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Abstract

Ageing is associated with changes in the function of various organ systems. Changes in the cardiovascular system
affect both directly and indirectly the function in a variety of organs, including the brain, with consequent
neurological (motor and sensory performance) and cognitive impairments, as well as leading to the development
of various psychiatric diseases. Post-stroke depression (PSD) is among the most frequent neuropsychiatric
consequences of cerebral ischemia. This review discusses several animal models used for the study of PSD and
summarizes recent findings in the genomic profile of the ageing brain, which are associated with age-related
disorders in the elderly. Since stroke and depression are diseases with increased incidence in the elderly, great
clinical benefit may especially accrue from deciphering and targeting basic mechanisms underlying PSD. Finally, we
discuss the relationship between ageing, circadian rhythmicity and PSD.
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Review
Background
Depression in stroke survivors is of utmost clinical rele-
vance. It often takes a chronic course and is associated
with increased morbidity, mortality and a poorer func-
tional outcome. Despite the fact that a high proportion
of stroke patients develop mood symptoms, the
pathomechanisms underlying the development of post-
stroke depression (PSD) have so far received little atten-
tion from the field of neurobiology. Relevant animal
models have only sparsely been investigated. This re-
search gap becomes even more regrettable if one con-
siders the growing body of clinical evidence indicating a
beneficial effect of antidepressants and especially of
selective serotonin reuptake inhibitors (SSRIs), on post-
ischemic outcome. Since old age as such is also associ-
ated with an enhanced susceptibility to stroke along with
a poorer recovery from brain injury, it deserves to be
investigated as a key modulatory factor. If we cannot
prevent stroke, we shall try to alleviate its long-term
consequences. In particular, great clinical benefit may
accrue from deciphering and targeting basic mechanisms
underlying chronic PSD in aged animals. So far, the ma-
jority of experimental stroke studies have concentrated

heavily on acute stroke outcome, which, after all, repre-
sents only a snapshot of a complex sequence of events.
This limitation may have majorly contributed to the
conspicuous discrepancy between laboratory and clinical
findings that has been a recurrent theme in stroke re-
search in recent years (‘translational road block’).

Post-stroke depression & aging
Age is the most important risk factor for cerebral ische-
mia and recovery after stroke is significantly influenced
by age. A large spectrum of factors, like genetic, epigen-
etic or environmental factors, contributes to the aging
phenotype. One prospective population-based study esti-
mates that the incidence of mental illnesses like anxiety,
anhedonia and depression after stroke is about 35%
among the stroke survivals and the rate of disabilities
and cognitive defficits increasesed with age [1]. Depres-
sion after stroke runs a chronic course and is related to
increased morbidity and mortality [2-9]. More than that,
depression symptoms may even worsen during the
chronic phase after stroke [1,9,10]. Anxiety is associated
with physical disability may contribute to the develop-
ment of PSD. However, the higher prevalence of symp-
toms of depression in stroke patients as compared with
other patients with similar degree of disability can be a
good argument against psychological explanations of
PSD [9,11].
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Comorbidities such as hypertension, obesity, diabetes,
dyslipidemia and systemic inflammation increase the
probability of silent strokes. Microvascular changes and
silent strokes in vulnerable regions may lead to the
so-called ‘vascular depression’ [12,13]. Several genes such
as the genes encoding angiotensin-converting enzyme
(ACE), protein kinase C (PRKCH), apolipoprotein (a) [apo
(a)] and lipoprotein(a) [Lp(a)] may play an important role
in the ethiology of vascular depression [14-16].

Animal models of stroke and post-stroke depression: role
of aging
To study the biological processes underlying functional
recovery after stroke in ageing brain a variety of physio-
logically complex organisms like rats, mice or
nonhuman primates have been used. But, the rat model
is by far the most used in stroke research due to the
similarities with human brain neurovascular branching
and the available behavioural outcome measurements.
The most commonly used ischemic stroke models in
rodents are: middle cerebral artery occlusion (MCAO)
for transient or permanent occlusion and endothelin-1
model for transient occlusion. To study the rehabilita-
tion process after cerebral ischemia is important to
choose an appropriate animal model and to optimize
this model. Epidemiological studies reveal that human
ischemic stroke occurs frequently in late middle age
(50-70 years) than at older ages (over 70 years) [17,18].
Therefore it is highly recommened to use middle aged
rats for stroke studies. Consequently, animal studies
conducted on aged (18 month-old) rats demonstrated
that there was a decline in the ability of aged brain to
sustain plasticity-related process and poorer neurological
functional recovery after ischemia in older rats than in
younger animals [19-25]. Other research studies that
used middle-aged rats (12-18-month) showed that more
expressed alteration have been found compared with
young animals at structural and functional levels
[24,26-29]. Interestingly, there are significant differences
in brain response to injury in old subjects compared
with young ones. Therefore extrapolating the results
from young animals to aged humans could lead to erro-
neous conclusions.
The aged rodent model offers a useful tool to inves-

