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Abstract: Cassava is a type of crop popular in Asian countries. It can be easily cultivated and grows
to a mature plant in 9 months. Considering its availability, this work studied activated carbon
based on cassava stem. Ofloxacin was chosen as the adsorbate, simulating the wastewater from the
pharmaceutical industry. Cassava stem was ground into particles and heated to the activated state,
787 ◦C. The cassava-stem-activated carbon was further treated with the surface modifier, namely
sodium hydroxide and zinc chloride, to study the improvement in ofloxacin adsorption. Prepared
adsorbents were characterised using the SEM, FT-IR, XRD, DSC and TGA methods before being
evaluated through batch adsorption, thermodynamic, and kinetic studies. The surface area analysis
indicates that treatment of the activated carbon with NaOH and ZnCl2 increases the surface area due
to the removal of organic content by the chemicals. Better ofloxacin adsorption of all activated carbon
samples can be obtained with solutions at pH 8. An endothermic reaction was predicted, shown by
higher ofloxacin adsorption at a higher temperature, supported by a positive value of ∆H◦ in the
thermodynamic studies. The negative values of ∆G◦ revealed that adsorptions were spontaneous.
The higher R2 values indicate that the adsorption process follows the pseudo-second-order equation
of kinetic study. The maximum adsorption capacities are 42.37, 62.11, 62.89 and 58.82 mg/g for raw
cassava stem (RC), cassava-stem-activated carbon (AC), NaOH-modified cassava-stem-activated
carbon (NAC), and ZnCl2 modified cassava-stem-activated carbon (ZAC). The adsorption capacity is
good compared to previous works by other researchers, making it a possible alternative material for
the pharmaceutical industry’s wastewater treatment.

Keywords: cassava; ofloxacin; adsorption; kinetic study; activated carbon

1. Introduction

Ofloxacin is an antibiotic from the fluoroquinolone chemical group, widely used to
treat bacterial infections in healthcare sectors [1]. The human body cannot decompose
ofloxacin. Therefore, it is removed through urination [2]. Continuous input of ofloxacin into
the aquatic environment increases the potential risk to marine organisms and ecosystem
equilibrium. It was found that the presence of ofloxacin in surface water negatively affects
cyanobacteria and aquatic plants [3]. Various studies on the existence of ofloxacin found
up to 17.7 µg/L of the antibiotic in freshwater sources [3,4].

To clean the wastewater from contaminants, many techniques have been developed,
including chemical precipitation, ion exchange, coagulation and flocculation, complexation,
cementation, membrane filtration and adsorption [5]. Among all, the adsorption technique
is the process applied the most. The adsorption process is simple, convenient and effortless
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in operation and adsorbent production. Various adsorbent materials have been researched
for ofloxacin clearance from water, as shown in Table 1.

Table 1. List of researched adsorbents for ofloxacin adsorption from water.

No. Adsorbent Reference

1 Calcined Verde-Lodo Bentonite Clay [6]
2 Chitosan/Biochar Composite [7]
3 Boron Nitride Nanosheets [8]
4 Zeolite [9]

5 Deep Eutectic Solvent (Choline Chloride-Based)
Functionalised Rice Husk Ash [10]

6 The Organic Waste-Derived Biochar [11]
7 Rgo-Mos2 Heterostructure [12]
8 Modified Thermally Activated Kaolin [13]
9 Magnetic Zeolites [14]

10 Cotton Stalk Biochar [15]

Activated carbon is a versatile material, with usage ranging from water treatment [16]
to supercapacitors [17] and dye-sensitized solar cells [18]. The adsorption process using
activated carbon is commonly applied to clear water contaminants. Common contaminants
that could be removed by activated carbon include dyes and heavy metals, such as methy-
lene blue [19], methyl orange [20], malachite green [21], cadmium [22], plumbum [23]
and zinc [24]. Removal of the cyanotoxin in cylindrospermopsin form [25], oligohetero-
cyclic waste molecules for photonic generation of electricity, tetracycline from agricultural
residue [26] and Metronidazole antibiotics [27] from waste water are some recently studied
activated carbon applications. Despite the higher cost of activated carbon production [22],
its usage as a contaminant adsorbent is still popular due to its practicality. Compared to
other remedial techniques, the adsorption process was chosen due to the lower operational
cost, easier application and reduced waste [28]. Finding a low-cost precursor for activated
carbon production is a must, most probably from waste materials. Cassava biomass waste
is one of the potential precursors. Cassava is easy to grow and has drought-tolerant abil-
ity [29]. It is an essential crop in tropical countries where its usage is not only limited for
food, but also covers animal feed, green energy and raw material in industrial sectors [30].
It is estimated that 8 million farmers are cultivating cassava (Manihot esculanta) in Asia
alone [31].

Cassava was planted mainly for its tuber, which contains a carbohydrate source. The
cassava stems can grow up to 5 m in height with diameters ranging from 2.5 to 8.0 cm. After
harvest, only 10–20% of the stems are spared for replanting, while the others are abandoned
to rot. For every kilogram of the tuber root production, half of the mass comes from the
stem part [32]. The cassava tuber root can be harvested from 7 months to 24 months [33].
This short planting cycle produces a lot of biomass waste that can be turned into something
more beneficial.

This work investigates the removal of ofloxacin from wastewater using activated car-
bon produced using the cassava stem. The activated carbon produced was further surface
treated with Sodium Hydroxide and Zinc Chloride to increase ofloxacin uptake percentage.
Chemical oxidation using chemicals such as the NaOH and Zinc chloride on the carbon
surface added more oxygen functional groups. The electronegative polarity of the oxygen
functional groups increases the ability to adsorb both aqueous heavy metal compounds
and cations [34]. The prepared activated carbon was characterised and evaluated for its
adsorption ability by using batch adsorption, thermodynamic and kinetic studies. Few
studies have been performed on surface-modified activated carbon for ofloxacin adsorption.
Therefore, this work could fill the knowledge gap by investigating the new potential use of
cassava-stem-based activated carbon.



