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A B S T R A C T

The clinical diagnosis of Parkinson's disease (PD) is very difficult, especially in the early stage of the disease, because there is no physiological indicator that can be
referenced. Drug-free patients with early PD are characterized by clinical symptoms such as impaired motor function and cognitive decline, which was caused by the
dysfunction of brain's dynamic activities. The indicators of brain dysfunction in patients with PD at an early unmedicated condition may provide a valuable basis for
the diagnosis of early PD and later treatment. In order to find the spatiotemporal characteristic markers of brain dysfunction in PD, the resting-state EEG microstate
analysis is used to explore the transient state of the whole brain of 23 drug-free patients with PD on the sub-second timescale compared to 23 healthy controls. EEG
microstates reflect a transiently stable brain topological structure with spatiotemporal characteristics, and the spatial characteristic microstate classes and temporal
parameters provide insight into the brain's functional activities in PD patients. The further exploration was to explore the relation between temporal microstate
parameters and significant clinical symptoms to determine whether these parameters could be used as a basis for clinically assisted diagnosis. Therefore, we used a
general linear model (GLM) to explore the relevance of microstate parameters to clinical scales and multiple patient attributes, and the Wilcoxon rank sum test was
used to quantify the linear relation between influencing factors and microstate parameters. Results of microstate analysis revealed that there was an unique spatial
microstate different from healthy controls in PD, and several other typical microstates had significant differences compared with the normal control group, and these
differences were reflected in the microstate parameters, such as longer durations and more occurrences of one class of microstates in PD compared with healthy
controls. Furthermore, correlation analysis showed that there was a significant correlation between multiple microstate classes’ parameters and significant clinical
symptoms, including impaired motor function and cognitive decline. These results indicate that we have found multiple quantifiable feature tags that reflect brain
dysfunction in the early stage of PD. Importantly, such temporal dynamics in microstates are correlated with clinical scales which represent the motor function and
recognize level. The obtained results may deepen our understanding of the brain dysfunction caused by PD, and obtain some quantifiable signatures to provide an
auxiliary reference for the early diagnosis of PD.

1. Introduction

Parkinson's disease (PD) is a degenerative neurological disorder of
certain nerve cells in the part of the brain which produces dopamine
(Rigas et al., 2009), and it is characterized by movement symptoms
such as resting tremor, bradykinesia, rigidity and postural instability
(Dickson, 2017). PD generally occurs in middle and old age (after 50
years old), and its average age of onset is about 60 years old. It is a long-
term disease and progresses gradually for several years. This causes the
patients to lose self-care ability and even leads to disability.

In terms of cardinal manifestations, bradykinesia and resting tremor
(RT) are two kinds of the most frequent manifestations of PD
(Berardelli, 2001), and RT is the second most common motor symptom
of PD, after bradykinesia (Rigas et al., 2009; Jankovic, 2008;

Schwingenschuh et al., 2010). In terms of pathophysiological substrate,
PD is characterized by dopamine depletion in the striatum, which dis-
rupts corticostriatal processing and explains clinical symptoms such as
bradykinesia and rigidity. In addition to movement symptoms such as
tremor and tardiness, PD patients may also have non-movement
symptoms such as depression, anxiety, sleep disorders and cognitive
disorders.

At the early stage, the clinical diagnosis of PD is accomplished in
combination with clinical symptoms, clinical scale scores, neuroima-
ging data, and other supporting criteria, such as response to dopamine
therapy (Serrano et al., 2018). Accurate diagnosis of Parkinson's disease
is always difficult because of the complex etiology and the variety of
clinical symptoms, especially in the early stage of the disease
(Serrano et al., 2018).

https://doi.org/10.1016/j.nicl.2019.102132
Received 22 July 2019; Received in revised form 4 December 2019; Accepted 13 December 2019

⁎ Corresponding authors.
E-mail addresses: ccg_tina@tju.edu.cn (C. Chu), cdwangxing5118@126.com (X. Wang), clhfio@tju.edu.cn (L. Cai), 15522015351@163.com (L. Zhang),

jiangwang@tju.edu.cn (J. Wang), liuchen715@tju.edu.cn (C. Liu), zxd3516@tmu.edu.cn (X. Zhu).
# Joint first authors.

NeuroImage: Clinical 25 (2020) 102132

Available online 20 December 2019
2213-1582/ © 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/22131582
https://www.elsevier.com/locate/ynicl
https://doi.org/10.1016/j.nicl.2019.102132
https://doi.org/10.1016/j.nicl.2019.102132
mailto:ccg_tina@tju.edu.cn
mailto:cdwangxing5118@126.com
mailto:clhfio@tju.edu.cn
mailto:15522015351@163.com
mailto:jiangwang@tju.edu.cn
mailto:liuchen715@tju.edu.cn
mailto:zxd3516@tmu.edu.cn
https://doi.org/10.1016/j.nicl.2019.102132
http://crossmark.crossref.org/dialog/?doi=10.1016/j.nicl.2019.102132&domain=pdf


In order to assist in the accurate clinical diagnosis of early PD and
avoid the diagnosis of PD through the detection of patients' response to
dopamine due to the complex and unclear initial symptoms of PD, it is
necessary to explore the status markers that are difficult to identify in
early PD. Therefore, the search for valuable neurophysiological iden-
tification of early PD is an urgent problem to be solved, and the found
significant status characteristics of early PD will be an excellent aux-
iliary means to improve the certainty of clinical diagnosis (VallsSolé
and Valldeoriola, 2002).