tigate mechanisms and treatments of ischemic stroke in
preclinical studies. The models in aged animals have to
be designed to create a reproducible lesion which
mimics the human pathophysiological changes, to be
minimally invasive, and to allow objective measurement
and analysis of tissue damage after cerebral ischemia. In
agreement with this concept, previous studies have
shown that mortality in post-stroke aged rate is higher
compared with young animals, most likely because the
lesion appears on a background already altered by

senescence itself. On the physiological level, functional
and cognitive decline are closely connected to morpho-
logical changes of the brain during the aging process.
Imaging techniques, positron emission tomography

(PET) or magnetic resonance imaging (MRI), have re-
vealed a significant reduction in the cerebral blood flow
(CBF), mostly in the cortex, which may be linked to
these morphological changes in the aged brain. Overall,
cerebrovascular dysfunction associated with metabolic
changes due to senescence increases the vulnerability of
brain to ischemic-hypoxic injuries like stroke. Cerebral
ischemia occurs frequently in elderly, and increased
vulnerability of the aged brain leads to unfavorable reco-
very of physical and cognitive functions. Although imaging
techniques have already been used in numerous studies in
animal models of stroke, few groups have applied MRI
methods to characterize and monitor the dynamics of
ischemic lesions in aged ischemic animals [30-33].
The aged brain displays a higher susceptibility to hyp-

oxia compared with young animals in the acute phase of
stroke [27,32]. On MRI images, aged ischemic rats
displayed more severe lesions, which were with similar
localizations, but higher incidence and more rapid appea-
rance than in the young rats [30,31]. With the use of
functional magnetic resonance imaging (fMRI) it was
demonstrated that patterns of bihemispheric reorgani-
zation (increase of the fMRI response in the ipsilateral
somatosensory cortex and bilateral thalamic activation)
after permanent MCAO in aged rats were the same as in
young animals, although the overall time course of reco-
very in aged rats was more prolonged than that in young
rats [32]. Studies using electrophysiological techniques,
and in particular electroencephalography (EEG), in ische-
mic aged animals are mostly lacking. EEG has been used
as a tool for verifying the success of the occlusion [30], for
identifying the effect of hypothermia on neuronal func-
tions [34].

Animal models of depression
Modelling psychiatric conditions like depression after
stroke in animal models is not trivial. The psychological
evaluation by clinicians is not available in animal models
and most of these models are validated only by behav-
ioural observation or by behavioural changes in response
to treatment. Therefore instead of trying to fully repli-
cate all the human symptoms of depression, we shall try
to uncover the underlying signalling pathways in animal
models of mood disorders that strongly meet the valida-
ting criteria including strong endophenotype similarities,
comparable etiology and the same treatment [35-37]. To
this end, various behavioral tests have been proposed to
investigate some of the central aspects of human-like
depression in rodents. For example, the forced swim test
in which rodends are exposed to water stress and are
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forced to swim [9,38] or the tail suspension test (animals
are suspended horizontaly by tail for a short period of
time) [39,40] are commonly used as behavioral para-
digms that quantify behavioral changes in a stressful
situation (behavioral despair). These tests measure the
immobility of depressed animals in despair situation and
have been pharmacologically validated using antidepres-
sant drugs that are already in human use [41,42].
Anhedonia (the loss of interest) is an important symp-

tom of depression that can be measured in rodents by a
decrease in sucrose consumption. Rodents normally
prefer sweet fluids like glucose or sucrose instead of
water. Quantifying consumption of sucrose is the most
used endpoint for assessing motivation and affective
state in rodends after repeated chronic stress exposure.
Also, this test can quantify reversal of this effects after
antidepressive drugs administration [9,43-45]. Some
studies report decreased sucrose consumption at 2 weeks
after transient focal ischemia in mice, suggesting a
hedonic deficit in MCAO animals [40,44-46].
Exposure to unpredictable chronic mild stress (CMS)

associated with isolation of animals after ischemia is
another way to study experimental PSD. It has been
shown that after cerebral ischemia, animals show
decreased locomotor activity in the open field test and
decreased sucrose consumption when exposed to CMS
paradigm for 18 days after surgery [9].

