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The effectiveness of recombinant vaccines encoding full-length M2 protein of influenza virus or its ectodomain (M2e) have
previously been tested in a number of models with varying degrees of success. Recently, we reported a strong cytotoxic effect
exhibited by M2 on mammalian cells in vitro. Here we demonstrated a decrease in protection when M2 was added to a DNA
vaccination regimen that included influenza NP. Furthermore, we have constructed several fusion proteins of conserved genes
of influenza virus and tested their expression in vitro and protective potential in vivo. The four-partite NP-M1-M2-NS1 fusion
antigen that has M2 sequence engineered in the middle part of the composite protein was shown to not be cytotoxic in vitro. A
three-partite fusion protein (consisting of NP, M1 and NS1) was expressed much more efficiently than the four-partite protein.
Both of these constructs provided statistically significant protection upon DNA vaccination, with construct NP-M1-M2-NS1
being the most effective. We conclude that incorporation of M2 into a vaccination regimen may be beneficial only when its
apparent cytotoxicity-linked negative effects are neutralized. The possible significance of this data for influenza vaccination
regimens and preparations is discussed.
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INTRODUCTION
M2 of influenza A virus is a 97-amino acid ion channel protein.

M2 forms tetramers and is expressed at high density in the plasma

membrane of infected cells. M2 transmembrane domain is highly

conserved for all human, swine, equine, and avian strains of

influenza A virus and is primarily responsible for proton

translocation. This region is considered to be a target for the

antiviral drugs, amantidine and rimantadine, that have been used

for influenza prophylaxis and treatment over several decades [1].

M2 residues 1–24 comprise the extracellular domain (M2e),

which is a target for antibody-mediated immunity. M2e is also

extremely conserved. Since monoclonal antibodies to M2e were

shown to provide protection against influenza-induced disease [2],

various approaches utilizing M2e as part of a vaccine regimen

have been evaluated as possible components of a broad-spectrum

anti-influenza vaccine. Several reports presented evidence of high

protection after DNA immunization with high doses of M2-

encoding plasmid [3,4], with one group reporting immunization

with a combination of influenza nucleoprotein (NP) and M2 as the

most efficient [4]. However, it is also known that excessive

immunization with M2 fails to produce proportionate protection

[5]. Moreover, when M2e domain was fused to NP, immunization

of swine with such a DNA construct actually exacerbated the

disease [6].

We recently reported that expression of influenza A virus M2

protein is highly toxic for mammalian cells in vitro and that its

transmembrane region is essential for this function [7]. While

similar observations have been made in yeast and insect cells, it

was assumed that in heterotypic vertebrate expression systems, M2

causes no overt toxicity [8]. Contrary to that, we detected a

significant M2-driven cytotoxic effect in 293 HEK cells, which was

clearly linked to the proton-channeling ability of M2, with notable

changes in mitochondria of pM2-transfected cells observed within

the same time-period.

We hypothesized that M2-induced cytotoxicity may contribute

negatively to the efficiency of recombinant and/or attenuated

vaccines and that this is a molecular mechanism of the effect often

called ‘‘insufficient M2 immunogenicity’’. Indeed, we observed

that adding a plasmid encoding a full-size M2 to the NP-based

DNA vaccination regimen had a negative effect on animal survival

following high-dose viral challenge. Furthermore, we observed

that DNA vaccination with a multi-gene fusion construct (NP-M1-

M2-NS1) that contains full size M2 and is not cytotoxic in vitro had

a protective benefit that exceeds that of the construct that lacks M2

(NP-M1-NS1).

MATERIALS AND METHODS

Plasmids and cells
The construction of NP and M2-containing plasmids (pNP and

pM2) has been described earlier [7,9]. Construction of plasmids

encoding multi-gene fusion proteins NP-M1-NS1 (pNPM1NS1)

and NP-M1-M2-NS1 (pNPM1M2NS1) was done by PCR-

amplification from earlier described NP-, M1, NS1- and M2-

expressing plasmids [7,9]. Viral sequences were as follows: NP

from strain A/WSN/33-H1N1, which is identical to A/PR/8/34-

H1N1 on the amino acid level [9], M1 from the same strain, NS1

from strain A/PR/8/34-H1N1 and M2 from influenza A/WSN/

33 (H1N1) strain (GenBank accession numbers: V01084, L25818,

J02150 and L25818, correspondingly). Multi-gene sequences were
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first inserted into the pcDNA vector (Invitrogen, Carlsbad, CA,

USA). HA-tag-encoding sequences were added at the 39-termini

and Flag-tag-encoding sequences were attached to 59-termini of

NP-M1-NS1 and NP-M1-NS1-M2 genes to enable their efficient

immunological detection. All sequences were then cloned into the

pCAGGS expression vector and used for expression testing and

immunization [10].