In the pathology of Parkinson's disease, the dynamic changes in the
brain's activity play an important role (Serrano et al., 2018) which can
be assessed on different time scales and with different types of data:
functional magnetic resonance imaging (fMRI) with high spatial re-
solution can characterize slower brain dynamics; quantifying electro-
encephalography (EEG) variations in both time domain and frequency
domain is a basic way to characterize the state markers of several
neurodegenerative diseases, such as PD, or some neuropsychiatric dis-
orders as major depressive disorder and schizophrenia (Gandal et al.,
2012; Han et al., 2013). It is worth noting that Kannan et al
(2012;2011) have performed very high fidelity 2D and 3D simulations
for accurately and efficiently predicting and quantifying local and
global injuries for organs like the brain and the lung. They were able to
(i) noninvasively ‘numerically penetrating’ the tissues and (ii) re-
construct the optical properties the presence of water, oxygenated and
de-oxygenated blood. These numerical noninvasive measurements are
then used to predict the extent and severity of the organ hemorrhage/
injury. What's more, compared with other expensive invasive surgery or
imaging technologies, such as electrocorticography (ECoG) and fMRI,
EEG recording system, as a cheaper and more mobile medical device,
has been used widely to analysis the dynamic changes in the brain's
activity, and it is expected to become a common tool for the diagnosis
of PD in the early stage of the disease in the future (Chu et al., 2018).

EEG microstate analysis with inherent high temporal resolution and
high test-retest reliability can study sub-second dynamic changes in
brain activity (Schumacher et al., 2019). EEG microstates are defined as
global patterns of scalp potential topographies which using multi-
channel EEG arrays that dynamically vary over time in an organized
manner (Milz et al., 2015). EEG microstates have been studied ex-
tensively in wakefulness, where four standard classes of EEG-microstate
maps have been repeatedly identified in a large number of studies on
healthy subjects of all ages at rest (Schlegel et al., 2012; Koenig et al.,
2002). The morphological changes of brain electric field are nonlinear
and discontinuous. A given structure of brain electric field tends to
maintain a quasi-stable state for a sub-second time period before ra-
pidly transforming into another different structure. These periods of
quasi-stable field structure were called microstates and were suggested
to reflect basic steps in brain information processing in spontaneous
and event-related studies (Brandeis and Lehmann, 1989;
Lehmann et al., 1987; Koenig et al., 1998). Many related studies have
demonstrated that the characteristics caused by dynamic changes in
brain activity, such as personality types (Schlegel et al., 2012) and
behavioral states (Lehmann et al., 2010), as well as the disorders caused
by abnormal brain activity, such as neuropsychiatric disorders
(Lehmann et al., 2005; Mitsuru et al., 2011; Khanna et al., 2015), are
the drivers of changes in time series of EEG microstates. Consequently,
the presence of particular microstates that reflect different brain ac-
tivities and abnormalities in their inherent characteristics (including
frequency or duration, etc.) can be considered as quantifiable char-
acteristic state markers of different neuropsychiatric and neurological
disorders (Serrano et al., 2018). Besides, the broader literature suggests
that dynamic brain activities characterized by flexibility in brain ac-
tivity and temporal variability are associated with cognitive function
(Schumacher et al., 2019; Deco et al., 2011; Garrett et al., 2013;
Zalesky et al., 2014).

Thus, EEG microstate analysis is conducted in this work, aiming to
explore the pathological characteristics of brain activity in early-stage

PD by revealing the differences of dynamic brain activities between the
healthy subjects and drug-free patients with the manifestations of
tremor or bradykinesia in the early stage of PD. And these quantifiable
pathological characteristics can be used as auxiliary diagnostic tools to
help clinicians accurately diagnose early PD.

Moreover, state markers to characterize the feature of PD patients
with typical movement symptoms are expected to be extracted from the
EEG-microstate approach. What's more, we explored the association
between microstate features and clinical scale scores to explain the
relation between brain dynamics changes and both movement disorders
and cognitive impairments caused by PD pathology.

2. Materials and methods

2.1. Participants

23 patients treated in the department of psychiatry of Tianjin
Medical University General Hospital were included in the study (15
female: age range of 60–74, mean age of 67 years old; 8 male: age range
of 65–75, mean age of 68 years old).

Among all the patients, the first symptom of 9 patients was brady-
kinesia, and the other 14 was resting tremor. All of them had been
diagnosed as primary PD with 3.2 ± 2.5 years’ disease duration, and
all patients had been off medication for more than 12 h in order to
collect EEG data in the absence of pharmacodynamic effects (means
drug-free). None of the patients had head tremor. In addition, 23 age-
matched and gender-matched healthy participants (12 female: age
range of 60–70, mean age of 65 years old; 11 male: age range of 60–74,
mean age of 66 years old) with no history of neurological or psychiatric
illness were recruited as a control group. Table 1 describes the detailed
information of included patients.

2.2. Acquisition protocol

A series of EEG time series were recorded while all subjects lay
comfortably in a quiet semi-dark room and stayed awake with their
eyes closed. EEG signals were collected between 9 a.m. and 11 a.m..
EEG activities were recorded at 19 positions of the brain. Besides, eye
movements were recorded with four EOG channels (positioned at the
eye's infra- and supraorbitally and canthi bilaterally on the left). The
impedance of all the channels kept below 5kΩ.

All patients received a detailed behavioral and neuropsychiatric
assessment. The evaluation scales used in the present study are the third
part of Movement Disorder Society-Sponsored Revision of the Unified
Parkinson's Disease Rating Scale (MDS-UPDRS) and Montreal Cognitive
Assessment (MoCA). The third part of MDS-UPDRS and MoCA can be
used as a quantitative criterion to assess patients with dyskinesia and
cognitive impairment, respectively (Wang et al., 2014;
Schwingenschuh et al., 2010). The local ethics committee approved the
study. The purpose and research significance of this data were ex-
plained to all participants, and written informed consent was obtained.