Materials 2022, 15, 5117 3 of 23

2. Materials and Methods
2.1. Material Acquisition

Six-month-old samples of cassava stem were freshly cut from the living tree of a local
farmer in Raub, Pahang, Malaysia. The samples were taken approximately 5 cm from the
bottom and 15 cm from the top. The inner soft-core part was separated from the stem, and
the sample was dried in a convection oven at 105± ◦C to achieve moisture content under
10% for further processing. Dried cassava stem samples were crushed using a grinder and
sieved to obtain particles between 500 µm to 1 mm in size range after sieving [35]. The
sieved particles were stored in a closed container for further experiment.

2.2. Adsorbent and Adsorbate Preparation

After determination of the cassava stem particle moisture content, the sample was
placed into a graphite reactor with a closed lid and heated using an electrical furnace
(RISEN PID-96T) at the temperature of 787 ◦C, as obtained from RSM analysis in our
previous work [32]. The temperature was maintained for 146 min, then left to cool before
the activated carbon was collected and stored for further use. The surface modification of
the activated carbon samples was carried out using 2.0 M sodium hydroxide (NaOH) and
zinc chloride (ZnCl2) as the dehydrating agent. Previous research found their enhancing
effect on many carbon-based lignocellulose materials [36]. Approximately 5 g of the
activated carbon samples were mixed with 50 mL of the dehydrating agents. The mixture
was then heated for 2 h at a temperature of 100 ◦C before repeated washing with distilled
water to ensure a stable pH value. The samples were then dried overnight in an oven at
50 ◦C. The NaOH-treated activated carbon was code-named NAC, ZnCl2-treated activated
carbon was named ZAC, raw activated carbon was named AC and the raw cassava stem
was named RC.

Ofloxacin (OFX) as the adsorbate was purchased from Sigma-Aldrich with a CAS num-
ber of 82419-36-1. The solution of OFX with a concentration of 1000 ppm was carried out
by diluting approximately 1 g of OFX powder with deionised water in 1000 mL volumetric
flasks, then undergoing further serial dilutions to obtain the desired concentrations.

2.3. Proximate Analysis of Carbon Samples

The standard test method ASTM D1762–84 [37] was referred to for the proximate
analysis of the prepared carbon samples. Determination of moisture content, volatile
matter and ash content are covered by this standard, calculated using Equations (1)–(3),
respectively:

Moisture content, % =
A − B

A
× 100 (1)

where A is the initial air-dry mass of sample (g) and B is the mass of the sample (g) after
drying at 105 ◦C;

Volatile matter, % =
B − C

B
× 100 (2)

where C is the mass of the samples (g) after drying at 450 ◦C; and

Ash content, % =
D
B
× 100 (3)

where D is the mass of the white residue (g). These results were expressed to the second
decimal place.

2.4. pH at a Zero-Point Charge (pHzpc)

The solid addition method was employed to determine the pHzpc of each adsor-
bent [38]. Solutions of 0.03 M KNO3 were placed in conical flasks at 50 mL each. The initial
pH was adjusted to a predetermined value between 1.5 and 11.5 using 0.1 M HCl or 0.1 M
NaOH solutions. A 0.25 g of the prepared adsorbent was added to the solutions and left to
stir for 24 h before the final pH value was measured. The value of pHzpc was determined
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by plotting the initial pH values versus the final pH values. The intersection of the plot
with the straight line of initial pH = final pH plot was indicated as the pHzpc value.

2.5. Other Characterisations

Scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX)
were performed on the gold-coated samples using an acceleration of 5 kV, completed by
a scanning electron microscope (Model Supra 50 VP). Surface area analysis was carried
out using ASAP 2020 V3.04H (Micromeritics®). The sample was automatically degassed
at 90 ◦C for 1 h for the first stage and 350 ◦C for 4 h for the second stage, with the N2
adsorption–desorption isotherm taken at −195.798 ◦C. The primary content of organic
materials, which are carbon (C), hydrogen (H), nitrogen (N) and sulphur (S), were measured
by a varioMICRO (V3.1.1) CHNS Elemental Analyser. The surface functional group of
the prepared materials was determined using a Fourier transform infrared spectrometer
(Nicolet Avatar 360 ESP FTIR) with 64 times scanning at a resolution of 4 cm−1 over a
region of 4000 to 400 cm−1. The crystallinity index was measured using a Kristalloflex
D-5000 X-ray diffraction system (Siemens, Munich, Germany). Scanning was performed at
a diffraction angle 2θ ranging from 1.5◦ to 80◦, corresponding to a scanning speed of 0.02◦

and 2◦/min [39]. The thermal analysis was carried out under a nitrogen atmosphere with a
heating rate set at 20 ◦C /min over temperatures ranging between 30 and 800 ◦C, using
a Mettler Toledo TGA/SDTA851e thermogravimeter (Mettler Toledo Corp., Greifensee,
Switzerland).

2.6. Batch Adsorption Studies

Batch adsorption studies were conducted according to [40]. Generally, the batch
adsorption studies were performed by mixing 50 mL of ofloxacin as the adsorbate in a
stoppered conical flask, shaken using 100 rpm speed at a predetermined temperature
and for a predetermined contact time. At the end of shaking, mixtures were filtered
through Whatman filter paper No. 2, and the filtered solution was analysed using a UV–Vis
spectrophotometer for their final concentration. The parameters studied are tabulated in
Table 2. The percentage of adsorbate adsorption by the adsorbents was computed using
Equation (4):

Adsorption, % =
(Ci − Ce)

Ci
× 100 (4)

where Ci and Ce are the initial and equilibrium concentration of ofloxacin (ppm) in the
solution, respectively.

