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In diploid eukaryotic organisms, both alleles of each autosomal gene are usually
assumed to be simultaneously expressed at similar levels. However, some genes
can be expressed preferentially or strictly from a single allele, a process known as
monoallelic expression. Classic monoallelic expression of X-chromosome-linked genes,
olfactory receptor genes and developmentally imprinted genes is the result of epigenetic
modifications. Genetic-origin-dependent monoallelic expression, however, is caused
by cis-regulatory differences between the alleles. There is a paucity of systematic
study to investigate these phenomena across multiple tissues, and the mechanisms
underlying such monoallelic expression are not yet fully understood. Here we provide
a detailed portrait of monoallelic gene expression across multiple tissues/cell lines
in a hybrid mouse cross between the Mus musculus strain C57BL/6J and the Mus
spretus strain SPRET/EiJ. We observed pervasive tissue-dependent allele-specific gene
expression: in total, 1,839 genes exhibited monoallelic expression in at least one tissue,
and 410 genes in at least two tissues. Among these 88 are monoallelic genes with
different active alleles between tissues, probably representing genetic-origin-dependent
monoallelic expression. We also identified six autosomal monoallelic genes with the
active allele being identical in all eight tissues, which are likely novel candidates of
imprinted genes. To depict the underlying regulatory mechanisms at the chromatin layer,
we performed ATAC-seq in two different cell lines derived from the F1 mouse. Consistent
with the global expression pattern, cell-type dependent monoallelic peaks were found,
and a higher proportion of C57BL/6J-active peaks were observed in both cell types,
implying possible species-specific regulation. Finally, only a small part of monoallelic
gene expression could be explained by allelic differences in chromatin organization in
promoter regions, suggesting that other distal elements may play important roles in
shaping the patterns of allelic gene expression across tissues.
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INTRODUCTION

Protein-coding information stored in DNA is first transcribed
to mRNA and then translated into polypeptide chains. Knowing
how these processes are regulated is critical for the understanding
of development and evolution. Indeed, divergence in gene
expression is considered a major cause of phenotypic differences
between species (King and Wilson, 1975). Transcriptional
regulation is mediated by the interaction between cis-regulatory
elements (e.g., promoters and enhancers) and trans-factors (e.g.,
transcription factors (TFs)). Whereas cis-elements are usually
located within or nearby a single target gene whose gene
expression they regulate, trans-factors can be located on different
chromosomes and potentially influence the expression of several
often distal target genes. Besides quantitative trait loci (QTL)
mapping analyses, which require large sample sizes and inform
about distal and proximal elements affecting gene expression
differences, F1 hybrid studies are another widely applied and
more straightforward approach to distinguish between cis and
trans acting regulatory components (Wittkopp et al., 2004; Gao
et al., 2015; Hou et al., 2015; Xiao et al., 2016; Xu et al., 2017).
With two alleles sharing the same trans environment, allelic
differences in the F1 hybrid can be directly interpreted as cis-
regulatory divergence (Gao et al., 2015; Hou et al., 2015; Xiao
et al., 2016). By comparing these allelic-specific variations with
the differences between parental strains or species, the trans-
component of gene expression differences can be estimated
(Wittkopp et al., 2004, 2008; Goncalves et al., 2012; Wong et al.,
2017). The F1 hybrid approach has been used to study cis and
trans regulatory divergence contributing to differences in gene
expression between strains of the same species or closely related
species in many model organisms, including yeast (Tirosh et al.,
2009; Emerson et al., 2010; Schaefke et al., 2013), Drosophila
(Wittkopp et al., 2004) and mouse (Goncalves et al., 2012). F1
hybrid studies of different Mus musculus subspecies revealed
pervasive cis-regulatory differences but comparatively few trans-
regulatory differences (Goncalves et al., 2012; Crowley et al.,
2015). However, the interplay of these two kinds of elements
shaping the regulatory patterns of gene expression divergence
across tissues in mammals has not been fully understood.

The most extreme case of an allelic-biased expression pattern
is monoallelic expression (when a gene is only transcribed
from one of the two parental alleles). Classic monoallelic
expression of X-chromosome-linked genes, olfactory receptor
genes and developmentally imprinted genes is the result of
epigenetic modifications (Chess, 2013, 2016; Eckersley-Maslin
et al., 2014; Gendre et al., 2014). Genetic-origin-dependent
monoallelic expression, in contrast, is caused by cis-regulatory
differences between the alleles (Ohishi et al., 2020), and cases of
non-random allele-dependent X-chromosome inactivation have
also been described (Orstavik et al., 1995; Thorvaldsen et al.,
2012; Calaway et al., 2013; Jones, 2014). However, the tissue-
dependence of these phenomena is rather underexplored, and
the mechanisms underlying asymmetric expression are not yet
fully understood.