2.3. Analysis materials

Resting EEG data were recorded from 19 Ag/AgCl scalp electrodes
(active electrodes, SYMTOP, Beijing, China) represented to 19 positions
that were placed according to the 10–20 system as shown in Fig. 1,
here, A1 and A2, linking the both earlobes, used as the references, and
these 19 Ag/AgCl scalp electrodes are linked to 19 data channels. An
UEA-BZ amplifier (SYMTOP, Beijing, China) was linked to the 19 data
channels to amplify and digitize the EEG data. The processing of EEG
acquisition was carried out by Study Rome software. The EEG signal
preprocessing was performed by the EEGLab toolbox in MATLAB soft-
ware (MathWorks Inc., Natick MA, United States). EEG microstate
analyses were handed by Cartool (the Key Institute for Brain-Mind
Research, Zurich, Switzerland). Statistical analyses were performed by
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MATLAB software (MathWorks Inc., Natick MA, United States) and
SPSS 25.0 software (IBM Inc., Chicago, IL, United States).

2.4. EEG preprocessing

The sampling frequency of the EEG data was 500 Hz. Each parti-
cipant's EEG data was monitored lasting for 10 to 20 min. Resting EEG
data were preprocessed by MATLAB software. All of the EEG data were
carefully checked for artifacts (body movements, eyes movements,
technical artifacts, muscle activity). The epochs of EEG that were con-
taminated due to the presence of artifacts were rejected. Continuous
EEG recordings for a total of 3 min of each subject were retained for
microstate analyses. Ocular correction Independent Component
Analysis (ICA) were applied on the continuous EEG signal for each
channel by the fast ICA algorithm and then each EEG epochs was
processed by a 2–20 Hz band-pass Finite Impulse Response (FIR) filter

to eliminate the interference of high frequency noises.

2.5. EEG microstate analysis

The pre-processed data were imported into CARTOOL for the fol-
lowing microstate analysis, in order to detect EEG microstates and
compute the characterization. The Global Field Power (GFP) is a mea-
sure of the strength of a scalp potential and is based on potential dif-
ferences between all electrodes at each sampling point, leading to a
scalar value of field strength for each sampling point (Skrandies, 1989).

=
∑ =GFP

u
n

i
n

i1
2

(1)

Here, i denotes each electrode, n represents the number of elec-
trodes (here is 19) and u denotes the measured voltage of each channel.
High GFP is in connection with a stable EEG topography around its peak
(Menendez and Micah, 2004). Since the signal-to-noise ratio of EEG
signals is the highest at the peak of GFP, the momentary voltage am-
plitude values of all electrodes at the time point of GFP peaks were
selected for clustering analysis. For microstate segmentation, a clus-
tering algorithm called modified K-means algorithm in literature
(Murray et al., 2008) was used to compute EEG microstates.

Fig. 2 shows the process of EEG microstate analysis. We used the
Cartool software to perform the microstate analysis in three steps. In
the first step, the global field power time series (GFP, blue line) was
computed as the spatial standard deviation of the EEG topography at
each given time. At local GFP maxima (red dots), the spatial config-
uration of the EEG was considered stable and explains most of the
variance of the time series that at the time point of the GFP maximum
was marked green vertical line. The instantaneous EEG potential fields
at the maximum value of GFP were referred to as maps in this work. In
the second step, modified k-means clustering approach was performed
on the scalp maps of each participant. Several studies that used the k-
means clustering analysis and determined the optimal number of
clusters by the cross-validation (CV) criterion demonstrate that the
optimal number of classes within subjects was four (this is consistent
with literature (Koenig et al., 1999; Britz et al., 2010; Brodbeck et al.,
2012)). So we set the number of clusters from 2 to 6 and the optimum

Table 1
Description of the patients with PD and healthy controls included in the study.

PD Group HC Group
Gender Age D. D. (year) Starting Symptoms The Third Part of MDS-UPDRS MoCA Gender Age MoCA

1 Female 68 1 Tremor 11 27 1 Male 66 29
2 Female 62 6 Tremor 14 27 2 Female 64 28
3 Female 65 3 Tremor 11 29 3 Female 67 27
4 Male 67 6 Tremor 13 27 4 Female 60 30
5 Female 65 1 Tremor 10 27 5 Male 68 29
6 Female 65 1 Tremor 11 19 6 Male 65 28
7 Male 75 4 Tremor 48 21 7 Female 66 27
8 Female 71 1 Tremor 13 25 8 Male 62 27
9 Female 74 1 Tremor 9 25 9 Male 65 28
10 Female 68 3 Tremor 11 30 10 Female 67 26
11 Female 60 2 Tremor 23 26 11 Female 65 26
12 Female 66 0.25 Tremor 11 29 12 Male 72 28
13 Male 69 4 Tremor 18 27 13 Male 69 29
14 Female 65 9 Tremor 24 29 14 Female 63 29
15 Male 65 3 Bradykinesia 13 30 15 Female 61 28
16 Male 66 0.5 Bradykinesia 24 27 16 Male 63 27
17 Female 73 2 Bradykinesia 27 28 17 Male 74 26
18 Male 63 1 Bradykinesia 16 27 18 Male 66 28
19 Female 67 7 Bradykinesia 18 26 19 Female 69 27
20 Female 72 4 Bradykinesia 39 26 20 Male 61 30
21 Female 70 1 Bradykinesia 16 29 21 Female 60 29
22 Male 68 2 Bradykinesia 34 23 22 Female 70 28
23 Male 66 1 Bradykinesia 11 22 23 Female 64 30

PD, drug-free patients with Parkinson's Disease; HC, healthy controls; D. D., disease duration; MDS-UPDRS, Movement Disorder Society-Sponsored Revision of the
Unified Parkinson's Disease Rating Scale; MoCA, Montreal Cognitive Assessment.