Biology of post-stroke depression: role of ageing
The high incidence rates of stroke patients that develop
mood symptoms (between 20-50%) justify the effort of
researchers to go further into the neurobiological mech-
anisms of disease [47-49]. Many studies suggest that
PSD is a consequence of brain lesions that are associated
with disruptions in synaptic transmission, changes in
signalling pathways and increased biological vulnerability
of the post-stroke aged brain [50-53]. Some other studies
reported that PSD is a consequence of specific brain
lesions and differences in the incidence of depression
between different brain areas have been reported [54,55].
In this context, left hemispheric cortical stroke, mainly
frontal lesions has been reported to be linked with an
increased risk for depression. However, there are still
controversial points of view regarding the relationship
between the area of the brain affected by stroke and
incidence of PSD.
On the other hand, the prevalence of the memory cog-

nitive impairment like dementia or depression is higher
in elderly after stroke. One question is that if cerebral
ischemia causes secondary degenerative changes in the
brain or that ongoing degenerative changes will be sim-
ply aggravated by stroke. From a psychological perspec-
tive, the severity of PSD is determined not only by
individual differences in emotional reactions to disease

(e.g. negative attitude) but also, by the severity of phy-
sical and cognitive impairment and by the absence of
familial and social support [56].
Many studies suggest that post-stroke vulnerability of

the brain can induce PSD and PSD is associated with
reduced recovery after stroke in stroke survival patients.
However, until now there is no clear evidence to support
the etiological mechanisms of PSD, which seems to be a
multifactorial disease of the ageing brain.
One important issue is how to distinguish the depres-

sive symptoms in patients in the early stages after stroke
from cognitive impairments due to neurodegeneration
prior to stroke and the ageing process itself. Some longi-
tudinal studies on post stroke patients showed that
chronic PSD is highly predictable if post stroke patients
are experiencing depression symptoms between 6 month
and 1 year after brain injury [57,58].
Most of these studies analyzed the risk of post-stroke

depression in relatively young people’s that have a job
and are not living alone. Also, in these studies, patients
with language problems like aphasia or neurodegenera-
tive disease like dementia where excluded. However,
since stroke occur frequently in people over 65, studies
on older patients with stroke and other age-related
comorbidities should be more relevant than studies on
young people. In this light, multi-therapeutic approach
of PSD in the recovery phase that include genetic, social
and psychological aspects have the greatest potential for
improving post-stroke recovery and the quality of life in
elderly post-stroke survivors.

Neurogenesis, cognitive decline & post-stroke depression
Age-related cognitive decline is often associated with
decreassed hippocampal neurogenesis and depression,
but relatively little is known about the biological signifi-
cance of neurogenesis in the ageing mammalian brain
for the development of depression. Two major hypoth-
eses have driven most of the studies on hippocampal
neurogenesis, namely (i) it plays a pivotal role in
hippocampus-dependent learning and memory [59,60]
and, (ii) it protects against anxiety and depression
[61,62]. However, mechanisms underlying the precise
role of neurogenesis remains controversial. For example,
genetic ablation of the cell cycle regulatory protein
cyclin D2 that results in virtual absence of newly born
neurons in the adult brain does not lead, surprisingly, to
appreciable learning and memory deficits [63-65]. Simi-
larly, the involvement of hippocampal neurogenesis in
depression and in the efficacy of antidepressive treat-
ments is also not fully understood.
One possible molecular mechanism underlying age-

related depression and decreased neurogenesis can be
due to an increased level of the dickkopf 1 homolog -
Xenopus laevis (Dkk1), that decreases Wnt signaling
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pathways and has been associated with a decline in hip-
pocampal neurogenesis [66].
Other mechanisms that can be involved in neurore-

