
International Journal of Computer Assisted Radiology and Surgery (2022) 17:2131–2139
https://doi.org/10.1007/s11548-022-02665-5

ORIG INAL ART ICLE

Systematic analysis of volumetric ultrasound parameters
for markerless 4Dmotion tracking

Johanna Sprenger1 ·Marcel Bengs1 · Stefan Gerlach1 ·Maximilian Neidhardt1 · Alexander Schlaefer1

Received: 12 January 2022 / Accepted: 27 April 2022 / Published online: 21 May 2022
© The Author(s) 2022

Abstract
Objectives Motion compensation is an interesting approach to improve treatments of moving structures. For example, target
motion can substantially affect dose delivery in radiation therapy, where methods to detect and mitigate the motion are widely
used. Recent advances in fast, volumetric ultrasound have rekindled the interest in ultrasound for motion tracking. We present
a setup to evaluate ultrasound based motion tracking and we study the effect of imaging rate and motion artifacts on its
performance.
Methods We describe an experimental setup to acquire markerless 4D ultrasound data with precise ground truth from
a robot and evaluate different real-world trajectories and system settings toward accurate motion estimation. We analyze
motion artifacts in continuously acquired data by comparing to data recorded in a step-and-shoot fashion. Furthermore, we
investigate the trade-off between the imaging frequency and resolution.
Results The mean tracking errors show that continuously acquired data leads to similar results as data acquired in a step-
and-shoot fashion. We report mean tracking errors up to 2.01 mm and 1.36 mm on the continuous data for the lower and
higher resolution, respectively, while step-and-shoot data leads to mean tracking errors of 2.52 mm and 0.98 mm.
Conclusions We perform a quantitative analysis of different system settings for motion tracking with 4D ultrasound. We
can show that precise tracking is feasible and additional motion in continuously acquired data does not impair the tracking.
Moreover, the analysis of the frequency resolution trade-off shows that a high imaging resolution is beneficial in ultrasound
tracking.
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Introduction

Ultrasound (US) offers non-invasive and non-ionizing imag-
ing in real-time. These advantages make US one of the
most frequently applied imaging modalities in various med-
ical diagnostic tasks. Moreover, US is also frequently used
for image guidance. While 2D US has been considered for
different applications, recent advances make fast volumet-
ric (4D) US interesting for motion tracking. Precise motion
tracking is especially important when target movements may
affect the quality of the treatment. One particular applica-
tion is radiation therapy, where motion can severely affect
the dose delivered to a target and cause severe side effects

B Johanna Sprenger
johanna.sprenger@tuhh.de

1 Institute of Medical Technology and Intelligent Systems,
Hamburg University of Technology, Hamburg, Germany

to surrounding healthy tissue. Approaches to mitigate the
impact of motion are therefore widely used when deliv-
ering stereotactic body radiation therapy (SBRT). Active
motion compensation requires knowledge of the internal
target motion throughout a treatment fraction. Approaches
based on X-ray imaging correlated with external motion
surrogates from cameras are now widely used to monitor
respiratory motion in clinics [1]. However, X-ray imag-
ing requires the use of fiducial markers, particularly in the
abdomen, and the infrequent imaging can lead to correlation
errors.

Integrating MRI and linacs has also been considered for
monitoring the 3D organ motion during treatment [2]. How-
ever, these systems are still complex and expensive. US
motion tracking can be integrated more easily into exist-
ing setups [3–5] and allows for direct motion estimation of
the target. This requires reproducible probe positioning and
contact between the US probe and the patient. Seitz et al.
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propose for example a robot-based breathing andmotion con-
trol and apply low contact forces while changing the probe
positioning [6]. Previous work considers model probes for
reproducible tissue deformations during treatment planning
and delivery [7,8]. Also, the ultrasound robot’s pose needs
to be considered with respect to treatment plan quality [9].
VolumetricUS has been considered for target tracking during
radiotherapy [10,11] and previous studies evaluate systems
and methods for motion estimation in 3D or 4D US [12–
14]. Ipsen et al. [15] compared for example different 4D US
systems regarding their suitability in radiotherapy by assess-
ing volume size, frame rates and image quality. Bell et al.
[16] investigated different volume sampling rates for tracking
in the context of respiratory motion, showing that sampling
rates of 4 Hz to 12 Hz are required.