Fig. 1. Electroencephalography (EEG) electrode positions on the brain.

C. Chu, et al. NeuroImage: Clinical 25 (2020) 102132

3



set of classes was selected according to the maximum global explained
variance (GEV), and then original momentary maps of both groups (PD
group and the health group) were separately clustered into four mi-
crostate classes. Finally, the generated class-labeled group maps were

used as templates to assign original individual successive EEG series of
each subject to four microstate classes (A, B, C and D class which dis-
played in Fig. 2 for each group respectively).

The spatial correlation across the template maps between the groups

Fig. 2. Schematic diagram of the microstate analysis process: (A) A 2-second EEG is extracted from the spontaneous EEG. The GFP of each sampling point is
calculated and all topographic maps at the local GFP maxima are obtained. (B) The improved K-means clustering analysis method is used to analyze the original
topographic maps to obtain four optimal microstates classes. (C) Microstate temporal sequences are obtained by fitting four microstate classes back to complete EEG
data.
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was analyzed with the scalp instantaneous topographic maps of each
subject. In order to compare the differences of EEG microstates between
PD and normal people, the following microstate parameters for each
microstate segmentation class were calculated:

(a) Mean Microstate Duration (MMD): Mean length of microstate seg-
ments (in time frame) as shown in Fig. 1;

(b) Occurrence Per Second (OPS): Frequency of occurrence of the same
microstate class across all analysis epochs;

(c) Ratio of Time Coverage (RTC): Time coverage percentage of each
microstate class across all analysis epochs.

2.6. Statistical analysis

Each microstate characteristic parameter of PD and normal subjects
was compared. The group differences of microstate parameters men-
tioned above between PD group and the control group were tested by
Wilcoxon rank sum test separately. In the case of significant differences
between the class of microstate and the group, the Wilcoxon rank
sum test were followed up by the pairwise comparison afterwards (the
least significant difference method) to further explore the differences
between the groups. Generally, statistical significance is accepted with
a p-value of rank sum test lower than 0.01 (Wang et al., 2015).

To test the differences of the microstate classes’ topographies be-
tween the groups, Topographic ANalysis of VAriance (TANOVA, see
literature (Koenig et al., 2011; Koenig and Pascualmarqui, 2009) for
detail) was implemented. Statistical signifcant differences were as-
sessed at p ≤ 0.01 (Koenig et al., 2011; Koenig and
Pascualmarqui, 2009).

As an exploratory analysis, in order to explore the correlations be-
tween clinical scales (included the third part of MDS-UPDRS and
MoCA) and the microstate parameters of each microstate class in PD
patients respectively, we need to consider the influences of gender, age,
disease duration, and initial symptom simultaneously. Consequently,
the general linear model (GLM) was used to analyze the correlation
analysis under the action of multiple factors.

We assume that the experimental data for each microstate para-
meters of each microstate classes can be modeled by the GLM written as
follows (the GLM represents k observations, including disease duration,
age, gender, initial symptoms and clinical scales):

∑= +
=

Y β X εi
n

k

ni ni i
1 (2)

where Y is the experimental data for each microstate parameters of
each microstate classes, i is the subscript of the microstate parameter,

= ⋯i m1, , , m is the total number of the microstate classes’ microstate
parameters, and it's also the number of the GLMs. Xni is the independent
variable matrix, for example, X1i means a matrix of disease duration. βni

is a coefficient vector which represents the response of microstate
parameter i to the stimulus measured by independent variable n, and k
is the number of independent variables. ɛi is the error vector. Each GLM
characterizes the regression model of each microstate parameter under
the influence of multivariate conditions, and there is a different re-
gression model for each microstate parameter. The parameter estima-
tion of the GLM was calculated by SPSS 25.0 software (IBM Inc.,
Chicago, IL, United States) and a p value < 0.05 was considered sta-
tistically significant.

Further more, in order to quantify the linear relationship,
Spearman's correlations between clinical scales (included the third part
of MDS-UPDRS and MoCA) and the microstate parameters of each mi-
crostate class were tested in PD patients respectively. Corrected FDR
(false discovery rate) acted on −P values for multiple comparisons. The
significant Spearman's correlation between the microstate parameter
and the clinical scales was accepted at P < 0.05.

3. Results

3.1. Microstate class spatial topographies

In order to explore the differences in microstate topographic maps
between PD group and the control group, we used microstate analysis
to analyze the original scalp EEG topography of each subject by group.
According to the microstate segmentation templates of the both groups,
we can find whether there is a significant difference in the clustering
state between PD group and the control group.

Fig. 3 shows the microstate topographic classes of the PD group and
the control group. In order to explore whether the four resting state EEG
microstates’ topographies differ in the two factors, Topographic ANa-
lysis of VAriance (TANOVA) was applied to each microstate class in
both groups to compare the microstates’ topographies between the PD
patients and healthy controls. There is a significant change in the
resting EEG microstate class “D” topography (p < 0.01) and no dif-
ferences (p > 0.05) are found in the other three microstate classes.