Here we provide a detailed portrait of monoallelic gene
expression across multiple tissues/cell lines in a hybrid mouse

model and allelic chromatin accessibility patterns in two different
cell lines. We focus on depicting tissue-dependent allele-
specific gene expression patterns and the underlying regulatory
mechanisms at the chromatin accessibility layer. We observed
pervasive tissue-dependent allele-specific gene expression and
chromatin accessibility patterns. In total, 1,839 genes exhibited
monoallelic expression in at least one tissue, and 410 in at least
two tissues. We identified six autosomal monoallelic genes with
the active allele being identical in all eight tissues, which are
likely novel candidates of imprinted genes. Also, we found 88
monoallelic genes with different active alleles between tissues.
Only a small part of monoallelic gene expression could be
explained by allelic chromatin structural differences in promoter
regions, suggesting that other distal elements or differential
TF binding without divergence in chromatin remodeling may
play important roles in shaping the patterns of allelic gene
expression across tissues.

MATERIALS AND METHODS

RNA-Seq Data of F1 Hybrid Mouse
RNA-seq raw data of F1 hybrid mice containing six organs,
embryonic stem cells (ESCs), and fibroblasts were obtained from
previous studies (Gao et al., 2015; Zou et al., 2021). For each
tissue/cell type, raw sequencing data of two biological replicates
were downloaded. Samples from heart, kidney and cortex were
sequenced with paired-end reads of 101 bp length. Samples from
spleen, lung and ESCs were sequenced with paired-end reads of
76 bp length. The sequencing depth for each biological replicate
was 240–260 million reads per sample, except for the two ESC
samples, for which we obtained 175 million and 202 million
reads, respectively.

Assay for Transposase-Accessible
Chromatin-Seq Library Construction and
Sequencing
The ATAC-seq libraries of F1-ESCs and F1-fibroblasts, each with
three biological replicates, were prepared as previously described
with minor modifications (Corces et al., 2017; Liang et al., 2021).
Briefly, 50,000 fresh cells were lysed in lysis buffer for 10 min
on ice to prepare the nuclei. Immediately after lysis, nuclei were
spun at 500 g for 10 min to remove the supernatant. Nuclei
were then incubated with the Tn5 transposase (Vazyme) in
tagmentation buffer at 37◦C for 30 min. After tagmentation, PCR
was performed to amplify the library for 12 cycles under the
following PCR conditions: 72◦C for 3 min; 98◦C for 30 s; and
thermocycling at 98◦C for 15 s, 60◦C for 30 s, and 72◦C for
40 s; followed by 5 min at 72◦C. After the PCR reaction, libraries
were purified with DNA purification beads (Vazyme). The
libraries were sent to Annoroad for sequencing and 2 × 150 bp
reads were obtained.

RNA-Seq Data Processing
The reference M. musculus genome (mm10) and gene
annotation of the C57BL/6J strain were downloaded from the
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Ensemble database1 (version: GRCm38, release 74). SNVs and
insertions/deletions (indels) between C57BL/6J and SPRET/EiJ
were downloaded from the Mouse Genome Project.2

The vcf2diploid tool (version 0.2.6) in the AlleleSeq pipeline
(Rozowsky et al., 2011) was used to construct the SPRET/EiJ
genome by incorporating the SNVs and indels into the C57BL/6J
genome. The chain file between the two genomes was also
reported as an output, which was further used with g2gtools to
convert SPRET/EiJ coordinates to C57BL/6J coordinates.

To ensure that RNA-seq reads from all tissues have the same
length, we trimmed 25 bp from the 3′ end of the 101 bp reads.
We aligned the RNA-seq reads to the C57BL/6J reference genome
and SPRET/EiJ genome separately with HISAT2 (version 2.0.1)
with parameters -p 12 -k 2 –reorder –no-softclip (“softclip”
was not allowed when mapping in order to avoid junction
reads to be cut off; the “reorder” parameter was used to
ensure that the reads order of the mate pairs in the HISAT2
output is consistent with the order of reads of the input file
for efficient assignment). Reads were assigned to the genome
with less mapping edit distance. The reads with equal mapping
distance to both genomes were assigned as common reads.
Genomic alignment coordinates of the reads that were assigned
to SPRET/EIJ were then converted to the corresponding locations
in the C57BL/6J reference genome using the g2gtools software
(version 0.1.29). The bias of allelic reads assignment in favor of
the reference genome (C57BL/6J) was low, ranging from 0.1%
in kidney to 3.5% in fibroblasts (S), which indicates that our
strategy for allelic reads assignment is reliable for allelic gene
expression estimation.