Table 2. Parameters for batch adsorption studies.

Parameter Values

Contact time, min 60, 120, 240, 480, 720, 1080 and 1440
pH 3, 5, 7, 9 and 12

Temperature, ◦C 25, 35, 45 and 55
The initial concentration of adsorbate 100, 200, 300 and 400 ppm

Adsorbent dosage 0.5, 1.5, 3.0 and 4.5 g/L

2.7. Isothermic, Kinetic and Thermodynamic Studies

The isothermic studies were performed at 35, 45 and 55 ◦C. The Langmuir and Fre-
undlich isotherm was adopted to measure the adsorption capacity of ofloxacin onto the
activated carbon [41]. Kinetic studies were carried out and analysed using the pseudo-
first-order kinetic model and pseudo-second-order kinetic model, based on the work by de
Franco et al. [42]. The thermodynamic study determined the thermodynamic parameters,
including changes in standard enthalpy (∆H), standard entropy (∆S) and Gibbs free en-
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ergy (∆G). ∆H and ∆S were calculated according to the Van’t Hoff equation, as given by
Equation (5):

lnKq =
∆S
R

− ∆H
RT

. (5)

The Kq value was calculated using Equation (6):

Kq =
qe
Ce

. (6)

where qe and Ce are the equilibrium concentrations of ofloxacin on the adsorbent and in
the solution, respectively. The Gibbs free energy ∆G was verified using Equation (7):

∆G = −RT lnKq (7)

where R is the universal gas constant (8.314 JK−1 mol−1), T is the absolute temperature,
and K is the thermodynamic equilibrium constant.

3. Results and Discussion
3.1. Proximate Analysis

The proximate analysis of both activated cassava stem and surface-modified activated
cassava stem are presented in Table 3, with the raw cassava stem as a comparison. It
indicates that the overall percentage of moisture content is below 10%, a significant reduc-
tion compared to the raw sample, as the result of the heating process. While the value
of moisture content varies slightly between 6.83% and 6.39% for the activated carbon, it
has been proven that there is no correlation between the percentages of moisture content
with the adsorption power of the activated carbon [43]. The volatile content is the biomass
content that was released as the biomass was heated to 400–500 ◦C. Raw cassava stem’s
high volatile content at 84.80% dropped to 47.07–59.55% after activation. The value is
considered high and useful when the carbon is used as a fuel and energy source [44].

Table 3. Proximate analysis of surface-modified and nonsurface-modified activated-carbon-based
cassava stem.

Samples Moisture Content % Volatile Content % Ash Content % Fixed Carbon Content %

RC 64.75 ± 0.70 84.80 ± 0.47 2.94 ± 0.12 12.26 ± 0.42
AC 6.83 ± 0.07 47.07 ± 0.59 3.42 ± 0.31 49.51 ± 0.65

NAC 6.57 ± 0.20 49.17 ± 0.46 5.00 ± 0.34 45.83 ± 0.47
ZAC 6.39 ± 0.36 48.44 ± 0.54 5.77 ± 0.34 45.79 ± 0.87

RC = raw cassava stem, AC = activated cassava stem, NAC = sodium hydroxide surface-modified cassava actived
carbon, ZAC = zinc chloride surface-modified cassava activated carbon.

The ash content of the cassava-based activated carbon ranged from 3.42% to 5.77%.
The increment in the ash content was observed after the surface modification process. The
ash contents were derived from the starting material, adding the combustible portion to
the sample [45]. The residual of the modification agent was entrapped in the final product,
where the ash formed reduced the hydrophobicity of the activated carbon [46].

The fixed carbon content of the activated cassava stem was higher than its raw content,
at a maximum 37.25% difference. The activated cassava stem also showed a higher fixed
carbon content when compared to the surface-modified activated cassava stem, with a
difference ranging from 3.68% to 15.35%. The surface-modified activated cassava stems
contain higher volatile and ash content, which decreased its fixed carbon [47].

3.2. Surface Area Analysis by Nitrogen Adsorption

Table 4 summarises all of the data obtained from the N2 adsorption analysis. The
nonactivated raw cassava stem shows the lowest SBET (0.765 m2/g). The NAC has the
largest SBET at 847.725 m2/g. The alkaline solution can effectively remove the organic
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materials within the pores of the activated cassava stem, thus resulting in the highest
surface area [48]. The ZAC has a SBET value between the AC and NAC, which might be
due to the zinc chloride salt introduced by the ZnCl2 treatment deposited in the pores of
the activated cassava stem [46]. Tumirah et al. [49] also obtained a low BET surface area on
their sample after exposure to a low concentration of ZnCl2, and recorded the presence of
remaining zinc chloride salt even after a thorough washing process.

Table 4. Surface areas and pore size for all types of cassava stem adsorbents.