3.2. Microstate temporal characteristics

The four microstate classes totally accounted for 82.47% (S.D.:
5.23%) of the Global Explained Variance (GEV) across PD patients, and
of 85.56% (S.D.: 4.58%) across the healthy controls. Microstate classes
A to C of the both groups (shown in the Fig. 3) corresponded well to the
canonical microstate classes A to C that have been reported in the lit-
erature (Van et al., 2010). Microstate class A indicates an upper left-
bottom right orientation, class B indicates an upper right-bottom left
orientation, class C indicates an anterior-posterior orientation. Micro-
state class D of the control group (shown in Fig. 3) is a kind of canonical
microstate class which has been reported in the literature (Van et al.,
2010), and it indicates a trend of increasing gradually from the front to
the center to the maximum. Compared with the template topographic
class of the control group, the PD group did not have a canonical mi-
crostate class D matching the control group.

On the contrary, microstate class D of the PD group (shown in
Fig. 4) indicates a trend of increasing from the back to the center to the
maximum. In addition, during the clustering analysis, when the tem-
plate microstate class D which matched the one of the control group
was selected as the mapping template to fit the scalp EEG of PD pa-
tients, the resulting value of GEV was very small, less than 1% (it in-
dicates that this type of topographic map is almost nonexistent). Si-
milarly, the template microstate class D of the PD group was rarely
found in the control group. Therefore, the abnormality of microstate
class D may serve as a state marker for drug-free PD patients with
distinct movement dysfunction (bradykinesia or tremor).

The Wilcoxon rank sum test was used to analyze the statistically
differences of the microstate parameters between PD group and control
group at the individual level of participants. The differences between

Fig. 3. Microstate classes of PD patients and healthy controls. There is a post-
hoc test (implemented by TANOVA): significant statistical difference between
PD patients and healthy controls is indicated by one asterisk (p < 0.05).
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groups with coverage (RTC), occurrence (OPS), and duration (MMD)
for the four microstate classes are shown in Table 2 and Fig. 4.

As shown in Fig. 4, the Wilcoxon rank sum test indicated that mean
MMD, OPS and RTC of microstates class A and class B in PD group are
higher than those in the healthy control group, while these character-
istic parameters of microstate class C and class D are decreased in PD
group compared to healthy controls.

By comparing the differences between the groups of PD and HC, we
can find significant differences in RTC, OPS and MMD. The RTC ranged
between 12.73% and 32.73% for 4 microstate classes in both groups.
The Wilcoxon rank sum test showed a significant more time coverage in
microstate class B and less time coverage in microstate class C in PD
patients than healthy controls (p < 0.01) (Fig. 4A, Table 2). The OPS
varied from 2.85 to 3.60 maps/s for 4 microstate classes in both groups.
According to the rank sum test, microstate class A was significantly
more frequent in PD patients compared to healthy controls, and mi-
crostate class C was significantly less frequent (p < 0.01) (Fig. 4B,
Table 2). The MMD covered from 59.88 ms to 69.93 ms for 4 microstate

classes in both groups. The Wilcoxon rank sum test showed that the
duration of microstate class A significantly increased (p < 0.01)
(Fig. 4C, Table 2). These significant changes in microstate parameters
may serve as a feature label for PD to further realize auxiliary diagnosis
and personalized treatment.

3.3. Clinical correlations

3.3.1. Correlation between microstate parameters and comprehensive
factors

The general linear model (GLM) was used to explore the clinical
correlation between microstate parameters of each microstate class and
the clinical comprehensive characteristics (including disease duration,
age, gender, initial symptoms and clinical scales as shown in the
Table 1). As shown in Fig. 5 and Table 3, the result shows that PD
patients’ clinical objective attributes (including disease duration, age,
gender, and initial symptoms (tremor or bradykinesia)) are not sig-
nificantly correlated with microstate parameters (such as the duration
or frequency of a condition) with P ≥ 0.05, and the microstate para-
meters of healthy controls are not significantly correlated with their
age, gender or MoCA with P ≥ 0.05, while there was a significant
correlation between the scores of clinical scales and microstate para-
meters with P < 0.05.

Obviously, the clinical objective attributes of PD patients do not
affect the negative correlation between OPS of microstate class A
( =F 5.46, = −β 0.005, =P 0.03) and the third part of the MDS-UPDRS
in the PD patients, or the positive correlation between OPS of micro-
state class C ( =F 5.70, = −β 0.016, =P 0.03) and the MoCA in the PD
patients, the same as the negative correlation between MMD of mi-
crostate class B ( =F 4.76, = −β 0.072, =P 0.04) and the MoCA in the
PD patients under the action of multiple influencing factors.

After correcting for the confounding effects of disease duration, age,
gender, initial symptoms, we have calculated the linear regression be-
tween the clinical scales and microstate parameters by GLM to explore
the association between the microstate parameters and the clinical
scales’ scores. As shown in Table 4, there is a significant negative cor-
relation between OPS of microstate class A and the third part of MDS-
UPDRS in PD patients ( =R 0.4692 , = −β 0.380, =P 0.034), and a sig-
nificant positive correlation between OPS of microstate class C and the
MoCA in PD patients ( =R 0.5202 , =β 0.500, =P 0.015). What's more,
the significant negative correlation between MMD of microstate class B

Fig. 4. Microstate characteristic statistics. The graphs display the coverage
(RTC, (A)), occurrences (OPS, (B)) and duration (MMD, (C)) (from top to
bottom) of the four microstate classes (A-D) in drug-free patients with PD (23
subjects; the mean of each characteristic is expressed as solid circle) and
healthy controls (23 subjects; the mean of each characteristic is expressed as
solid circle) with standard errors corresponding to the mean. Significant dif-
ferences between groups are indicated by asterisks (* means p < 0.01).