Gene Expression Level Quantification
After reads alignment and allelic reads assignment, uniquely
mapped reads of each allele were chosen and fed into
featureCounts (v1.6.0) for gene expression quantification. Only
both ends of a read pair concordantly mapped were counted
(by “-B” and “-C”). Raw read counts were then normalized as
transcripts per kilobase million (TPM).

Identifying Allelic Differential Genes
Divergent and monoallelic genes were detected following
the pipeline in Supplementary Figure 1. At first, protein-
coding genes with TPM no greater than 1 (not allelic) in
both biological replicates, and genes located in X, Y, and
mitochondrial chromosomes, as well as known imprinting
genes were removed. The remaining autosome protein-coding
genes were kept for divergent and monoallelic genes analysis.
To make sure the differential analysis between alleles are
supported by enough SNVs, we selected genes with 5 or more
allele informative SNVs (covered by more than 20 reads)
between alleles in all annotated exons. Paired-sample t-test
on count of reads cross SNVs in a genes were performed
and BH adjust p-values were obtained. The log2 transformed
fold change were calculated between alleles based on summed
up reads cross all SNVs. A gene was defined as allelic

1ftp://ftp.ensembl.org
2http://www.sanger.ac.uk/

differential gene (ADE) if LFC greater than 1 and adjusted
p-value less than 0.05.

Assay for Transposase-Accessible
Chromatin-Seq Data Processing
2 × 150 bp paired-end reads were first trimmed to remove
adapter sequences using Trim Galore v0.6.4 (Krueger, 2016)
(–cores 4 –paired –nextera –length 50). Cleaned reads were
aligned to the C57BL/6J reference genome and SPRET/EiJ
genome separately with g Bowtie2 (Langmead and Salzberg,
2012) (version 2.4.1) with parameters -p 8 -X 2000. Reads
mapped to the mitochondrial genome and low mapping quality
reads (MAPQ < 10) were filtered out using custom scripts.
Picard (v2.12.1) was then used to sort the reads and remove
duplicates. Reads were assigned to the two mouse genomes
with less mapping edit distance. Only reads which could be
assigned unambiguously (allelic reads or allele informative reads)
to either of the two genomes were kept for further analysis.
Genomic alignment coordinates of the reads that were assigned
to SPRET/EIJ were then converted to the corresponding locations
in the C57BL/6J reference genome using the g2gtools software
(version 0.1.29).

Reads of both alleles in each of the six samples were merged
as input for MACS2 to call consensus peaks (-f BAMPE -g
mm –keep-dup all –nomodel –nolambda -B). And to ensure
reproducibility, only peaks detected by IDR (version 2.0.4.2, with
parameter –idr-threshold 0.05) in all three replicates were used
for further analysis.

After obtaining consensus peaks, allelic read counts for each
peak in each sample were analyzed by featureCounts v1.6.4 (Liao
et al., 2014) (with parameters: -F SAF -p -B -C -T 4). Differential
peaks between alleles were detected using the R package DESeq2
(Love et al., 2014) (under R version 4), and peak annotation
was analyzed with the R package ChIPseeker (Yu et al., 2015)
(under R version 4).

Gene Annotation
Gene type, exons, and transcription start site (TSS) annotations
were extracted from the gene annotation file of the mouse
reference genome mm10 downloaded from the Ensembl website.3

Filtering
Non-coding genes were firstly removed from our gene list, and
to ensure reliable downstream analysis, X-chromosomal genes
and known imprinted genes4 were analyzed separately and only
autosomal genes with TPM≥ 1.0 in both replicates remain. Since
allelic reads assignment is dependent on cis-variants between
alleles, to avoid bias of reads assignment, we further filtered out
genes with less than 5 informative SNVs (covered by 20 reads).

Principal Component Analysis
Principal component analysis (PCA) was performed on all
protein-coding genes after filtering. Allelic reads count of each

3http://ensembl.org/
4http://www.geneimprint.com/site/genes-by-species
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gene in each sample were normalized as counts per million
(CPM). Then the normalized count matrix was fed into the R
prcomp function to run the PCA analysis, and the first two
components were used for sample visualization.

Allelic Differential Genes and Monoallelic
Expression Gene
For each gene, allelic reads covering informative SNVs were
summed up, then a logarithm transformed fold change (LFC)
between alleles was calculated as in the following Eq. 1:

LFC = log2 ((BL6 + 1)/(SPR+ 1)), (1)

(1) where BL6 means informative allelic reads from the C57BL/6J
allele, and SPR means informative allelic reads from SPRET/EiJ
allele. Allelic differential genes (ADE) are defined as those with
absolute LFC equal or greater than 1, and two-sample paired
t-test p-value < 0.05.