covery are related to neurotrophin signaling pathway.
Neurotrophins are important players in early neuronal
gene response to injuries. The neutrophin-signaling
pathway activates extracellular-signal-regulated kinases
(ERK) pathway and nuclear transcription. Meier and col-
leagues demonstrated that hippocampal neuronal culture
treated with brain derived neurotrophic factor (BDNF)
promotes axonal guidance, modulate the synaptic func-
tion, stimulate neurite branching and is antagonized by
Ephrin (Eph) signaling [67,68]. Also, decreased levels of
BDNF, a key factor in the regulation of hippocampal
neurogenesis, seems to be associated with depression
and neurodegenerative disorders, but the mechanisms
underlying this association are still unknown [69].
Finally, Cui and colleagues reported that the combi-
nation therapy, simvastatin with human umbilical blood
cells, increased endogenous neurogenesis and cell plas-
ticity in the ischemic area via BDNF/TrkB signaling
pathway [70].
Even less is known about the relationship between

PSD and neurogenesis in the elderly. The level of hippo-
campal neurogenesis has been shown to decrease stead-
ily with aging [71]. Since aged animals might be both
more prone to develop a depressive phenotype [72] and
the aged brain is more sensitive to the deleterious effects
of ischemia [27,73], one could expect more severe PSD
symptoms in aged animals. Such an experimental model
of PSD, taking into account these influences of aging,
should be highly clinically relevant.
Depressive behavior in ischemic rats was accompanied

by reduced ischemia-evoked hippocampal neurogenesis
and this effect was reversed by citalopram adminis-
tration [9]. Using pharmacological interventions, the
involvement of serotonergic neurotransmission was then
further corroborated [74,75]. One study in non-human
primates, proved that the repeated separation stress is
associated with depression-like behavior (anhedonia)
and reduced hippocampal neurogenesis [76]. Also, reco-
very from stroke was shown to be associated with
growth factor-induced neurogenesis in SVZ as well as
exercise-induced neurogenesis in SGZ [77,78]. Similarly,
therapy with granulocyte colony stimulating factor
(G-CSF) enhanced neurogenesis, improved working
memory in the radial-arm maze test and in consequence
the survival capacity and functional outcome after
stroke [27]. However, these findings need further con-
firmation along with a clear demonstration of functional
significance in human diseases. We should take into
account that other age-associated comorbidities like
hypertension or obesity can negatively affect the hippo-
campal functions.

Genome profiling of mood disorders in the elderly
Transcriptional profiling is a usefull tool to identify
genetic pathways associated with mood symptoms in the
elderly. Most studies reporting the use of gene expres-
sion profiling to investigate rodent models of depression
focused on stress models and did not supply direct evi-
dence for a specific genomic signature in PSD depression.
Kang and collegues identified some synaptic-function-re-
lated genes that are connected with decreased in number
and function of synapse in a rat model of major depression.
These genes included: calmodulin 2 (Calm2), synapsin 1
(Syn1), tubulin beta 4 (Tubb4) a member of ras-related
protein Rab-4B (Rab4b). Also, increased expression of the
transcriptional repressor erythroid transcription factor/
GATA-binding factor 1 (GATA1) is responsible for down-
regulation of these synaptic-function-related genes [79].
In another study, genes related to human major

depression like serotonin receptor 2a gene (Htr2a),
neurotrophic tyrosine kinase receptor type 2 and 3 genes
(Ntrk2 and Ntrk3), corticotropin releasing hormone
receptor 1 (Crhr1) and corticotropin releasing hormone
(Crh) were differentially expressed in three animal
models of depression: acute treatment with reserpine,
olfactory bulbectomy and chronic treatment with cor-
ticosterone [9]. In addition, two new genes, complement
component 3 and fatty acid-binding protein 7, have
recently been described [80,81]. Similarly, then poly-
morphism of 5- hydroxytryptamine 2a receptor (Htr2a),
a postsynaptic target for serotonin signaling, has been
implicated in neuropsychiatric disorders [82]. In addi-
tion, increased functional activity of the amygdala in
response to negative stimuli appears to be a mood-
congruent phenomenon that is likely moderated by the
5-HT transporter gene (Slc6a4) promoter polymorphism
(5-Httlpr) [9]. Lohon and colleagues showed significant
gene-gene interaction between Slc6a4 and 5-Httlpr/
rs25531 in general anxiety disorder [83].
An oligodendrocyte/myelin-associated genes, 2’,3’-cyc-