Table 2
Microstate characteristic parameters and differences between-group compar-
isons.

Parkinson's Disease (PD) Healthy Controls (HC) Rank
sum
test

Mean (S.D.) Median (MAD) Mean (S.D.) Median (MAD) p-
value

RTC (%)
A 18.72 (3.25) 17.31 (2.82) 12.73 (3.40) 12.54 (2.41) 0.027
B 27.86 (2.35) 27.62 (2.04) 22.66 (2.63) 21.51 (2.04) <0.01
C 23.90 (2.07) 24.27 (1.68) 28.75 (2.19) 27.57 (1.68) <0.01
D 28.72 (3.25) 27.31 (2.82) 32.73 (3.40) 33.83 (2.73) 0.015
OPS
A 3.14 (0.15) 3.14 (0.11) 2.85 (0.11) 2.84 (0.09) <0.01
B 3.20 (0.16) 3.20 (0.14) 3.04 (0.19) 3.00 (0.15) 0.058
C 3.35 (0.12) 3.37 (0.11) 3.60 (0.10) 3.58 (0.08) <0.01
D 3.31 (0.17) 3.30 (0.14) 3.44 (0.14) 3.40 (0.12) 0.090
MMD (ms)
A 63.02 (3.37) 62.68 (1.00) 59.88 (3.23) 60.53 (2.48) <0.01
B 66.57 (4.20) 66.30 (3.33) 61.57 (2.93) 60.59 (2.28) 0.031
C 64.47 (3.49) 64.45 (2.80) 69.06 (3.97) 68.96 (3.06) 0.012
D 65.08 (3.58) 63.26 (2.96) 69.93 (4.31) 68.12 (3.89) 0.017

Statistical significant differences were assessed at p ≤ 0.01 and are marked in
bold type.
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and the MoCA in PD patients has been found ( =R 0.4992 , = −β 0.428,
=P 0.041). Therefore, we next explored the intuitive and quantifiable

linear correlation between microstate parameters and clinical scale
scores by analyzing their Spearman's correlation.

3.3.2. Correlation between microstate parameters and clinical scales
Fig. 6 shows the results from Spearman's correlation analysis be-

tween the third part of the Movement Disorder Society-Sponsored

Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS)
and all of the microstate characteristic parameters of each microstate
class in PD patients with P-values corrected by FDR. There was a ne-
gative correlation between OPS of microstate class A and the third part
of the MDS-UPDRS in the PD patients ( = −R 0.4286, =P 0.0413FDR ).
However, there were no significant correlation between other char-
acteristic parameters and the third part of MDS-UPDRS score in PD
groups with P > 0.05. The lower the third part of MDS-UPDRS's score

Fig. 5. Significance test of correlation between microstate parameters and all influencing factors in both PD group and control group. General Linear Model (GLM) is
performed for significant correlation detection. Significant correlations (P < 0.05) are circled with red dashed wireframe. MDS-UPDRS, Movement Disorder Society-
Sponsored Revision of the Unified Parkinson's Disease Rating Scale; MDS-UPDRS*, The Third Part of MDS-UPDRS; MoCA, Montreal Cognitive Assessment.

Table 3
Clinical correlations between microstate parameters of each microstate class and the clinical characteristics (including disease duration, age, gender, initial symptoms
and clinical scales) are calculated by general linear model (GLM).

The dependent variable The independent variable S.E. B 95% Confidence Interval t value F value P value
The lower limit The upper limit

OPS
A MDS-UPDRS* 0.002 −0.005 −0.010 0.000 −2.34 5.46 0.03
C MoCA 0.007 0.016 0.000 0.031 2.39 5.70 0.03
MMD (ms)
B MoCA 0.030 −0.072 0.008 0.136 2.18 4.76 0.04

S.E., Standard Error; B., Beta, means regression coefficient; MDS-UPDRS, Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating
Scale; MDS-UPDRS*, The Third Part of MDS-UPDRS; MoCA, Montreal Cognitive Assessment. Significant correlations (P < 0.05) are showed in the table.

C. Chu, et al. NeuroImage: Clinical 25 (2020) 102132

7



is, the more normal the motion function is (Goetz et al., 2010). In other
words, within a certain allowable range, the more normal the motor
ability of PD patients is, the more occurrence per second of microstate

class A. However, it can be seen that the occurrence per second and the
mean duration of microstate class A in PD group were observably
higher than those in control group (shown in Fig. 4).

Consequently, we further explored the relation between all of the
microstate parameters and motor function of microstate class A of PD
patients and Fig. 7 is the sketch map. With the gradual deterioration of
motor function, the time coverage of microstate class A remained
substantially unchanged. This phenomenon corresponded to the oppo-
site trend of occurrence per second and mean duration of microstate
class A. Through the overall observation of the three sets of the mi-
crostate parameters in class A, we can conclude that the deterioration of
motor function in PD is associated with microstate A, and all microstate
parameters of class A will increase significantly. Besides, this overall
increase is inherently regular, that is, occurrence per second of micro-
state class A will gradually decrease with the deterioration of motor
function but still higher than the normal level, and the corresponding
individual level of mean duration of microstate class A will increase
accordingly.

Fig. 8 shows the results from Spearman's correlation analysis be-
tween the Montreal Cognitive Assessment (MoCA) and characteristic
parameters of different microstate classes in PD patients with P-values

Table 4
Clinical correlations between microstate parameters of each microstate class
and the clinical scales (after correcting for the confounding effects of disease
duration, age, gender, initial symptoms) are calculated by general linear model
(GLM) regression.