While US has advantages and in principle allows for
markerless motion tracking, the evaluation of the tracking
accuracy remains difficult, particularly as many studies rely
on manual or indirect annotations with limited accuracy
[14]. This complicates a systematic quantitative analysis, for
example, to investigate to what extent motion artifacts or
image quality impact the tracking performance. We perform
a quantitative analysis of markerless volumetric US tracking
and study the impact of different system parameters. First,
we describe an experimental setup to automatically acquire
4D US data with accurate ground truth motion. Second,
we investigate the influence of motion artifacts in contin-
uously acquired US images by comparing the images to
data acquired in a step-and-shoot fashion. Third, we vary
the number of beams during imaging to assess the trade-off
between imaging speed and resolution. Our analysis is based
on well-established filters and considers real-world motion
traces recorded during radiation therapy.

Material andmethods

Experimental setup

Our experimental setup is based on an US system (Griffin,
Cephasonics Ultrasound) and a robot arm (IRB 120, ABB)
with a high repeatability of 0.01 mm. A matrix transducer
(custom volume probe, Vermon) with a center frequency of
3 MHz is mounted to the end-effector of the robot with a
3D printed probe holder as shown in Fig. 1. The US probe
is aligned to the robots’ axes and a plastic tank is placed
beneath the probe which contains a foam layer. During our
experiments we fixate the different phantoms with needles
to the foam layer to prevent them from moving or floating.
Subsequently, the plastic tank is filled with water to enable
contactless US imaging of our phantoms. We apply a homo-
geneous speed of sound of 1540 ms−1, as suitable for the
tissue samples.

Fig. 1 Our experimental setup (a). The US probe (1) is mounted to the
robot (2) and positioned above the water tank. The liver is fixated to
foam to prevent it from moving or floating (b)

Fig. 2 General setup forUS trackingduring radiotherapy.TheUSprobe
is connected to a robot and placed on the patient for contact during image
acquisition

Motion traces

We consider US tracking in radiation therapy and use real
three-dimensional motion traces that were acquired dur-
ing treatment with a CyberKnife system at Georgetown
University Hospital [17]. Figure 3a visualizes the differ-
ent magnitudes in an exemplary trajectory. The motion
is largest in US y-direction (superior-inferior), medium in
z-direction (anterior-posterior) and smallest in x-direction
(medial-lateral) in the available trajectories. For a more intu-
itive visualization and comparison of the tracking results to
the ground truth position, we apply a principal component
analysis (PCA) to determine the main motion component of
the trajectories [17]. Note, that we do not apply the PCA
to the US data and that the main motion component rather
underestimates the motion magnitude. An example is given
in Fig. 3b, the motion mainly reflects the superior-inferior
motion from the patients. Figure 2 shows the general setup
of US tracking during radiotherapy, the coordinate system
indicates the US probe axes relative to a patient’s orientation.
The motion traces were acquired from the liver of different
patients during free breathing. We record data from eight
different trajectories with bovine liver and four trajectories
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(a)

(b)

Fig. 3 Exemplary trajectory for patient liver motion during free breathing in radiotherapy. The motion for x (blue), y (yellow) and z (red) is shown
(a) as well as the main motion component of the three dimensions after applying a PCA (b)

Table 1 Mean and standard deviation of the amplitude, as well as min-
imum and maximum amplitude from the main motion component are
reported in mm as well as the number of breathing cycles and the dura-

tion of themeasurements in seconds of the trajectories for themarkerless
liver measurements

Trajectory Phantom Cycles Mean Std Min Max Duration

1 Liver & marker 3.5 6.96 0.19 6.47 7.13 18.1

2 Liver 3 14.00 1.41 12.13 15.58 13.7

3 Liver & marker 4 13.50 0.50 13.26 14.64 17.8

4 Liver 4 9.53 0.34 9.25 10.14 17.3

5 Liver 4 10.73 3.32 7.72 16.11 18.4

6 Liver 2 17.68 1.01 16.66 18.26 15.2

7 Liver & marker 3 10.20 3.00 6.98 13.56 19.0

8 Liver & marker 3.5 14.45 2.32 11.88 15.58 15.7

with a spherical marker. Table 1 reports the trajectories along
with their mean and standard deviation of the amplitude, the
minimum and maximum amplitudes as well as the durations
of the recordings. The values are reported based on the main
motion component after applying the PCA. The trajectories
were selected to show different behavior concerning the tra-
jectory course and maximum amplitude.