We also defined a p score (calculated as the proportion of
BL6 allelic reads, Eq. 2) to distinguish monoallelic expression
genes (MAE). As defined in a previous study (AV Gendrel,
Development cell, 2014), Genes with p score >0.85 or p score
<0.15 were defined as MAEs.

p score = BL6/(BL6 + SPR), (2)

where BL6 means informative allelic reads from the C57BL/6J
allele, and SPR means reads from the SPRET/EiJ allele.

Reproducibility of Monoallelic Genes
Between Biological Replicates
We used the same cutoff of p score (>0.85 or <0.15) as above to
define monoallelic patterns in each of the two biological replicates
in each tissue. And we calculated the proportion of consistent
patterns between the two replicates as shown in Supplementary
Table 5. We observed high consistency between replicates for all
tissues/cell lines.

Replication Rate of Monoallelic Genes
Between Tissues
To define the replication rate of monoallelic genes between
tissues, we calculate a replication rate, similar to the Jaccard
Index, which represents the proportion of intersection in the
union (Eq. 3). For any two tissues, the replication rate was defined
as:

replication rate =
⋂

MAEs/
⋃

MAEs, (3)

Where
⋂

MAEs means monoallelically expressed genes in one
tissue, also monoallelically expressed in the other tissue with the
same preferred allele;

⋃
MAEs means the union set of MAE genes

between the two tissues.

d Score
We calculated a d score for each peak based on the previous
definition (Xu et al., 2017). We treated each fibroblast cell line
as if derived from a single clone, based on this, peaks of one
allele on the X-chromosome would mostly be inactive with a

few peaks escaped. Therefore, we compared the distribution of d
scores in X-inactive peaks and X-escaped peaks, and set the cross-
site where the d score equals 0.35 as the threshold for defining
monoallelic peak.

RESULTS

Autosomal Monoallelic Gene Expression
Is Pervasive Across Tissues
To identify allelic differentially expressed genes in the mouse
genome, we performed RNA-seq of six different organs (cerebral
cortex, heart, kidney, liver, lung, and spleen) and two cell types
(ESCs and fibroblasts) from a highly divergent F1 hybrid cross
between the house mouse M. musculus (C57BL/6J) and the
Algerian mouse Mus spretus (SPRET/EiJ) which was generated
for previous studies (Gao et al., 2015) in our lab (Figure 1A).
Data of two biological replicates of each organ and cell type were
used. After read mapping (see section “Materials and Methods”),
uniquely mapped read pairs were assigned to each allele based
on "edit distance." PCA analysis shows that the samples are
clustered together firstly by tissue type or cell type and then by
species (Figure 1B), which is consistent with previous studies
(Barbosa-Morais et al., 2012; Merkin et al., 2012). To accurately
estimate genes with allelic differential expression (ADE genes)
and monoallelic expression (MAE genes), only protein-coding
genes in autosomes with at least 5 allele-informative SNVs
(see section “Materials and Methods”) were used and an in-
house pipeline based on allele-informative SNVs was designed
to identify ADE and MAE genes (Supplementary Figure 1 and
section “Materials and Methods”). After filtering, 15,469 protein-
coding genes (∼68.5% of protein-coding genes in the genome), in
total, remained for downstream allelic gene expression analysis.
The numbers of genes expressed in the eight tissues/cell types are
similar, with an average number of 11,258, the highest number
of 12,632 in lung, and the lowest number of 9,805 in liver
(Supplementary Table 1). In contrast to this, the numbers of
ADE genes we identified across tissues vary significantly. In
cerebral cortex, we identified only 680 (5.48%) ADE genes which
were less than half of the number observed in fibroblasts (13.92%,
Supplementary Table 1). This is consistent with previous
reports that brain is one of the most conserved organs between
species (Zheng-Bradley et al., 2010). Similar to a previous study
(Andergassen et al., 2017), we also observed bias toward higher
expression of the C57BL/6J allele in ADE genes (Supplementary
Table 1). To check whether the bias of allelic gene expression
is caused by technical issues, we compared the log fold change
(LFC) of allelic gene expression between tissues/cell types. If the
allelic bias is largely caused by technical issues, we would observe
similar correlations among different tissue pairs. As shown in
Supplementary Figure 2A, the Spearman’s correlation coefficient
between tissues ranges from 0.25 (between ESC and liver) to 0.55
(between lung and spleen). Such a big variation indicates that
the number of ADE genes biased toward C57BL/6J may mainly
represent a biological phenomenon rather than technical bias.