Transfection
293 HEK cells were transfected at 60–80% confluency in 35 mm

plates with Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA)

overnight (1.5 mg of total plasmid DNA per 5 ml LF2000). EGFP-

expressing plasmid (0.5 mg) was used for co-transfection with

pNPM1NS1 and pNPM1M2NS1 to visualize transfected cells

(transfection efficiency was 80–90%). Control cells were transfect-

ed with the same amount of empty vector pCAGGS.

Western blotting
Cells were lysed at 24 hours after transfection, normalized for

protein concentration, and following SDS-PAGE and immuno-

blotting, NPM1NS1 and NPM1M2NS1 expression was detected

using either anti-HA-tag or anti-Flag antibodies (Cell Signaling,

Beverly, MA, USA).

Cytotoxicity
In transfected cells was measured as a function of loss of GFP

fluorescence as previously described [7]. Quantification of cell

death was made by propidium iodide (PI) staining (5 mg/ml,

10 min). Images were taken at 16–90 hours after transfection

under a fluorescent microscope (106 or 406 objective).

Immunization with pNP, pM2, pNPM1NS1 and

pNPM1M2NS1 in vivo
In the first experiment 5 mg of pNP, pM2 or pCAGGS (control) in

100 ml of PBS was injected intramuscularly per mouse per

vaccination. Since the group immunized with a combination of

pNP and pM2 received 10 mg of DNA total, the amount of DNA

in other experimental groups was adjusted correspondingly with

pCAGGS plasmid. Therefore, mice in the pNP group received

5 mg of pNP and 5 mg of pGACCS, mice in the pM2 group

received 5 mg of pM2 and 5 mg of pGACCS, mice in the vector-

immunized group received 10 mg of pGACCS. The size of the

experimental groups was 20–22 animals per group with the

exception of the control group of intact mice that comprised 10

animals. Mice were subjected to immunization with plasmid DNA

three times with 14 days interval in between. Animal survival,

weights and virus titers were monitored. For immunization with

multi-gene fusion plasmids pNPM1NS1 and pNPM1M2NS1

25 mg of each plasmid was used. Mice (9–10 per group) were

subjected to immunization with plasmid DNA three times with 14

days interval in between.

Mouse-adapted influenza virus and animal infection
Avian influenza virus A/Mallard/Pennsylvania/10218/84

(H5N2) was obtained from the virus depository of the Virology

Department of St. Jude Children’s Research Hospital (Memphis,

TN, USA) and was adapted to mice by lung-to-lung passage

[11,12]. Virus was propagated in 10-day-old embryonated chicken

eggs. The virus-containing allantoic fluid was stored at 270uC and

titrated in chicken embryo or in MDCK cells. Ether anaesthetized

BALB/c mice (10–12 g) were infected intranasally with 50 ml of

PBS-diluted allantoic fluid containing 5, 10 or 100 LD50 of A/

Mallard/Pennsylvania/10218/84, 7 days after the last boost.

Protection was measured by monitoring animal survival and body

weight, which was assessed throughout an observation period of 21

days. Severely affected mice were euthanized. 1 LD50 of A/

Mallard/Pennsylvania/10218/84 is equal to 100–1000 TCID50.

Lung tissues from infected animals (2 from each group) were taken

at day 4 after infection for viral titer evaluation. Viral titers were

measured by focus assay in MDCK cells that were grown in 24-

well plates and incubated with 0.5 ml/well of 10-fold sample

dilutions. After 60-min absorption at RT, the virus inoculum was

removed, cells washed and covered with 1% agarose. 50 hrs later,

cells were fixed and incubated for 1 h with anti-influenza virus

antibodies and visualized using peroxidase staining. Stained foci

(PFU) were counted and titers calculated by the routine Reed &

Muench method.