lic nucleotide 3’-phosphodiesterase (CNP) was identified
to be associated with catatonia-depression syndrom in
the elderly. Using aged heterozygous null mutant mice
model of spontaneous catatonia, Hagemeyer and colle-
gues showed that the reduced expression of CNP is
accelerated by aging and is associated with neurodegen-
erative changes in the elderly [84].

Gene expression & mood disorders in elderly
In previous studies we have identified a number of
genes that are involved in neuropathic syndrome and
PSD signaling pathways in aged brain (e.g. 5- hydroxy-
tryptamine 2a receptor - Htr2b, prepronociceptin - Pnoc).
These genes could be pharmacological targets in a
multimodal therapy of stroke and stroke related dis-
eases [16].
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Using fosB-Null mice, Yutsudo and colleagues repor-
ted impaired neurogenesis and depressive behavior in
fosB-Null mice [85]. Intriguingly, FBJ murine osteosar-
coma viral oncogene homolog B (fosB) expression has
been associated with stem cell and neural progenitor
cells proliferation after cerebral ischemia in mammalian
central nervous system [86,87]. These studies suggest
the genomic signature is crucial for the evolution of
disease, but is the “genomic reprogramming” a future
powerful tool that can be exploited to improve the
neurorecovery after stroke? Some studies identified the
ciliary neurotrophic factor (Cntf ) receptor as a key
molecular factor that can inhibit neurogenesis in the
type B stem cells, but the mechanism is still unknown

[88,89]. Cntf is expressed only in central nervous system
where modulates the normal neurogenesis. Stimulation of
this factor can be a novel pharmaceutical strategy for
neurogenesis-dependent diseases like stroke and PSD [89].
Table 1 summarize all the specific genes involved in the
ethiology of depression and post-stroke depression.

Mood disorders, circadian rhythmicity and aging
Disturbances in the circadian rhythm may have dramatic
effects on our health. Changes in biological rhythm dis-
turbances precede and parallel the occurrence of mood
episodes of illness and have been proposed to play a
pathogenetic role in major depression and mania
[105-110]. The controlled administration of stimuli that

Table 1 Specific genes involved in the ethiology of depression and post-stroke depression.

Gene symbol Description Gene Function Gene
expression

Disease Human/animal
data

Ref.

Depression

GSK- β Synthase-kinase-3β Central regulator of
circadian rhythms

Up Depression Transgenic mice [90]

CLOCK Circadian Locomotor Output
Cycles Kaput

Central regulator of
circadian rhythms

SNP DepressionBipolar
disorders

Transgenic mice [91]

ARNTL
(BMAL1)

Aryl hydrocarbon receptor
nuclear translocator-like

PER1 activator SNP Sleep disorders Human sample, [92,93]

NPAS2 Neuronal PAS domain
protein 2

Part of a molecular
clock

SNP Mood disorders Human sample, [92,94]

Synapse-related genes in depression

CALM2 Calmodulin 2 Cytokinesis regulator Down Depression Animal model [89]

SYN1 Synuclein1 Synaptogenesis and
neurotransmitter release

Down Depression Animal model [89,95]

Depression in the elderly

PER2 Period circadian clock 2 Central regulator of
circadian rhythms

SNP Sleep disorders
Ageing brain

Human sample Animal
model of ageing

[92,93,96]

Up

PER3 Period circadian clock 3 Central regulator of
circadian rhythms

SNP Sleep disorders,
Aged brain

Human sample [93,97-99]

5-HTTLPR Serotonin transporter promotor Serotonin transporter SNP Depression in
the elderly

Human sample [100]

TUBB4 Tubulin, Beta 4A Class IVa Constituent of
microtubules

Down Depression Ageing Animal model [89,101]

Depression and recovery after stroke

BDNF Human brain-derived
neurotrophic factor (BDNF)

Growth factor in
the brain

SNP Depression
Recovery after injury

Human sample,
Animal model

[102,103]