In each tissue, on average 27% of ADE genes show monoallelic
expression (Figure 1C, Supplementary Table 1, and section
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FIGURE 1 | Allelic gene expression profiling across eight tissues/cell types in F1 hybrid mice. (A) Scheme of the experimental design and pipeline for allelic gene
expression analysis. (B) View of the first two principal components of allelic samples. PCA analysis was performed with all expressed genes. Species are indicated
with shapes and tissue types are distinguished by colors. (C) Allelic differentially expressed (ADE) genes and monoallelic genes in each tissue. The numbers of ADEs
and monoallelic genes are indicated in the overhang and within each bar, respectively.

“Materials and Methods”). Cerebral cortex contains fewer
(∼18%) monoallelic genes than other tissues, while liver contains
the highest percentage (∼33%) of monoallelic genes. Except for
liver (394), the highest numbers of MAE genes were found in
fibroblasts (409, 27.8%) and ESCs (362, 28.3%). These might
partially represent clonally fixed random monoallelic expression,
which cannot be easily detected in less homogenous tissues.
Moreover, previous studies have shown that in hybrids the
M. spretus X-chromosome is less likely to be inactivated than the
M. musculus domesticus X-chromosome (Calaway et al., 2013).
Our data are consistent with this prediction, with average p scores
(see section “Materials and Methods”) for X-chromosomal genes
ranging between 0.37 in heart and 0.49 in kidney.

Monoallelic Genes Are Mostly Under
Tissue-Dependent Regulation
Cis-regulatory divergence of monoallelic genes is also shaped by
trans-factors in different tissues. To study this cis-trans interplay,
we analyzed the tissue-dependent patterns of monoallelic gene
expression (Figure 2A). Among the 1,839 MAE genes, most

(1,429) are tissue specific, 404 genes are MAE in 2–7 tissues,
and only 6 genes are monoallelic across all eight tissues. We
also compared the replication rate of monoallelic genes between
tissues by calculating a Jaccard index (see section “Materials
and Methods”), for which also the direction of the expression
bias is considered. As shown in Figure 2B, the replication
rates for most tissue pairs are less than 20%, with a mean
replication rate of 16.7%, and the maximal replication rate of
29.1% between spleen and lung. In comparison, the 125 known
imprinted genes show higher consistency of allelic preference
between tissues, as expected. Replication rates for these genes
between tissues are mostly greater than 60%, and closely related
tissues have higher replication rates; for example, the highest
replication rate is 0.85 between lung and spleen (Supplementary
Figure 2B). These results indicate that cis-regulatory monoallelic
gene expression is pervasively tissue-dependent. Additionally,
we found that the monoallelic status transitions mostly occur
between monoallelic ("Mono" in Figure 2C) and non-divergent
("Non-Div" in Figure 2C), which comprised 57% of between
tissue patterns, followed by the transition between divergent-
but-not-monoallelic and monoallelic (∼25%, Figure 2C), and
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the remaining 18% between tissue patterns are the transitions
between BL6-monoallelic and SPR-monoallelic. To further study
the tissue-dependent patterns of monoallelic genes, we focused
on genes expressed in two or more tissues/cell types. This group
in total contains 13,855 genes, which we classified into six groups:
(G1) genes are non-divergent in all expressing tissues; (G2) genes
are divergent in at least one tissue but not monoallelic in any
tissue; (G3) genes are monoallelic in only one expressing tissue;
(G4) genes are monoallelic in two or more tissues and the BL6
allele is the active allele only; (G5) genes are monoallelic in two
or more tissues and the SPR allele is the active allele only; (G6)
genes are monoallelic in two or more tissues and with different
active allele in different tissues. As shown in Figure 2D, except for
the 8,967 (64.7%) non-divergent genes (G1), 3,306 genes (23.9%)
belong to “G2,” 1,172 genes (8.5%) to “G3,” and 181 and 141
genes belong to “G4” and “G5,” respectively. In addition, we
found 88 genes in “G6,” which have different active alleles in
different tissues.

The cis-regulatory divergence of gene expression between
species could be functional (adaptive evolution) or it could
be noise caused by molecular error, as postulated before as
"error hypothesis" (Zhang, 2018). Previous studies in alternative
polyadenylation have found that most cis-regulatory divergence
between species is noise caused by molecular error (Xu and
Zhang, 2018). To test whether different tissue-dependent cis-
regulatory monoallelic genes are under different selection
constraint, we compared dN/dS ratios of genes among the six
groups. As shown in Figure 2E, the dN/dS ratios of non-
divergent genes are lower (G1 in Figure 2E) than those of
divergent genes, no matter whether monoallelic or not. Among
the genes with monoallelic patterns, those monoallelic in only
one tissue have lower dN/dS ratios than those monoallelic in two
or more tissues and with the same active allele between tissues.
Interestingly, although statistically not significant, monoallelic
genes with different active allele in different tissues have lower
dN/dS ratios than those with the same active allele between
tissues (Figure 2E), suggesting more complex regulatory patterns
under this small set of genes.