Data acquisition

We use SUPRA [18] for 3D US imaging with beamforming,
resulting in volumes of 268 × 268 × 268 voxels covering a
field-of-view (FOV) of 40×40×40mm3. Prior to each exper-
iment, we manually position the robot about 10 mm above

the phantom surface to ensure it is visible in the US FOV
throughout the measurement. We record data from different
tissue samples and different tissue regions. The recordings
for each trajectory start at the same region-of-interest (ROI)
from one tissue sample. After obtaining all measurements
from one trajectory, another ROIwas selected for subsequent
measurements to evaluate ROIswith different tissue features.
During data acquisition, the robot moves the US transducer
along predefined trajectories while US images are acquired.
The robot positions serve as ground truth for tracking. We
systematically record and evaluate different system settings.
First, we record data from markerless bovine liver tissue and
from a spherical marker with a diameter of 2 mm.
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(a) (b) (c) (d)

Fig. 4 Slices from US volumes showing the spherical marker (a and b)
and exemplary bovine tissue (c and d) with 8 × 8 beams and 16 × 16
beams, respectively. The red boxes indicate the crop used for tracking

Second, we acquire US data continuously and in a step-
and-shoot fashion to investigate to what extent motion
artifacts influence the tracking. Considering the data acqui-
sition in a step-and-shoot fashion, we move the robot to a
position along the trajectory, acquire an US volume and log
the position before moving the robot to the next position.
When acquiring data continuously, we move the robot in
real-time along the trajectories while continuously recording
US volumes and logging the robot positions, as well as the
timestamps from both systems. The positions are matched
to the US volumes based on the timestamps. For compari-
son, we sample the trajectory points for the step-and-shoot
measurements with the corresponding imaging frequencies.

Third, we vary the number of beams used for US imaging
between 16×16 and 8×8 beams to investigate the trade-off
between imaging speed and resolution. A lower imaging fre-
quency but higher resolution is obtained with 16×16 beams,
while 8 × 8 beams lead to a higher imaging frequency but
lower resolution, generally showing less details. The maxi-
mum amount of data and the imaging frequency were limited
by the system buffer. While using 8× 8 beams enables con-
tinuous imaging of up to 44 Hz, the frequency was limited to
22 Hz for storing acquired data. Furthermore, imaging with
8×8 beams limited the continuous data acquisition to atmost
20 s due to the system buffer. Figure 4 shows examples for
US images taken of the marker with 8×8 beams and 16×16
beams, respectively, and corresponding examples of bovine
liver. The slices are extracted from the center of the volume.
The signal in the images of the bovine liver is based on the
markerless structure of the tissue without observing specific
landmarks.

Methods for motion estimation

We apply two different methods for motion estimation using
the 3D and 4D aspect of the data. Methods based on normal-
ized cross-correlation (NCC) have previously been applied
for US tracking [19,20]. Themotion between the first volume
(template) is compared to every succeeding volume along
the trajectory. Furthermore, a MOSSE filter [21] is applied
to the US data which takes into account the temporal dimen-
sion of the data. We apply a preprocessing to reduce speckle

noise. For this purpose, we use a median filter of kernel size
3 × 3 × 3 and a window leveling for contrast enhancement.
Furthermore, we crop the data to cuboids of 158×158×118
voxels, as indicated by the red boxes in Fig. 4, to avoid the
presence of the edges from the conical appearance of the US
data in the volume.

Normalized cross-correlation

We implement normalized cross-correlation via

r(x, y, z) = F−1(F( f (x, y, z)) ◦ F(v(x, y, z))∗) (1)

withF , the Fourier transform, f (x, y, z) and v(x, y, z) as the
template and reference volume and ◦, the element wise mul-
tiplication. The translation between the volumes is indicated
by a peak at the corresponding position in r .

MOSSE

We implement the MOSSE filter with 3D operations based
on Bolme et al. [21]. Initially, the MOSSE filter needs to be
trained on example images fi and training outputs gi . We
use a 3D Gaussian peak at the center of the shifted ROI. The
filter H is defined as

H∗
i = Gi

Fi
(2)

and maps the training images to their outputs. Fi and Gi are
the Fourier transform of fi and gi . During tracking, the filter
can be adapted to the input to account for variation in the
target appearance. With learning rate η the filter is updated
as

H∗
i = Ai

Bi
(3)

with Ai = ηGi ◦F∗
i +(1−η) Ai−1 and Bi = η Fi ◦F∗

i +(1−
η) Bi−1. Motion shifts can then be detected by computing

r(x, y, z) = F−1(F( f (x, y, z)) ◦ F(h(x, y, z))∗) (4)

for new input images.