Types of Cassava Stem
Adsorbents SBET (m2/g)

Average Pore
Size (nm) Smic (m2/g) Smes (m2/g)

Pore Volume (cm3/g)

Total Pore Volume Vmic Vmes

RC 0.765 - 0.705 0.060 0.00040 0.00023 0.00017
AC 674.402 1.879 594.557 79.845 0.29663 0.24339 0.05325

NAC 847.725 1.990 685.202 162.523 0.38125 0.28240 0.09886
ZAC 712.184 1.951 580.666 131.518 0.31466 0.23847 0.07619

It can be seen from Figure 1a–d that the RC adsorbents give a type II isotherm, which
is the normal form of isotherm obtained with nonporous or microporous adsorbents.
This type of isotherm represents unrestricted monolayer–multilayer adsorption. At the
beginning of adsorption, the surface of the adsorbent achieves equilibrium, and then
multilayer adsorption begins. The other adsorbents: AC, NAC, and ZAC, have a type I
isotherm according to IUPAC classification of adsorption isotherms. Type I isotherms are
given by microporous solids having relatively small surfaces. The pore size distribution
in the adsorbents is also represented in Figure 1e; the maximum pore volumes in the
adsorbents were contained within the pore size range of 1–20 nm. The average pore size
for RC is too small to be detected by the analysis.

The NAC shows the largest average pore size but is not much different from the ZAC.
According to the International Union of Pure and Applied Chemistry, IUPAC notation, the
cassava stem pores can be categorised as micropores, which indicate pore size below 2 nm.
The high holocellulose and low lignin content of cassava stem make a great precursor to
produce activated carbon with microsized pores [50]. The analysis also showed that the
volume of micropores (Vmic) is larger than the volume of mesopores (Vmes) for all samples.
The micropore surface area (Smic) contributes more to the total SBET than the mesopore
surface area (Smes). The activation temperature used in this study was 787 ◦C. According
to Adinata et al. [51], high numbers of micropores are produced at less than 800 ◦C. The
macropores are first formed during the activation process, followed by the formation of
mesopores as secondary channels that are created in the walls of the macropores. The attack
on the planes within the raw material structure forms the micropores, and the chemical
treatment on the surface increases the formation of pores on the adsorbents [49].

3.3. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) Analysis

The SEM examination shown in Figure 2 indicates that the raw cassava stem has
a cleaner surface than other activated samples. High temperature applied during the
activation process creates a lot of cracks and pores [52] due to the breakdown of the sample
matrix [53].
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The elements present on the surface of representative cassava stem adsorbents were
analysed through energy dispersive X-ray (EDX) analysis, as tabulated in Table 5. All
adsorbents showed a high percentage of oxygen (O), above 70%, followed by Carbon (C) at
26.26–27.19%. Potassium (K) is the only ash content. The inherent ash content elements of
calcium (Ca) and magnesium (Mg) were found on the activated cassava stem (Salman 2014;
Wei et al. 2014). The sodium (Na), chlorine (Cl), calcium (Ca) and zinc (Zn) elements come
from the treatment chemicals, which are known as free ash [54].

Table 5. The EDX findings for the surface of cassava stem adsorbents.

Element (Wt%) RC AC NAC ZAC

O 72.50 70.97 71.87 70.90
C 27.19 26.26 26.74 26.36
Ca _ 0.66 0.50 0.37
Mg _ 0.70 0.43 _
K 0.31 1.41 0.11 _

Na _ _ 0.33 _
Cl _ _ _ 0.20
Zn _ _ _ 2.18

Totals 100.00 100.00 100.00 100.00

The elements K, Ca and Mg that were present on the surface of the activated cassava
stem were also reduced after the modification treatment due to the removal of inorganic
contents by the action of ZnCl2 and NaOH. The high adsorption capacity was obtained
through the ion exchange mechanism [55], showing that the surface-modified activated
cassava stem samples might serve as suitable adsorbents than the nonmodified activated
cassava stem.

3.4. Elemental Analysis

Elemental analysis results are tabulated in Table 6. Carbon and oxygen are the major
elements in all samples. Increment in carbon content occurs after the activation process.
Volatile matter containing oxygen, hydrogen, nitrogen and sulphur were evaporated from
the carbonaceous part throughout the decomposition, leading to an increase in carbon
content percentage. The chemical modification of the activated cassava stem leads to a
minor decrease in carbon content due to the degradation effect of those chemicals on the
activated carbon. Both samples treated with different chemicals confirm this theory.

Table 6. The C, O, H, N and S elements that are present on the surface of representative cassava
stem adsorbents.

Element (Wt%) RC AC NAC ZAC

C 40.48 67.00 61.31 58.99
O 52.98 30.29 35.47 38.09
H 5.40 1.82 2.24 2.04
N 1.07 0.84 0.91 0.80
S 0.067 0.055 0.072 0.079

3.5. Fourier Transform Infrared Spectroscopy (FTIR)

Figure 3 illustrates the FTIR spectra displaying the standard components or functional
groups of lignin, cellulose and hemicellulose at wavenumbers of 4000 to 400 cm−1. The
activation process removes many functional groups from the spectrum or shows less
intensity. The thermal degradation effect destroys intermolecular bonding during the
activation process [56].
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Figure 3. The FTIR spectra for all types of cassava stem adsorbents.

The O-H stretching vibration in hydroxyl groups of phenols was detected at a band-
width around 3446.18–3414.08 cm−1 for all samples [57]. The decrease in intensity shown
in this region is attributed to the loss of oxygen during the activation and surface modifi-
cation process [58]. The other identical peaks were found at bandwidths around 2926.22–
2913.15 cm−1, which indicates the presence of C-H stretching related to alkane groups [59].
Their bending vibrations of CH2 were detected at 1465.92–1429.33 cm−1, and C-C multiple
bond stretching was found at wavelengths ~2300 and ~2100 cm−1 [60].

The FTIR spectra of surface-modified activated cassava stem showed little difference in
the surface functionality compared to raw and activated cassava stem. The Na-C exhibited
C=O stretching in the quinone structure of carbonyl groups; CH3 of aromatic methyl
groups; C-O-C stretching vibrations in ethers, esters or phenol groups; and alcohol groups
(C-OH). The new peak at 606.71 cm−1 refers to the C=C bond of alkenes [60].