To further explore the tissue-dependent cis-regulatory
divergence and its underlying regulatory mechanisms, we
put the focus on two cell lines (ESCs and fibroblasts), and
performed Assay for Transposase-Accessible Chromatin with
high-throughput sequencing (ATAC-seq) in samples of these
two cell lines from our F1 hybrid mice (described in the
next section). Comparing ESCs and fibroblasts (Figure 2F),
there are 118 fibroblast-specific monoallelic genes, 85 ESC-
specific monoallelic genes, and 53 genes monoallelic in
both cell types. We confirmed with Sanger sequencing
that allelic expression of the gene encoding apolipoprotein
E (ApoE) is biased only in fibroblasts but not in ESC
(Supplementary Figures 3A,B). And more interestingly,
among the 53 genes monoallelic in both cell types, nine
(∼17%) genes had different dominant alleles (with opposite
direction of divergence) in the two cell lines. Again, by
validating with Sanger sequencing (data not shown), two
genes were confirmed, one is Msln with dominant BL6 allele
in ESC and dominant SPR allele in fibroblasts. The other

is Epb41l3 which, in contrast, has an active SPR allele in
ESC and active BL6 allele in fibroblasts (Supplementary
Figures 3A,B).

Allelic Chromatin Accessibility Patterns
in F1 ESCs and Fibroblasts
To understand tissue-dependent ADE patterns on the level of
chromatin organization, we performed ATAC-seq experiments
on six samples obtained from cultured ESC (three biological
replicates) and fibroblasts (three biological replicates, see
section “Materials and Methods”). Both replicates showed good
correlation for ESCs and fibroblasts (Supplementary Figure 6).
After processing the sequencing data (Supplementary Table 3)
by following the pipeline described in Supplementary Figure 4,
we identified 47,498 and 55,699 reproducible peaks in ESC
and fibroblasts, respectively (Supplementary Table 4). When
checking allelic read counts in each peak, fibroblast presents 4,247
(∼8.9%, Supplementary Table 3) allelic divergent peaks (ADP)
which is nearly two times higher than ADPs in ESC (∼5.1%,
Supplementary Table 3). To further identify monoallelic peaks,
we calculated a d score (see section “Materials and Methods”)
as defined before (Xu et al., 2017) for each peak, and use
X-chromosomal peaks in fibroblast to determine the threshold of
d score as 0.35 (Figure 3A and section “Materials and Methods”)
for monoallelic peak identification. Based on this threshold,
we identified 2,699 (∼5.7%, Figure 3B) monoallelic peaks in
fibroblast, which is almost two times of the proportion in ESC
(1,712 peaks, ∼3.1%, Supplementary Figure 5A). In addition
to the differences in total number of monoallelic peaks between
the two cell types, the ratio of components (C57BL/6J-active
peaks and SPRET/EiJ-active peaks) is also different between ESC
and fibroblasts. Among the 1,712 monoallelic peaks in ESC,
62.5% of them are C57BL/6J-active peaks and only 37.5% are
SPRET/EiJ-active peaks, while in fibroblast, the two proportions
are 55.9 and 44.1%, respectively (Supplementary Table 3). Since
in the case of genetic-origin-dependent monoallelic expression
the divergences between alleles are caused by cis-variants, we
supposed that the SNV density in monoallelic peaks should be
greater than that of non-monoallelic peaks. Indeed, as shown
in Figure 3C, the median number of SNVs in monoallelic
peaks in fibroblast cells is 1.89 per 100 base pairs, which is
significantly higher than that in non-monoallelic peaks (with
1.56 median number of SNVs per 100 base pairs) in fibroblast.
This is also observed in ESC (Supplementary Figure 5B).
As shown in Figure 3D, most of the peaks are cell-type
specific, only 24.4% of the identified peaks are shared between
ESC and fibroblasts, while the others are either ESC-specific
(42.8%) or fibroblast-specific (32.9%). And the monoallelic
peaks are more likely to be found in cell-type specific peaks
(Figure 3E). For those shared peaks, we also compared their
divergence patterns between ESC and fibroblasts. Unlike the
patterns of allelic gene expression (shown in Figure 2E), the
bias of monoallelic peaks between tissues is much bigger
(Figure 3F). Only 52 ESC-dependent monoallelic peaks were
found, compared to 309 fibroblast-dependent monoallelic peaks.
Among the 79 monoallelic peaks in both cell types, only
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FIGURE 2 | Monoallelic gene expression is mostly tissue-dependent. (A) Tissue distribution of monoallelic expressed genes. Zero in x axis means those genes are
not MAEs in any of the analyzed tissues/cell types. (B) Replication rate of MAEs between tissues. Replication rates are measured by Jaccard Index (see section
“Materials and Methods”). (C) Transition between different regulatory patterns. (D) Genes are classified into six groups based on their monoallelic patterns across
tissues. G1 means the genes are non-divergent across tissues; G2 means the genes are divergent in more than one tissue but not monoallelic; G3 means the genes
are monoallelic in only one tissue; G4 means the genes are monoallelic in more than one tissue and always BL6 allele active; G5 means the genes are monoallelic in
more than one tissue and always SPR allele active; G6 means the genes are monoallelic in more than one tissue but with different active alleles. (E) dN/dS ratios of
genes in different classes. (F) Comparison of monoallelic gene expression patterns between ESCs and fibroblasts.
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FIGURE 3 | Quantification of allelic chromatin accessibility in ESCs and fibroblasts and cell-type dependent patterns. (A) d score of X-chromosome peaks in
fibroblast. The blue line describes the distribution of d score of X-escaped peaks, black line indicates the d score distribution of X-silenced peaks. (B) Monoallelic
peaks detected in fibroblast cells. (C) SNV density comparison between monoallelic peaks and non-monoallelic peaks. (D) Overlapped peaks between ESC and
fibroblast. (E) Monoallelic peaks in cell type specific peaks and in peaks shared by the two cell types. (F) Cell type-dependent patterns of monoallelic peaks.
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FIGURE 4 | Integrated patterns of allelic gene expression and ATAC-peaks. The heatmap presents the integrated allelic patterns of gene expression and
ATAC-peaks in its promoter regions (2.5 kb upstream and 0.5 kb downstream of TSS). Gene expression was classified into three classes: (1) Mono_BL6, means
genes monoallelically expressed in C57BL/6J allele; (2) Mono_SPR, means genes monoallelically expressed in SPRETUS allele; (3) Not_Mono, means the genes are
not monoallelic genes. ATAC-peaks are classified similarly with one more class indicated as “ambiguous” which means there are both “Mono_BL6” peaks and
“Mono_SPR” peaks in that gene. Numbers in each cell indicate the count of overlapped genes. The color filled in cells are scaled by log2 of count.