The
dependent
variable

The
independent
variable

R2 Beta t value F value P value

OPS
A MDS-UPDRS* 0.569 −0.380 −2.183 4.547 0.034
C MoCA 0.620 0.500 2.646 7.001 0.015
MMD (ms)
B MoCA 0.599 −0.428 −2.372 4.717 0.041

R2, the coefficient of determination (range from 0–1). MDS-UPDRS, Movement
Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating
Scale; MDS-UPDRS*, The Third Part of MDS-UPDRS; MoCA, Montreal Cognitive
Assessment. Significant correlations (P < 0.05) are bold in the table.

Fig. 6. Clinical the third part of MDS-UPDRS correlations. Spearman correlations between microstate parameters of each microstate class and the third part of MDS-
UPDRS. For multiple comparisons, FDR correction is performed for P values. Significant correlations (P < 0.05) are circled with red dashed wireframe. Significant
correlation between microstate parameter and the score of MDS-UPDRS's third part is indicated by asterisk. MDS-UPDRS, Movement Disorder Society-Sponsored
Revision of the Unified Parkinson's Disease Rating Scale.
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corrected by FDR. There was a significant correlation in both the OPS of
the microstate class C (positive correlation with =R 0.5298,

=P 0.0093FDR ) and the MMD of the microstate class B (negative cor-
relation with = −R 0.3738, =P 0.0389FDR ) with MoCA, and no con-
spicuous differences in other parameters with P > 0.05. When the
cognitive performance of the PD patient deteriorates (with a lower
MoCA score), the occurrence per second of microstate class C decreases
and the mean microstate duration of microstate B increases. This

change law corresponds to the result shown in Fig. 4. It can be seen that
the closer the values of these two characteristic parameters of the PD
group are to the control group, the closer the cognitive ability of PD
patients is to the normal level.

4. Discussion

The present study investigated alterations in brain functional state

Fig. 7. The sketch map. It shows the relation
between the microstate parameters of micro-
state class A and motor function in PD patients.
The extension of the abscissa represents a
gradual deterioration of motor function in PD
patients. The dotted line with the arrow in-
dicates the change in the value of each micro-
state parameter. The asterisk means the oc-
curence per second of microstate class A is
significantly related to the motor function re-
flected by the third part of MDS-UPDRS.

Fig. 8. Clinical MoCA correlations. Spearman correlations between microstate parameters of each microstate class and MoCA. For multiple comparisons, FDR
correction is performed for P-value. Significant correlations (P < 0.05) are circled with red dashed wireframe. Significant correlations between microstate para-
meters and MoCA are indicated by asterisk. MoCA, Montreal Cognitive Assessment.
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dynamics in PD patients with tremor and bradykinesia compared to
age-matched and gender-matched healthy controls using EEG micro-
state analysis to ascertain both brain topological structure and temporal
characteristics of sub-second brain activity. What's more, the relation
between microstate parameters of each EEG microstate class and clin-
ical scales (both motion function (the third part of MDS-UPDRS) and
cognitive fatigue (MoCA)) was also explored.

Several studies using simultaneous fMRI and EEG recordings de-
monstrated that resting state networks (RSNs) assessed by fMRI corre-
late significantly with the temporal progression of all four EEG micro-
states (Koenig et al., 1999; Lehmann et al., 2005). Microstate class A is
mainly caused by the changes in negative blood-oxygen-level depen-
dence (BOLD) activation of bilateral superior and middle temporal
parietal cortex, construed as auditory network (Gschwind et al., 2016;
Britz et al., 2010) or sensorimotor (Gschwind et al., 2016; Yuan et al.,
2012), while microstate class B exhibited significant correlations with
BOLD changes in the striate and extrastriate cortex and the negative
BOLD activation in the bilateral occipital cortex, interpreted as visual
system (Britz et al., 2010; Yuan et al., 2012; Michel and Koenig, 2017).
Microstate class C was related with positive BOLD activation in the
bilateral inferior frontal cortices, the dorsal anterior cingulate cortex,
and the right insular area, regarded as saliency network
(Gschwind et al., 2016; Michel and Koenig, 2017). Microstate D was
associated with negative BOLD activation in right lateral ventral and
dorsal regions of the frontal cortex and parietal cortex, interpreted as
attention network (Gschwind et al., 2016; Michel and Koenig, 2017).

4.1. Microstate spatial topographie

It worth noting that the spatial topography of EEG microstate class
D of PD group was variant, whereas no differences existed in the other
three EEG microstate classes’ topographies. The PD group had almost
no topographic map matching the microstate class D of the control
group. There are some studies have demonstrated that the patients with
schizophrenia have the microstate class D matching the control group,
but this kind of microstate has significantly shorter duration and lower
occurrence than the normal level, which indicates that schizophrenic
patients have similar abnormalities with PD patients. The lack of the
typical microstate D in patients with schizophrenic is due to the lack of
dopaminergic neurons up to a certain point (Johan et al., 2018). Re-
latedly, progressive degeneration of dopaminergic neurons in the sub-
stantia nigra is associated with the common motor symptoms of tremor,
and bradykinesia in PD patients (Kalia, 2015), meanwhile literature
(Serrano et al., 2018) indicates that the typical microstate class D
matching the control group occurs in PD patients treated with dopa-
mine. Therefore, we can conclude that the deletion of typical microstate
class D can be used as one of the early auxiliary diagnostic criteria for
PD. The peculiar microstate class D in PD patients in our study showing
a strong activation in the dorsal anterior cingulate cortex extending to
the superior frontal gyrus is similar as the microstate class F in the
literature (Custo et al., 2017). We can assume that microstate class D in
PD group is a kind of character state caused of the dopaminergic deficit.