Additionally, the remaining peaks available on the surface of activated cassava stem
modified with ZnCl2 are similar to the functional groups found on the surface of raw
cassava stem, but with significant decreases in intensity. The presence of ester stretching
of lactone, C=O stretching of carbonyl, CH3 of aromatic methyl groups, CHOH stretching
and the alcohol groups (C-OH) were also detected in ZAC.

3.6. pH at Zero Point Charge (pHzpc)

The pHzpc value determines the pH at which the adsorbent surface has net electrical
neutrality [61], where the acidic or basic functional groups no longer contribute to the pH
of the solution. Table 7 presents the pHzpc value for all samples, where the lowest pHzpc
value was shown by raw cassava stem with its pHzpc value in a weak acidic range [62].

Table 7. The pHzpc value for all types of cassava stem adsorbents.

Samples pHzpc Value

RC 6.53
AC 9.20

NAC 9.20
ZAC 7.10

The alkaline pHzpc of activated cassava stem was contributed by a large amount of
alkaline ash elements such as Mg and K, as shown by EDX results (Meis et al. 2010). The
NAC showed a similar value, probably due to the presence of Na (alkali metal) together
with the ash elements. The treatment of activated carbon with NaOH replaces the H + with
Na + ion, resulting in higher basicity of the carbon [63].
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ZAC showed a neutral pHzpc value due to the additional loss of ash elements com-
pared to the activated cassava stem. The presence of acidic lactone detected by the FTIR
analysis contributes to the decrease in the basicity of the activated cassava stem.

3.7. X-ray Diffractometry (XRD) Analysis

The XRD diffractogram displays the amorphous nature of all cassava stem adsorbents,
as shown in Figure 4. The raw cassava stem shows the lowest CI, while activation reduced
the amorphous structure by 22.2%. Surface modification has little effect on the CI. High
hemicellulose and lignin contribute to a higher amorphous structure [64]. The high tem-
perature used in the activation process degrades this structure, leaving more crystalline
regions and increasing the CI value.
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Figure 4. The X-ray diffractogram for adsorbent samples.

3.8. Thermogravimetric Analysis (TGA)

The thermal stability for all types of cassava stem adsorbent was investigated through
thermogravimetric analysis. The weight loss curve (TG) and the derivative thermogravi-
metric curve (DTG) are illustrated in Figure 5. All samples experienced initial weight loss
through 100 ◦C, due to the evaporation of moisture and volatile materials. Significant
weight loss only happened to the raw sample, with material loss at as much as 61.7% ob-
served at in temperature range 180 to 472 ◦C due to the dehydration of polymer chains
of cellulose and hemicellulose. At the end of the heating process, the raw cassava stem
recorded the least residue amount, 25.29%. For all samples, minor weight loss was recorded
in the temperature range 650 to 700 ◦C due to the opening of new pores through cell
wall deterioration [65]. The activated cassava stem AC showed 79.31% residual weight,
NAC at 77.77% and ZAC at 75.74%. The lower percentage of residual weight by the
surface-modified activated carbon could be due to the degradation of the remaining surface
modification chemical on the material’s surface.
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Figure 5. The TG and DTG curves for all types of cassava stem adsorbents.

3.9. Batch Adsorption Studies of Ofloxacin Adsorption
3.9.1. The Effect of pH

The effects of pH on the ofloxacin adsorption onto all types of cassava stem adsorbents
are shown in Figure 6. All samples recorded the highest percentage of ofloxacin adsorption
at pH 8, followed by adsorption at pH 6. The ofloxacin exists in different species at different
ranges of pH [66]. Ofloxacin exists as a zwitterionic compound at pH between 6 and 8.
At pH < 6 and pH > 8, the ofloxacin would exist as positively and negatively charged
species, respectively. Therefore, considerable ofloxacin removal happened at pH 6 and 8
due to the high electrostatic interactions between the cassava stem adsorbents and ofloxacin
molecules, attributable to different charge molecules at this pH. When too low, the pH
value contributed to decreased ofloxacin adsorption percentage due to the electrostatic
repulsion between the positively charged ofloxacin. It positively charged the surrounding,
while at higher pH, the repulsion between the adsorbent - adsorbate occurred due to the
negatively charged adsorbent surface.
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Figure 6. Plot of the adsorption percentage of ofloxacin onto all types of cassava stem adsorbents
against different initial pH of the adsorbate (conditions: contact time = 120 min; initial ofloxacin
concentration = 100 ppm; temperature = 35 ◦C; dosage = 1.5 g/L).



Materials 2022, 15, 5117 14 of 23

3.9.2. The Effect of Contact Time

The effect of contact time against the adsorption percentage of ofloxacin for all types
of cassava stem adsorbents is displayed in Figure 7. Based on this figure, the highest
percentage of ofloxacin adsorption was obtained at 180 min by ZAC (89.92%), followed
by the activated cassava stem (89.62%), NAC (86.43%) and the raw cassava stem (55.19%).
The ZAC achieves equilibrium after 75 min, the activated cassava stem at 90 min, the
NAC at 120 min and the raw cassava stem at 180 min. The nonporous structure of the
ZAC samples resulted in rapid adsorption of ofloxacin onto the external surface of these
samples, along with a short diffusion path of ofloxacin in the shallow pore area [67],
despite their insignificantly low removal percentage as compared to the other surface-
modified adsorbents.
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Figure 7. The plot of the adsorption percentage of ofloxacin onto all types of cassava stem adsorbents
against different contact times (pH 5; initial ofloxacin concentration = 100 PPM; temperature = 35 ◦C;
adsorbent dosage = 1.5 g/L).