2 (∼2.5%) have different active alleles, which is much less than
on the transcriptional level (17%).

Integration of Allelic Gene Expression
and Allelic Assay for
Transposase-Accessible
Chromatin-Peaks
To see the relationship of allelic patterns between transcription
level (gene expression) and chromatin accessibility level (ATAC-
peak), we integrated the two kinds of data by annotating peaks
to promoter regions (2.5 kb upstream and 0.5 kb downstream
of TSS) of target genes. Among the 10,559 genes expressed
in fibroblasts, 6,802 (64.4%) contain at least one ATAC-peak
in the promoter region. Interestingly, only 14 genes had
consistent allelic patterns between gene expression and ATAC-
peaks (Figure 4). In ESC, such cases are even fewer (three
genes, Supplementary Figure 5C). This, on one hand, indicates
that elements at promoter regions have limited contributions
to allelic regulation of transcription, as reported before, distal
elements like enhancers could play an important role. On the
other hand, the allelic divergence at the transcription level
may be invisible at the chromatin level. This is possible if the
cis variants change the motif of one trans factor to another
one without affecting chromatin organization. A previous
study found that cis-regulatory mutations are more likely

to change the binding motif of one transcription factor to
that of another one than completely abolishing transcription
factor binding (Payne et al., 2018), suggesting the plausibility
of this mechanism.