Evaluation

The difference in position between two US volumes can be
determined using the corresponding robot positions. Follow-
ing the same evaluation as in [14], the error between ground
truth and estimation is calculated as

et = ‖pt − p̂t‖. (5)
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et is the Euclidean norm of the difference between the real
motion shift pt and the predicted motion shift p̂t at time t .

Results

Initially, we evaluate the data acquired from the spherical
marker and investigate to what extent motion tracking is fea-
sible with the methods. The results for the tracking errors are
presented in Table 2. NCC and MOSSE are used to evalu-
ate data acquired with 8 × 8 beams and 16 × 16 beams in a
step-and-shoot fashion or continuously for four different tra-
jectories. Considering the mean Euclidean error of the four
measurements, we obtain 0.72 mm and 1.10 mm for NCC

and MOSSE, respectively, for 8 × 8 beams on the contin-
uous data. The results are similar to the errors obtained for
the step-and-shoot recordings, 0.66 mm and 1.09 mm. The
evaluation on the data acquired with 16× 16 beams leads to
lower tracking errors, especially for step-and-shoot record-
ings. We obtain tracking errors of 0.28 mm and 0.47 mm as
well as 0.60 mm and 0.66 mm for step-and-shoot and contin-
uous recordings, respectively. The errors for the individual
trajectories differ from the mean errors but are in general low
with regard to the mean amplitude values reported in Table 1.

Subsequently, we evaluate the tracking results for mark-
erless liver tissue. The overall mean tracking errors are
increased compared to themarker-based tracking results. For
8× 8 beams, we report tracking errors of 2.60 mm and 2.52

Table 2 Tracking error et in mm for evaluation of the different US data with MOSSE and NCC for the spherical marker. Continuously acquired
data is compared to data acquired in a step-and-shoot fashion, as well as the different number of beams used for imaging

Traj. Acquisition NCC 8 × 8 MOSSE 8 × 8 NCC 16 × 16 MOSSE 16 × 16

1 Step & shoot 0.65 ± 0.30 0.66 ± 0.46 0.25 ± 0.08 0.21 ± 0.08

Continuous 0.67 ± 0.77 0.81 ± 0.93 0.84 ± 0.60 0.60 ± 0.22

3 Step & shoot 0.58 ± 0.33 1.20 ± 0.84 0.28 ± 0.19 0.55 ± 0.69

Continuous 0.75 ± 0.24 1.16 ± 3.39 0.32 ± 0.25 0.44 ± 0.38

7 Step & shoot 0.76 ± 0.25 1.16 ± 0.49 0.27 ± 0.10 0.45 ± 0.18

Continuous 0.60 ± 0.38 0.91 ± 0.58 0.67 ± 0.53 0.79 ± 0.50

8 Step & shoot 0.67 ± 0.35 1.34 ± 0.67 0.33 ± 0.19 0.66 ± 0.48

Continuous 0.85 ± 1.21 1.52 ± 1.53 0.58 ± 0.56 0.82 ± 0.60

Mean Step & shoot 0.66 ± 0.31 1.09 ± 0.61 0.28 ± 0.14 0.47 ± 0.36

Continuous 0.72 ± 0.65 1.10 ± 1.61 0.60 ± 0.48 0.66 ± 0.43

(a)

(b)

Fig. 5 Results for NCC (red, dotted) and MOSSE (green, dotted) for step-and-shoot data set with the ground truth (blue). The main motion
component of the trajectories and tracking results are shown for trajectory 4 for 16 × 16 beams (a) and 8 × 8 beams (b)
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(a)

(b)

Fig. 6 Results for NCC (red, dotted) and MOSSE (green, dotted) for continuous data with the ground truth (blue). The main motion component of
the trajectories and tracking results is shown for trajectory 4 for 16 × 16 beams (a) and 8 × 8 beams (b)

mm as well as 2.01 mm and 2.15 mm for step-and-shoot and
continuous data, respectively. The errors for the continuous
data are slightly lower. Considering 16×16 beams, we obtain
errors of 1.85 mm and 0.98 mm for step-and-shoot data and
1.82mmand 1.36mm for continuous data. The data acquired
with higher resolution, 16 × 16 beams, lead to more precise
tracking results than the lower resolution, 8 × 8 beams. The
tracking errors for the individual trajectories differ strongly
from the mean error values. Furthermore, we observe out-
liers in the tracking results for individual trajectories. The
results obtained for trajectory 6 show for example a wider
value range and outliers for the NCC step-and-shoot results.