Statistical methods
Standard error (SE) of a percent value was determined by the

formula: SE = !p(1002p)/n, where p is percent value and n is

number of animals used, similarly to that previously described

[11]. Significance between two percent values (with probability

0.95): t = p12p2/!SE1
2+SE2

2.2.0. Animal survival was compared

using log-rank test (PROC LIFETEST, SAS(R) statistical

package). The differences at P-value below 0.05 were considered

significant.

RESULTS

Inclusion of M2-encoding plasmid into vaccination

regimen may result in disease exacerbation
The level of protection provided by DNA vaccination with pNP,

pM2, pNP+pM2 or vector plasmid was assessed for animal groups

challenged with 100 LD50 of mouse-adapted H5N2 influenza virus.

Vaccination with pNP resulted in 20% survival (Fig. 1). Protection

data unequivocally suggested that in such experimental settings

inclusion of pM2 into the immunization regimen is detrimental for

protection (Fig. 1). Specifically, while the pM2-immunized group

showed no effect on the dynamics of survival and disease similar to

vector-immunized controls, the survival in pNP+pM2-immunized

group was clearly impaired compared to immunization with pNP

Figure 1. Survival of mice vaccinated with the combinations of pNP
and pM2 after challenge with 100 LD50 of H5N2 influenza virus
strain A/Mallard/Pennsylvania/10218/84. Animals were immunized
and challenged as described in Materials and Methods.
doi:10.1371/journal.pone.0001417.g001
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alone (Fig. 1) and this difference was statistically significant

(p,0.05). There was no difference in viral titers between pNP

and pNP+pM2 immunized groups, with the titer in the pM2-

immunized group being somewhat lower (not shown).

Expression of fusion proteins derived from

conserved influenza genes
Plasmids encoding fusion genes, pNPM1NS1 and

pNPM1M2NS1, that contained full sequences of conserved

influenza NP, M1 and NS1 genes (with or without M2) were

constructed and shown to express the proteins of predicted size

(Fig. 2). They were tested for their expression in vitro using

antibodies to N-terminal Flag-tag (Fig. 2A) or C-terminal HA-tag

(Fig. 2B). It was clear that inclusion of M2-encoding sequence

resulted in dramatic impairment of expression of the fusion

proteins, with NPM1NS1 construct expressing at least 10 times

more efficiently than NPM1M2NS1 (Fig. 2A). Higher levels of

expression of the three-partite over four-partite fusion protein was

also seen when antibody to C-terminal HA-tag was used (Fig. 2B),

although the overall difference was less. Neither of the fusion

proteins exhibited any cytotoxicity similar to that induced by wild-

type M2 (Fig. 3). Specifically, for NPM1M2NS1 no signs of

cytotoxicity were seen up to 96 hours after transfection even when

its efficiency of transfection was 90–100% (not shown).

Protection of mice from disease by immunization

with plasmids encoding fusion proteins of influenza

virus
We utilized both multi-partite fusion constructs in vaccination

experiments in order to test whether the utilization of M2 in a

fashion that alleviates its cytotoxicity is capable of providing

additional protective benefit (Fig. 4). Weakly expressed

NPM1M2NS1 construct resulted in partial protection against 5

LD50 of mouse-adapted H5N2 virus, which was statistically

significant (p,0.05) and exceeded that exhibited by the much

more efficiently expressed NPM1NS1 construct which did not

include M2, although the latter also provided statistically

significant protection as shown by log-rank analysis.

DISCUSSION
The usefulness of the immune response against M2 for protection

against influenza-induced disease has been known for a long time

and multiple attempts have been undertaken to exploit this for the

generation of cross-protective vaccine preparations [3,4,13,14,15].