4.2. Microstate temporal characteristics

4.2.1. Correlation between microstate temporal parameters and motor
function

From the findings of recent studies, the patients with PD present
higher frequency of auditory alterations as a consequence of dopami-
nergic deficit (Iwaki et al., 2015; Lamas et al., 2017; Toro et al., 2015;
Wang et al., 2014; Garrett et al., 2011). As mentioned above, microstate
class A is the area implicated in auditory processing network and these
clinical features exactly confirm the significant increase of the occur-
rence of microstate class A in this paper. Besides, individuals with
schizophrenia have a higher RTC of microstate class A caused of do-
paminergic deficit (Koenig et al., 1999; Lehmann et al., 2005) and

larger duration of microstate class A has been reported in PD patients
(Serrano et al., 2018). These phenomena are consistent with the tem-
poral characteristics of microstate class A in PD group in this paper, so
we can suppose that the temporal abnormalities of microstate class A
can be represented as a predictor of PD. Further more, the OPS of mi-
crostate class A in PD group was negatively correlated with the third
part of MDS-UPDRS's scores, indicating that PD patients' motion func-
tion tended to be normal when the OPS of microstate class A was re-
latively increased.

4.2.2. Correlation between microstate temporal parameters and cognitive
level

In a recent study, the longer duration of microstate class B has been
identified to be related to cognitive fatigue in the patients with multiple
sclerosis (Gschwind et al., 2016), and it could be connected with our
present results that as the level of cognition increased, the mean
duration of microstate class B gradually decreases to the normal level.
So it is reasonable that the significant increased duration of microstate
class B is related to the cognitive fatigue presented by PD patients. On
the other hand, the coverage of the class B is also observably increased
in patients with PD. As we have found the same phenomenon in pa-
tients with schizophrenia (Michel and Koenig, 2017), it can be assumed
that the increased coverage of microstate B is affected by the combined
effects of dopamine deficit and cognitive fatigue in PD patients.

Lower RTC and OPS of microstate class C in PD patients compared
to the controls were also demonstrated in the present study. Besides, the
positive correlation between MoCA score and OPS indicates that OPS of
microstate class C can reflect the cognitive level of PD patients. What's
more, the mean duration in microstate class C is decreased compared to
normal controls. It can be assuming that the duration and frequency of
occurrence are relatively reduced, so the overall coverage is also sig-
nificantly lower than normal. In a previous study (Mitsuru et al., 2011),
the reduction of the OPS of microstate class C relates to the obstacle of
the cognitive fatigue and the decreased resting state activity in saliency
network regions is due to the lower coverage of class C. Therefore, we
can infer that there is a certain decrease in resting state activity in the
bilateral inferior frontal cortices, the dorsal anterior cingulate cortex of
PD patients, and our results can also indicate that the C state can reflect
the cognitive level of PD patients. The present results also suggest that
multiple resting state networks are contributing to the configuration of
electrical field for microstate class C in the patients with PD, which may
reveal abnormal brain dynamics during resting state.

4.3. Limitations

The present study has some limitations. Patients with PD have dif-
ferent mechanisms of tremor and bradykinesia. After striatum dopa-
minergic system damage, many basal ganglia produce synchronized β
wave tremors (Delong, 1990). This is associated with bradykinesia in
Parkinson's disease, whereas the symptoms of tremor are not strictly
related (Delong, 1990). Symptoms of tremor may be caused by a
compensatory mechanism of neurons after the onset of bradykinesia
(Marsden, 1984). In addition, the injury of different mechanisms is
widely connected between motor and consciousness cortex and cere-
bellum, which is related to brain dysfunction (Timmermann et al.,
2003). Therefore, it is hoped that the dynamic changes of brain activity
of the two can be distinguished through EEG microstate analysis, which
is conducive to revealing physiological markers corresponding to dif-
ferent symptoms.

We have analyzed the topological maps and the temporal para-
meters of the microstates of PD patients with tremor and PD patients
with bradykinesia, but there were no significant differences between
the groups. That's probably caused of the relatively small number of PD
patients with one of the symptoms included in the analysis. A larger
number of subjects with one of the clinical symptoms and using a larger
number of channels to obtain the EEG signals would have produced
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more detailed results. Further work will be required to clarify the dif-
ferences between PD patients with tremor and PD patients with bra-
dykinesia.

5. Conclusions

Resting-state EEG microstate analysis can assess whether transiently
stable, sub-second functional states of large-scale brain networks are
abnormal, and abnormalities in these functional states are often asso-
ciated with several neuropsychiatric disorders. In our present research,
microstate analysis was used to evaluate the spatiotemporal char-
acteristic markers of brain dysfunction in patients with PD at an early
unmedicated condition and the relation between brain dynamics
changes and clinical symptoms, such as motor function impairment and
cognitive impairments caused by PD pathology was explained. Results
revealed that the brain of early-stage PD can be characterized by unique
spatial microstates different from healthy controls, which may be re-
lated to the brain dysfunction in PD. In addition, the drug-free patients
may also show abnormal brain dynamics revealed by the regular
changes of temporal microstate features in early PD. Interestingly, such
temporal dynamics in microstates are correlated with motor function
and cognition of the subjects. The obtained results may deepen our
understanding of the brain dysfunction caused by PD, and obtain some
quantifiable signatures to provide an auxiliary reference for the early
diagnosis of PD. In addition, This study will provide a reference for
future research on the mechanism of PD and the pathology of motor
and non-motor symptoms.
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