Examples for the resulting trajectories from markerless
tracking with bovine liver are shown in Figs. 5 and 6 .
The main motion component, after applying a PCA to the
tracking estimates, is visualized. Figure 5a and b displays
the main motion component of trajectory number 4 and
the tracking results for NCC and MOSSE for both resolu-
tions (step-and-shoot). The motion is determined precisely
with both methods except for a few minor discrepancies.
The results for 8 × 8 beams in Fig. 5b show a few more
inaccuracies and higher deviation from the ground truth. In
Fig. 6a and b, estimations from continuous data for trajec-
tory 4 are displayed. The MOSSE filter is able to estimate
motion from higher-resolution images, but shows failures at
the peaks of the trajectory when applied to the lower resolu-
tion data. This is reflected in the tracking error for trajectory
4 in Table 3. The estimated trajectory shows failures at every
peak, leading to a square-like course of the tracking estimate.
An example for unsuccessful tracking is given in Fig. 7a and

b from trajectory number 3 for continuous data. The tracking
results for MOSSE and NCC follow the ground truth motion
only for small shifts but the steeper parts and peaks are not
detected. Furthermore, both resulting trajectories show oscil-
lations where the peaks could not be detected.

Discussion

The results show that motion tracking is possible with the
acquired4DUS trackingdata set. Themethods enable precise
motion tracking for the marker data set but slight differences
in the mean tracking errors between the data acquisition
modes can be observed. The results differ strongly for the
measurements in the markerless tissue and indicate that con-
tinuous data acquisition leads to slightly better results when
using 8×8 beams. For 16×16 beams, continuous data leads
to similar or slightly worse results. The additional motion in
the continuous data does not affect the tracking precision. A
higher resolution seems beneficial for more precise tracking
results. Bell et al. [16] indicated that imaging frequencies
between 8 and 12 Hz are required for tracking breathing
motion. Our results confirm that an imaging rate of 11 Hz
is sufficient. Considering a clinical setting, system latencies
can lead to higher errors in general. This is not reflected in our
experiments and using a higher frequency could be beneficial
in such scenarios.

In comparison with the results from the 2015 MICCAI
CLUST workshop [14], our best mean tracking error is sub-
stantially lower. The mean tracking errors are reported for
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Table 3 Tracking error et in mm for evaluation of the different US data with MOSSE and NCC for markerless liver tissue. Continuously acquired
data is compared to data acquired in a step-and-shoot fashion, as well as the different number of beams used for imaging