Despite significant advances along this route, this aim has not been

Figure 2. Expression of recombinant multi-partite fusion proteins
based on conserved genes of influenza in vitro. Lanes 1–4 - cells
transfected with pNPM1NS1, lanes 5–8 - with pNPM1M2NS1. A - anti-
Flag-tag antibodies used for protein detection; B - anti-HA-tag
antibodies used. Lanes 1, 2, 5 and 6 - starting point of chase (0 hours).
Chase time: 3.5 hours (panel A, lanes 3 and 7), 7 hours (panel A, lanes 4
and 8), 8 hours (panel B, lanes 3, 4, 7 and 8). Proteosome inhibitor
MG132 added to samples in panel B, lanes 4 and 8. Lanes 1 and 5
contain M of total protein loaded to lanes 2–4 and 6–8, correspond-
ingly. Position of molecular weight markers is shown.
doi:10.1371/journal.pone.0001417.g002

Figure 3. Absence of cytotoxicity induced by multi-partite fusion
proteins based on conserved genes of influenza containing and not
containing M2 sequence (as measured by green fluorescence). HEK
cells were co-transfected with 0.2 mg of pGFP and 0.8 mg of the
following plasmids: A - pCAGGS, B - pM2, C - pNPM1NS1, D -
pNPM1M2NS1. Images were taken 64 hours after transfection.
doi:10.1371/journal.pone.0001417.g003

Figure 4. Survival of mice vaccinated with pNPM1NS1 and
pNPM1M2NS1 after challenge with 5 LD50 of H5N2 influenza virus
strain A/Mallard/Pennsylvania/10218/84. Animals were immunized
and challenged as described in Materials and Methods.
doi:10.1371/journal.pone.0001417.g004
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accomplished. Moreover, in several experimental settings, the

results have been disappointing [6]. Our results presented herein

(Fig. 1) coupled with earlier accumulated data [6] clearly indicate

that immunization with M2 may lead to disease exacerbation.

Our data point to the possibility that M2-dependent cytotoxicity

is a factor in influenza pathogenesis, and also raises the question

whether any vaccine (recombinant, live-attenuated or to a lesser

extent inactivated) containing full-size functional M2 may be

detrimental or even harmful. The molecular mechanism of this

negative action of M2 may be, at least in part, linked to its

cytotoxic effect which we have recently described [7]. If M2-

induced cytotoxicity is linked to suppression of the immune

response in M2-containing vaccines, then the incorporation of

influenza M2 into a vaccination regimen should include the

neutralization of its possible negative effects.

There are several approaches on how to neutralize M2

cytotoxic activity. In particular, it is possible to incorporate M2

into a multi-gene fusion construct, designed to limit the

accessibility of M2 functional domains. We have recently

demonstrated that addition of M1 and NS1 to NP is advantageous

in several animal models of DNA vaccination [9]. In this study, we

tested a fusion gene including these conserved influenza genes with

or without M2, with the sequence of the latter engineered to be

inside and not on the termini of the fused gene (resulting in

NPM1M2NS1 construct).

The expression level of this NPM1M2NS1 fusion protein was at

least 10 times lower than that of NPM1NS1 (Fig. 2). At the same

time, the incorporation of M2 sequence into the third position of

the recombinant molecule did not result in any overt cytotoxicity

in vitro, different from full-size M2 (Fig. 3). Additionally, the four-

partite NPM1M2NS1 fusion protein was more protective than

NPM1NS1 protein in a DNA vaccination model, while expressed

at significantly lower levels (Figs. 3, 4). It is plausible to suggest that

some of the detrimental effects exhibited by M2 are alleviated

when it is placed in the central position of the recombinant protein

and therefore the resulting protein is not cytotoxic.

Collectively, it is reasonable to suggest that expression of wt-M2

protein, although useful as an antigen, also contributes negatively

to the vaccination regimen by virtue of its cytotoxic capacity.

Therefore, successful utilization of M2 in anti-influenza immuni-

zation may require elimination of its cytotoxicity without

interfering with its antigenic epitopes. This may have been

partially accomplished in approaches that employ M2e domain

[14,15]. Incorporation of full M2 sequence into multi-gene

recombinant structures based on conserved influenza proteins is

yet another avenue to attain this goal as was accomplished with the

NPM1M2NS1 fusion construct described herein. This may in turn

be complemented by M2 site-specific mutagenesis. We have

previously reported that introducing hydrophobic amino acids

within the ion channel formed by M2 tetramer is an effective

strategy to reduce M2 cytotoxicity [7].
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