3.9.3. The Effect of Temperature and Initial Concentration of Adsorbate

Figure 8 shows that the percentage of ofloxacin adsorption increased as the temper-
ature rose. It indicates that the adsorption of ofloxacin onto the surface of cassava stem
adsorbents was an endothermic process [68]. Most samples recorded a high percentage
of ofloxacin adsorption at an initial concentration of 100 ppm and a temperature of 55 ◦C,
excluding the raw cassava stem. ZAC showed 94.44% adsorption, the activated cassava
stem at 93.89%, NAC at 91.98% and the raw cassava stem at 59.10% adsorption. The adsor-
bents also showed good removal of ofloxacin up to the initial concentration of 100 ppm
at a temperature of 55 ◦C. The ofloxacin removal percentage of cassava stem adsorbents
was considered high and adequate in wastewater containing ofloxacin, which commonly
contains much less than 50 ppm [11].

3.9.4. The Effect of Adsorbent Dosage

The effect of adsorbent dosage on the removal of ofloxacin is displayed in Figure 9.
The adsorbent dosage of 0.5 g/L for NAC was sufficient to adsorb the 100 ppm ofloxacin
concentration at 96.85% removal. For ZAC, the adsorption was 78.89% using the same
amount of adsorbent dosage. At adsorbent dosage above 1.5 g/L, both NAC and ZAC
showed ofloxacin uptake of over 99%. The simple explanation is that as the adsorbent
dosage was increased, the availability of the free adsorption sites on the surface of the
carbon was also increased, resulting in a higher adsorption percentage. Therefore, 1.5 g/L
is the optimum adsorbent dosage as a higher dosage will not significantly improve the
ofloxacin removal percentage, besides causing material waste. Meanwhile, the AC and RC
showed 83.59% and 57.63% ofloxacin removal at a 0.5 g/L adsorbent dosage. This result
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proves the improvement of adsorption capacity after the activation process and surface
modification of the activated carbon.
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Figure 8. Plot of the ofloxacin adsorption percentage against temperature as a function of the initial
concentration of the ofloxacin solution for different cassava stem adsorbents (condition: pH 5; contact
time = 180 min; adsorbent dosage = 1.5 g/L).



Materials 2022, 15, 5117 16 of 23

Materials 2022, 15, x FOR PEER REVIEW 17 of 25 
 

 

Figure 8. Plot of the ofloxacin adsorption percentage against temperature as a function of the initial 
concentration of the ofloxacin solution for different cassava stem adsorbents (condition: pH 5; 
contact time = 180 min; adsorbent dosage = 1.5 g/L). 

3.8.4. The Effect of Adsorbent Dosage 
The effect of adsorbent dosage on the removal of ofloxacin is displayed in Figure 9. 

The adsorbent dosage of 0.5 g/L for NAC was sufficient to adsorb the 100 ppm ofloxacin 
concentration at 96.85% removal. For ZAC, the adsorption was 78.89% using the same 
amount of adsorbent dosage. At adsorbent dosage above 1.5 g/L, both NAC and ZAC 
showed ofloxacin uptake of over 99%. The simple explanation is that as the adsorbent 
dosage was increased, the availability of the free adsorption sites on the surface of the 
carbon was also increased, resulting in a higher adsorption percentage. Therefore, 1.5 g/L 
is the optimum adsorbent dosage as a higher dosage will not significantly improve the 
ofloxacin removal percentage, besides causing material waste. Meanwhile, the AC and 
RC showed 83.59% and 57.63% ofloxacin removal at a 0.5 g/L adsorbent dosage. This 
result proves the improvement of adsorption capacity after the activation process and 
surface modification of the activated carbon. 

 
Figure 9. Plot of the adsorption percentage of ofloxacin onto all types of cassava stem adsorbents 
against different adsorbent dosages (condition: pH 5; contact time = 180 min; initial ofloxacin 
concentration = 100 ppm; temperature = 55 °C). 

3.9. Thermodynamic Study of Ofloxacin Adsorption 
The study on the thermodynamics of ofloxacin adsorption onto the cassava stem 

adsorbents was used to understand further the adsorption mechanism between the 
ofloxacin molecule and the surface of the cassava stem adsorbents. The plots of ln Kq 
against 1/T as a function of initial concentrations of ofloxacin are shown in Figure 10. The 
linear equations and R-squared values were generated from each of these plots. The 
linear equations generated: Gibbs free energy change (ΔG°), enthalpy change (ΔH°) and 
entropy change (ΔS°), are presented in Table 8. 

0

20

40

60

80

100

120

RC AC N-AC Z-AC

A
ds

or
pt

io
n 

pe
rc

en
ta

ge
, %

0.5 g/L

1.5 g/L

3g/L

4.5 g/L

Figure 9. Plot of the adsorption percentage of ofloxacin onto all types of cassava stem adsorbents
against different adsorbent dosages (condition: pH 5; contact time = 180 min; initial ofloxacin
concentration = 100 ppm; temperature = 55 ◦C).

3.10. Thermodynamic Study of Ofloxacin Adsorption

The study on the thermodynamics of ofloxacin adsorption onto the cassava stem ad-
sorbents was used to understand further the adsorption mechanism between the ofloxacin
molecule and the surface of the cassava stem adsorbents. The plots of ln Kq against 1/T as
a function of initial concentrations of ofloxacin are shown in Figure 10. The linear equa-
tions and R-squared values were generated from each of these plots. The linear equations
generated: Gibbs free energy change (∆G◦), enthalpy change (∆H◦) and entropy change
(∆S◦), are presented in Table 8.

Table 8. Thermodynamic parameters for the adsorption of ofloxacin onto all types of cassava
stem adsorbents.

