frame ranges from 100
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Table 2. Results of multinomial logistic regression analysis for the adjusted odds ratio of mismatch
negativity (F3) in patients with bipolar I disorder compared to those with major depressive disorder.

Variables Coefficient SE Wald df p-Value Odd Ratio 95% Lower CI 95% Upper CI

Age 0.011 0.03 0.124 1 0.724 1.011 0.953 1.072
Gender 1.417 0.923 2.355 1 0.125 4.126 0.675 25.208

MMN amplitude 0.776 0.318 5.973 1 0.015* 2.173 1.166 4.049
LDAEP groups 0.031 0.898 0.001 1 0.973 1.031 0.177 5.999

* p < 0.05. Abbreviations: SE = standard error; df = degree of freedom; CI = confidence interval; MMN = mismatch
negativity; LDAEP = loudness dependence of auditory evoked potentials.

4. Discussion

This study compared clinical and ERPs variables among MDD, BIID, and BID groups. When the
subjects were divided into these three groups according to the clinical diagnosis, K-MDQ and MMN
in the frontal region differed among the groups. When the patients were divided into two groups
according to BD, the group with BD had a higher K-MDQ, sexual abuse in K-CTQ, and a lower MMN
amplitude in the frontal region than those with MDD. Thus, the main study finding was the difference
in MMN amplitude according to the diagnosis. In addition, the size of the MMN amplitude negatively
correlated with K-MDQ and positively with LDAEP.

Our findings revealed that the patients with BD had a reduced MMN amplitude in the frontal
region, similar to patients with schizophrenia, compared to those with MDD. This result seemed
to reflect some overlapping pathophysiological pathways in schizophrenia and BD at genetic and
neurocognitive processing levels. Thus, MMN amplitude can be used as a distinguishing biomarker
between BD and MDD. Previous studies have focused on patients with schizophrenia who consistently
reported reduced MMN amplitudes to auditory stimuli compared to healthy controls [27]. However,
reduced MMN amplitude has been observed in patients with BD or schizophrenia. In a previous
study, patients with schizophrenia and BD have revealed reduced MMN amplitude in the frontal
region compared to normal controls, with MMN amplitude not differing significantly between the two
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groups [12]. A recent study has also found substantial subsets of both schizophrenia and psychotic
BD patients classified as neuropsychologically compromised and deteriorated in neuropsychological
functioning and premorbid intellectual ability [28]. With the increasing number of MMN studies in
BD, there is mounting evidence to support the intermediate effect of MMN as a neurophysiological
biomarker in BD [13,29–31].

The current study revealed a lower MMN amplitude in patients with BD than in those with MDD.
Thus, the MMN amplitude in patients with MDD seemed to be relatively intact compared to those with
BD, although this study did not include healthy controls. However, studies on MMN abnormalities
in patients with MDD have shown mixed results, with some reporting larger MMN amplitudes,
while others have reported reduced values or no differences compared to healthy controls [32–36].
Some investigators have claimed MMN reduction to be a consequence of antidepressant treatment
on cortical hyperexcitability [32], while others have considered these differences in MMN results due
to the use of different deviant auditory stimuli for eliciting the MMN [32]. In addition, these mixed
results could result from the heterogeneity of MDD [37].

MMN generation has been associated with the N-methyl-D-aspartate (NMDA) receptor [38].
A smaller MMN can predict psychotic experiences induced by NMDA receptor antagonists [39].
Additionally, ketamine has a significant influence on the latency and amplitude of MMN [40]. This is
consistent with the hypothesis that the NMDA receptor hypofunction may mediate impaired auditory
mismatch response in schizophrenia patients. Thus, MMN can be a useful marker of glutamatergic
impairment [13].

LDAEP is significantly higher in patients with MDD than in those with BP or schizophrenia [21];
however, the current study did not reveal differences in LDAEP among MDD, BIID, and BID patients
(Table 1). Nonetheless, as the MMN amplitude decreased, LDAEP also decreased significantly in
the current study (Figure 2). This relationship between LDAEP and MMN amplitude seems to be
associated with the NMDA receptor. Some investigators have also found that LDAEP is decreased by
the NMDA antagonist MK-801 [41]. Collectively, it may be hypothesized that pre-attentive function
reduces and central serotonergic activity or NMDA receptor impairment gradually increases with the
frequency and intensity of psychotic symptomatology and cognitive impairment from MDD via BIID
to BID.

A previous study has indicated that ATD increases MMN amplitudes to accommodate the duration
and frequency changes in healthy subjects [23]. However, other studies have revealed ATD has either
no effect on MMN amplitude, or it is reduced in healthy subjects [42,43]. Thus, the evidence for
serotonergic modulation of MMN amplitude has not yet been confirmed. An alternative interpretation
of the relationship between the MMN amplitude and LDAEP might be associated with the presence
of psychotic symptoms. First-episode psychosis (FEP) of the schizophrenia-spectrum patients and
FEP of the affective-spectrum patients are found to have similar MMN impairments as schizophrenia
patients [44]. In addition, schizophrenia and psychotic BD have a lower LDAEP than normal controls
and nonpsychotic BD patients [21,45].

In the current study, LDAEP did not differ among the MDD, BIID, and BID groups, suggesting
that serotonergic activity did not differ among these groups. However, a previous study has revealed
that LDAEP differs significantly among 123 patients with MDD and 37 patients with bipolar mania and
bipolar depression [21]. This discrepancy could be due to the difference in the sample size, the state of
bipolar illness, and the dosage of atypical antipsychotics (serotonin antagonists). Regarding the sex
difference in LDAEP, some investigators have found a higher central serotonergic activity in female
depressed patients than in male counterparts [46]. However, other studies, including the current one,
have not found such differences [21,47]. Thus, this topic is still controversial.

This study has several limitations. First, the sample size was small; therefore, studies involving
larger samples are needed in the future. Second, the current study did not include normal controls.
However, it revealed the difference in MMN amplitude and the relationship between MMN and LDAEP
according to clinical diagnosis. Third, we did not control the medication because the measurement
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of LDAEP and MMN was carried out, at the latest, within 2 weeks after the initiation of medication.
Thus, future studies will need to evaluate MMN and LDAEP before the medication is initiated.
Fourth, our MMN procedure was different from other studies in comparing short standards with
long deviants. However, some studies have employed the same MMN procedure as ours [11,12,36].
In addition, sex distribution, duration of illness, and participants’ age distribution in each group could
be potential limitations.

5. Conclusions

In conclusion, this study supported the hypothesis that the MMN amplitude differed according to
MDD, BIID, and BID, and there was a relationship between the MMN amplitude and LDAEP.
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