DISCUSSION

In diploid eukaryotic organisms, the two alleles of each gene
are generally expressed at similar levels. However, monoallelic
gene expression occurs in various types and can be regulated
by differential mechanisms involving genetic, epigenetic
and/or stochastic elements. Classic monoallelic expression
of X-chromosome-linked genes, olfactory receptor genes
and developmentally imprinted genes has been documented
elsewhere (Cedar and Bergman, 2008; Li and Sasaki, 2011;
Schulz and Heard, 2013; Tucci et al., 2019). But the genetic-
origin-dependent case including its regulatory mechanisms
and especially evolutionary conservation among tissues is
less studied until now. Here, we applied allelic RNA-seq
and ATAC-seq to a highly polymorphic mouse hybrid F1
system crossed between the M. musculus strain C57BL/6J and
the M. spretus strain SPRET/EiJ which possess the largest
evolutionary distance to date in mouse to explore this case.
Our study provides a detailed portrait of allelic gene expression
including monoallelic genes, across multiple tissues/cell lines
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in a hybrid mouse model and allelic chromatin accessibility
patterns in two different cell lines. We focus on depicting
tissue-dependent allele-specific gene expression patterns and the
underlying regulatory mechanisms at the chromatin accessibility
layer. We observed pervasive tissue-dependent allele-specific
gene expression and chromatin accessibility patterns. Cortex
exhibited the fewest allele-specific expression differences while
fibroblasts showed the most, which is consistent with previous
results that the brain is one of the most conserved organs with
regards to expression patterns (Zheng-Bradley et al., 2010).
We identified six autosomal monoallelic genes with the active
allele being identical in all eight tissues, resembling the patterns
found for known imprinted genes and therefore likely to be
novel candidates of imprinted genes. In addition, we found 88
monoallelic genes with different active alleles between tissues,
which likely represent cases of genetic-origin-dependent MAE
rather than random MAE. As shown in multiple previous
studies, random monoallelic expression can be reliably detected
in clonal cell lines (Eckersley-Maslin et al., 2014; Gendre et al.,
2014). However, it is unlikely that the F1 hybrid tissues in our
study are derived from a single clonal cell line. If this were
the case, the X chromosome inactivation pattern would also
show a biased pattern. Here, it is not the case, as shown in
Supplementary Figure 7, the p scores (ranges from 0 to 1.0)
calculated as the proportion of BL6 reads (p score close to
1.0 or close 0 indicates allele-specific expression, see details
in section “Materials and Methods”) of the six F1 tissues are
close to 0.5. In addition, we also observed high consistency
between the two biological replicates for identified monoallelic
genes (Supplementary Table 5), which further supports the
mono allelic expression pattern was unlikely due to random
inactivation of one allele. In contrast to the F1 tissues, the F1
ES cells and fibroblasts used in this study are clonal cell lines,
and as expected we observe a p score in ES cells of about 0.5
(because X chromosome is not inactivated in ES cells) and a
p score in fibroblasts of nearly 1.0. Therefore, some random
monoallelic expression might be present in these two cell lines.
However, as the number of monoallelic genes detected in these
two cell lines is similar to that in the tissues (Figure 1C), we think
even here the monoallelic expression is largely non-random.
Our study is limited to identifying putative candidates for these
two classes of MAE, as clonally fixed random MAE can only
be detected in monoclonal cell lines, but not in any of the
solid tissues, and single-cell experiments would be needed for
detecting dynamic random MAE in the future. Interestingly,
we found that for autosomal genes the C57BL/6J (maternal)
allele is slightly more likely to be expressed at higher levels.
Future studies should address the question whether this is a
genome-wide genetic-origin-dependent (strain-specific) effect or
a parent-of-origin effect comparable to that found by Crowley
et al. (2015), who showed a global bias toward the paternal allele
in M. musculus subspecies hybrids, and whether the preference
of the maternal allele we found is unique to the interspecific
cross used here.

We also elucidated the possible causal relationship between
differential chromatin accessibility and gene expression. We
observed that fibroblast cells had more monoallelic ATAC

peaks than ESCs, suggesting ESCs are more conserved at
the chromatin layer between these two strains. This finding
agrees with the expectation that stronger selective constraints
act on gene regulation in this early developmental stage
than in fibroblasts. We also found that cell type dependent
patterns similar to those at the gene expression level were
also prominent at the chromatin layer. Additionally, C57BL/6J-
active peaks were more prevalent than SPRET/EiJ-active
peaks in both cell types, which corresponds to our data
on the gene expression level, implying a potential parent-of-
origin or strain-specific regulatory mechanism which needs
future exploration. Finally, the cis regulatory mechanisms can
partially account for the existence of monoallelic peaks, as
the SNP density is higher in monoallelic peaks for both
cell types. However, only a small part of monoallelic gene
expression patterns could be explained by allelic chromatin
structural patterns in promoter regions, suggesting that other
distal elements may play important roles in shaping the
patterns of allelic gene expression across tissues or that cis-
regulatory mutations can change gene expression without
affecting chromatin organization.

As reviewed in da Rocha and Gendrel (2019), DNA
methylation, one major driver controlling gene expression,
plays an important role in X chromosome inactivation and
imprinting, but it is not a common epigenetic signature at
loci with random monoallelic expression. Therefore, in the
future, methods combining chromatin, DNA, RNA, protein and
also single cell omics techniques will help to understand the
interplay of hypermethylation and other molecular mechanisms
for the regulation of different kinds of monoallelic expression,
including genetic-origin-dependent monoallelic expression, and
their relevance in speciation and phylogeny as well as
health and disease.
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