Sample Initial Adsorbate
Concentration

Linear Equation R-Squared
Value

∆H◦

(kJ/mol)
∆S◦

(kJ/mol/K)
∆G◦ (kJ/mol)

298.15 K 308.15 K 318.15 K 328.15 K

RC

50 ppm y = −1503.7x + 5.0135 0.7950 12.5018 0.0417 0.0742 −0.3426 −0.7594 −1.1763
100 ppm y = −1725.9x + 5.6454 0.7516 14.3491 0.0469 0.3552 −0.1142 −0.5835 −1.0529
150 ppm y = −852.11x + 2.1022 0.9771 7.0844 0.0175 1.8735 1.6987 1.5239 1.3491
200 ppm y = −970.77x + 2.2955 0.9677 8.0710 0.0191 2.3809 2.1900 1.9992 1.8083

AC

50 ppm y = −1586.9x + 7.5469 0.9883 13.1935 0.0627 −5.5139 −6.1414 −6.7688 −7.3963
100 ppm y = −2118.9x + 9.2244 0.9560 17.6165 0.0767 −5.2491 −6.0160 −6.7829 −7.5498
150 ppm y = −3914.8x + 13.704 0.9934 32.5477 0.1139 −1.4221 −2.5614 −3.7008 −4.8401
200 ppm y = −2895.1x + 9.5102 0.8082 24.0699 0.0791 0.4958 −0.2949 −1.0856 −1.8762

NAC

50 ppm y = −1554x + 7.2028 0.9705 12.9199 0.0599 −4.9345 −5.5333 −6.1322 −6.7310
100 ppm y = −1924.34x + 8.2105 0.9428 15.9986 0.0683 −4.3537 −5.0363 −5.7190 −6.4016
150 ppm y = −2889.3x + 10.066 0.9922 24.0216 0.0837 −0.9302 −1.7670 −2.6039 −3.4408
200 ppm y = −1256.2x + 4.1858 0.9920 10.4441 0.0348 0.0682 −0.2798 −0.6278 −0.9758

ZAC

50 ppm Y = −4403.4x + 16.325 0.9488 36.610 0.1357 −3.8569 −5.2141 −6.5714 −7.9286
100 ppm Y = −4275.5x + 15.852 0.8370 35.547 0.1318 −3.7477 −5.0657 −6.3836 −7.7015
150 ppm Y = −2859.4x + 10.333 0.9498 23.773 0.0859 −1.8406 −2.6997 −3.5588 −4.4178
200 ppm Y = −2906.9x + 9.6182 0.8719 24.168 0.0800 0.3262 −0.4735 −1.2731 −2.0728

RC = raw cassava stem, AC = activated cassava stem, NAC = sodium hydroxide surface-modified cassava
activated carbon, ZAC = zinc chloride surface-modified cassava activated carbon.

The negative values of ∆G◦ were detected at all initial concentrations of ofloxacin and
all set temperatures. It revealed that the adsorption of ofloxacin onto the surface of AC,
NAC and ZAC was spontaneous at all investigated concentrations and temperatures. It
was also found that these adsorbents had good ofloxacin adsorption efficiency even at low
temperatures and high initial concentrations. The efficient removal ofloxacin was observed
on RC, NAC and ZAC, showing a spontaneous process at almost all initial concentrations
and temperatures except at an initial concentration of 200 ppm and a set temperature of
25 ◦C. Meanwhile, the lowest ofloxacin adsorption efficiency was observed for the raw
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cassava stem adsorbent. A nonspontaneous process was shown at all temperatures for high
initial concentrations of ofloxacin (150 and 200 ppm) and temperatures of 25 ◦C for initial
concentrations of 50 and 100 ppm.
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Figure 10. The plots of ln Kq against 1/T as a function of initial concentrations of ofloxacin.

The value of ∆G◦ could also be used to differentiate the mechanism of adsorbate ad-
sorption onto the adsorbent either through physisorption or chemisorption. The adsorption
was said to occur through physisorption if the value of ∆G◦ is in the range −20 to 0 kJ/mol,
while the chemisorption was said to happen if the value of ∆G◦ is in the range −400 to
−80 kJ/mol [69]. The value of ∆G◦ for all prepared adsorbents in this study showed that
the adsorption of ofloxacin onto the surface of cassava stem adsorbents occurred by a
physical adsorption mechanism.
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The positive value of ∆H◦ that was shown by all types of cassava stem adsorbents
revealed that the adsorption of ofloxacin onto the cassava stem adsorbents was endothermic.
Meanwhile, the positive values of ∆S◦ on all types of cassava stem adsorbents revealed that
the movement of the adsorbed ofloxacin on the cassava stem adsorbents was not restricted
as compared to the movement of ofloxacin in solution [66].

3.11. Kinetic Studies of Ofloxacin Adsorption

The pseudo-first-order kinetic model in the plot of log (qe − qt) versus time for all
types of cassava stem adsorbents is displayed in Figure 11. These plots give the linear
equation and R-squared value presented in Table 9. The intercept and slope of the linear
equation were used to calculate the parameters k1 and qe, where the k1 and qe represent
the pseudo-first-order rate constant and the amount of ofloxacin adsorbed onto the surface
of the cassava stem adsorbents at equilibrium, respectively. The R-squared value for all
types of cassava stem adsorbents was less close to 1, indicating low conformity to the
pseudo-first-order kinetic model.
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Figure 11. Plot of log (qe − qt) versus time t for the pseudo-first-order model for the adsorption of
ofloxacin onto all types of cassava stem adsorbents.

Table 9. Pseudo-first-order and pseudo-second-order kinetic parameters for the adsorption of
ofloxacin onto all types of cassava stem adsorbents.