Traj. Acquisition NCC 8 × 8 MOSSE 8 × 8 NCC 16 × 16 MOSSE 16 × 16

1 Step & shoot 0.28 ± 0.12 0.56 ± 0.27 0.21 ± 0.06 0.27 ± 0.09

Continuous 0.52 ± 0.19 0.53 ± 0.27 0.21 ± 0.10 0.45 ± 0.29

2 Step & shoot 3.75 ± 2.51 3.28 ± 3.08 2.29 ± 2.57 0.67 ± 0.98

Continuous 3.10 ± 2.58 1.55 ± 1.35 0.80 ± 0.62 0.74 ± 0.84

3 Step & shoot 3.05 ± 3.50 3.59 ± 4.25 2.63 ± 3.51 2.73 ± 4.03

Continuous 2.78 ± 3.36 3.52 ± 3.75 2.83 ± 3.50 3.65 ± 4.07

4 Step & shoot 0.70 ± 0.24 0.93 ± 0.67 0.32 ± 0.10 0.36 ± 0.11

Continuous 0.62 ± 0.41 2.12 ± 2.51 0.25 ± 0.07 0.30 ± 0.10

5 Step & shoot 2.56 ± 1.81 3.34 ± 2.35 1.11 ± 1.48 0.68 ± 0.92

Continuous 2.04 ± 1.31 2.24 ± 1.27 1.78 ± 1.83 0.82 ± 0.71

6 Step & shoot 4.60 ± 2.96 2.29 ± 2.37 4.02 ± 3.71 1.43 ± 2.40

Continuous 1.59 ± 1.82 1.59 ± 1.51 2.45 ± 3.01 0.78 ± 0.95

7 Step & shoot 1.13 ± 0.67 1.49 ± 0.95 0.56 ± 0.28 0.65 ± 0.36

Continuous 1.09 ± 0.69 1.25 ± 0.89 0.50 ± 0.26 0.61 ± 0.36

8 Step & shoot 4.73 ± 3.13 4.71 ± 3.43 3.69 ± 3.02 1.07 ± 2.36

Continuous 4.35 ± 4.24 4.39 ± 3.77 5.78 ± 4.67 3.56 ± 4.21

Mean Step & shoot 2.60 ± 1.87 2.52 ± 2.17 1.85 ± 1.84 0.98 ± 1.41

Continuous 2.01 ± 1.83 2.15 ± 1.91 1.82 ± 1.76 1.36 ± 1.44

(a)

(b)

Fig. 7 Results for NCC (red, dotted) and MOSSE (green, dotted) for continuous data with the ground truth (blue). The main motion component of
the trajectories and tracking results are shown for trajectory 3 for 16 × 16 beams (a) and 8 × 8 beams (b)
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two approaches with 1.74 mm and 1.80 mm. However, note
that the acquisition of US data is different regarding, for
example, the size of the FOV and image resolution. While
our ground truth is precisely generated with a robot and does
not suffer from subjective evaluation or inter-observer vari-
ability, De Luca et al. also report the mean Euclidean errors
of three observers in the range of 1.19mm to 1.36mm. In our
experiments the probe is static. However, considering a clin-
ical setting, contact forces between probe and patient can be
measured to move the robot and follow the patient’s motion.
Tissue deformations can occur close to the probe position
which is not relevant when considering the crop we use for
tracking.

Trajectory 3 and 8 lead to especially high tracking errors
for the different settings. The visualizations from trajectory
3 show difficulties at the peaks and the mean values reported
in Table 1 along with the number of cycles and the maxi-
mum indicate a steep course of the trajectories. One possible
source of error is the smaller overlap between the template
and following volumes when the motion is larger. The results
obtained for the marker show that the different trajectories
can generally lead to precise tracking results, but estimating
motion based on markerless tissue structures is more chal-
lenging. The tissue appearance fromdifferent ROIs can cause
failures when the features are not suitable for the applied
method. Furthermore, we compare the initial US template
against the subsequent US volumes for tracking. In case of
a noisy template volume, the tracking could therefore be
impaired for the whole trajectory. The difference between
the two methods is visible in Fig. 6b. NCC is less precise
for 8 × 8 beams, but MOSSE fails to predict the peaks and
the general course of the estimated trajectory is noisier. This
could be due to non-optimal filter adaptions over time when
motion is not detected.

The influence of the ROI and the initial template needs
to be investigated further. Additional filtering of the tracking
estimates or outlier rejection schemes can help to improve the
precision and robustness of the tracking approaches. Sincewe
do not aim to implement precise tracking but want to analyze
the different system settings based on the tracking results, we
do not applymethods for outlier rejection in thiswork. Future
work could consider convolutional neural networks (CNNs)
for precise tracking. Previous work in ultrasound tracking
[22,23] has shown the potential of CNNs in ultrasound track-
ing and our setup is suitable to automatically acquire large
data sets for training CNNs. Our experimental setup allows
following motion for longer time periods in general. Since
we perform a quantitative analysis we record the data for an
offline analysis which limits the possible acquisition duration
due to the system buffer.

Conclusion

We perform a quantitative analysis of markerless volumetric
US tracking for radiotherapy. We compare different imaging
resolutions and evaluate the influence ofmotion artifacts. The
results show that a high imaging resolution is advantageous
compared to a higher imaging rate considering the present
motion traces from radiotherapy treatment. The continuously
acquired data lead to similar tracking errors and enable track-
ing ofmarkerless tissue. In general, the tracking performance
is reduced for certain trajectories. In the future, the setup can
be used to further analyze systemparameters forUS tracking.
Data from different trajectories can be recorded and fail-
ures during tracking investigated thoroughly to improve the
methodical development for US tracking in radiotherapy.
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