Pseudo First Order Pseudo Second Order

Sample Linear Equation R-Squared
Value

qe
(mg/g)

k1
(min−1) Linear Equation r−Squared qe

(mg/g)
k2

(g/mg/min)
h

(mg/g/min)

RC y = −0.0086x + 1.5654 0.8433 36.7621 0.0198 y = 0.0236x + 1.1242 0.9745 42.3729 0.0005 0.8895
AC y = −0.0128x + 1.5523 0.8759 35.6697 0.0295 y = 0.0161x + 0.2723 0.9955 62.1118 0.0010 3.6724

NAC y = −0.0142x + 1.9251 0.8660 84.1589 0.0327 y = 0.0159x + 0.4897 0.9834 62.8931 0.0005 2.0421
ZAC y = −0.0193x + 1.7011 0.9059 50.2458 0.0444 y = 0.0170x + 0.1840 0.9960 58.8235 0.0016 5.4348

RC = raw cassava stem, AC = activated cassava stem, NAC = sodium hydroxide surface-modified cassava
activated carbon, ZAC = zinc chloride surface-modified cassava activated carbon.

The pseudo-second-order kinetic model was developed based on the theory that the
rate-limiting step might be chemical adsorption, which involves valence forces by electron
sharing between the adsorbate and adsorbent. A linear form of the pseudo-second-order
kinetic model is t/qt = 1/h + (1/qe) · t, where h is the initial sorption rate, as qt/t = 0 [70].
Figure 12 shows the plots of t/qt against time. The slope and intercept were obtained from
the plot’s linear equations and were used to calculate parameters k2 and qe, respectively.
The parameter k2 indicates the pseudo-second-order rate constant, and qe indicates the
adsorption capacity at equilibrium. The parameter h, which specifies the initial adsorption
rate, was calculated from h = k2qe2, presented in Table 9. The h value followed the order:
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ZAC > AC > NAC > RC. This showed that the ZAC had the highest initial rate of ofloxacin
adsorption, followed by the other samples. All types of cassava stem adsorbents showed
correlation coefficient values close to 1, indicating ofloxacin adsorption onto the surface
of all prepared cassava stem adsorbents fitted well with the pseudo-second-order kinetic
model. As calculated from the pseudo-second-order equation, the maximum adsorption
values were 42.37, 62.11, 62.89 and 58.82 mg/g for RC, AC, NAC and ZAC, respectively.
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Figure 12. Plot of t/qt versus time t for the pseudo-second-order model for the adsorption of ofloxacin
onto all types of cassava stem adsorbents.

Table 10 shows the maximum adsorption capacity between different adsorbents used
for ofloxacin uptake from water. There is still limited research on the ofloxacin adsorption.
The data are more limited when finding the maximum adsorption capacity based on the
kinetic studies results. Based on the collected literature, the cassava-stem-based activated
carbon possessed average adsorption capacity among the others. This is good enough,
considering the low raw material cost for activated carbon production.

Table 10. Comparison of the maximum adsorption capacity for different ofloxacin adsorbents.

No. Adsorbent
Adsorption Capacity, mg/g

Reference
Langmuir Pseudo-2nd Order

1 Cotton Stalk Biochar 769.2 - [15]
2 Calcined Verde-Lodo Bentonite Clay 160.81 - [6]
3 Boron Nitride Nanosheets 72.50 - [8]
4 Sodium Hydroxide-Modified Activated Cassava Stem − 62.89 This work
5 Zinc Chloride-Modified Activated Cassava Stem − 58.82 This work
6 Organic Waste-Derived Biochar 57.10 − [11]
7 Modified, Thermally Activated Kaolin 45.275 − [13]
8 Raw Cassava Stem − 42.37 This work
9 Rgo-Mos2 Heterostructure 37.31 − [12]

10 Deep Eutectic Solvent (Choline Chloride Based)
Functionalised Rice Husk Ash 35.769 15.80 [10]

11 Magnetic Zeolites 11.6 − [14]
12 Chitosan/Biochar Composite 6.64 3.06 [7]

4. Conclusions

Surface-modified activated carbon from cassava stem was produced in this work.
NaOH and ZnCl2 were used as a surface modifier of the activated carbon. The fixed carbon
content was higher for AC when compared to RC. The surface area analysis found that the
activated carbon treatment with NaOH and ZnCl2 increases the surface area due to the
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removal of organic content by the chemicals. Better ofloxacin adsorption for all activated
carbon samples was recorded at pH 8 due to the high electrostatic interactions between
the cassava stem adsorbents at this pH. All activated carbon samples achieved maximum
adsorption at 180 min contact time. Higher solution temperatures result in higher ofloxacin
adsorption. Highest adsorption was shown at 55 ◦C. It indicates an endothermic reaction,
supported by the positive value of ∆H◦ in the thermodynamic studies. At adsorbent dosage
above 1.5 g/L, both NAC and ZAC showed ofloxacin uptake greater than 99%. The negative
values of ∆G◦ revealed that the adsorption of ofloxacin onto the surface of AC, NAC and
ZAC was spontaneous. The higher R2 values indicate that the adsorption process follows
the pseudo-second-order equation of kinetic study. The maximum adsorption capacities
are 42.37, 62.11, 62.89 and 58.82 mg/g for RC, AC, NAC and ZAC. Therefore, NAC has the
highest adsorption capacity among the others. The adsorption capacity is above average
compared to previous work by other researchers. While this work focused on ofloxacin
adsorption, these activated carbons are also a possible material for the pharmaceutical
industry’s wastewater treatment, and for the removal of dye, heavy metals and other
water contaminants.
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