SLC6A4 Solute Carrier Family 6
Member 4

Membrane protein
transporter of serotonin

SNP Depression Stroke
recovery

Human sample [9,83]

GATA1 GATA Binding Protein 1 Transcription factors Upregulation Depression Stroke
recovery

Animal model [104]

HTR2B 5-Hydroxytryptamine
(Serotonin) Receptor 2B

Serotonin receptor Upregulation Poststroke
depression in
elderly

Animal model [16,34]

PNOC Prepronociceptin Opioid receptor Downregulation Poststroke
depression in
elderly

Animal model [16,34]
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can directly act on the clock, namely light and manipula-
tions of the sleep-wake rhythm, has established high effi-
cacy in the treatment of mood episodes, also in drug
resistant patients. Effects of Total Sleep Deprivation and
Light Therapy on the phase of biological rhythms could
be part of its mechanism of action.
To understand the therapeutic action of these mood

stabilizing drugs as well as antidepressants, investigators
have recently begun to examine their effects on intra-
cellular signaling pathways that regulate clock gene ex-
pression. Yang and collegues [111] utilised an ex vivo
approach to examine circadian rhythms in clock gene
expression profiles in fibroblasts either obtained from
bipolar disorder patients or healthy controls, and report
that gene encoding for a basic helix-loop-PAS domain
(bHLH-PAS domain) transcription factor (BMAL1),
period circadian protein homolog 1 (PER1), period circa-
dian protein homolog 1 (PER2), nuclear receptor subfa-
mily 1, group D, member 1 (REV-ERB- α) and the clock
controlled gene, D Site Of Albumin Promoter (Albumin
D-Box) Binding Protein (DBP), all tended towards reduced
amplitudes of circadian oscillation in bipolar disorder.
Assessing the impact of agomelatine on depressed

bipolar patients [112], while measuring their circadian
rhythms, may therefore help to further precise if it is
through the restoration of circadian rhythms that agome-
latine get treatment reponse (assessed by actimetry), and
help to pinpoint which genes expression are being spe-
cifically modified (from fibroblasts). Diurnal rodents to
decipher the relationship between circadian rhythms and
depression. One of the major obstacles in the deve-
lopent of appropriate models for circadian rhythm
disturbances-related psychiatric diseases may arise from
the fact that the standard animals used in neuropsychi-
atric research are nocturnal rodents. Despite of the
extraordinary advancement in our understanding of the
circadian clock mechanism, it is still unclear how are
the temporal signals from the clock translated into ac-
tivity patterns, and how do they differ in diurnal and
nocturnal mammals.
Nevertheless, it is clear that some fundamental differ-

ences exist between nocturnal and diurnal mammals which
may be crucial for the study of circadian rhythms related
diseases [113-115]. For example much like humans, diurnal
species are active when melatonin levels are low, while
nocturnal mammals are active when melatonin levels are
high. Another important component of the circadian sys-
tem is the masking effect of light. Specifically, light in-
creases activity in diurnal mammals (positive masking) and
suppresses it in nocturnal ones (negative masking), while
darkness acts in the opposite ways [116,117]. Therefore we
suggest that using diurnal animals to decipher the molecu-
lar mechanisms underyling the relationship between circa-
dian rhythms and affective behavior [118].

Circadian rhythms display an unregular pattern with
aging manifested by alteration of sleep quality and cog-
nitive performance [119,120]. Hermannn and Bassetti
[121] showed that the alterations of the sleep-wake cycle
like hypersomnia or excessive daytime sleepiness occur
in 10%-50% of all stroke cases and are associated with
negative long-therm clinical outcome. Also, Ramar and
Surani [122] showed that the circadian rhythm dis-
orders could increase the risk of stroke. But, if dis-
turbances in the circadian rhythm are a risk factor or a
consequence of ischemic stroke in the elderly remains
to be clarified.
Some studies showed that one mechanism that con-

tributes to increased risk of depression is the decrease in
the synthesis of N-acetylserotonin with ageing [123].
Since N-acetylserotonin activates TrkB signaling path-
way in a circadian fashion (higher in the night and lower
during the day) via TrkB receptor, and has antidepres-
sant effects [124] it has been hypothesized that distur-
bances in the circadian rhythms may cause psychiatric
disorders. For example, Bunney and colleague showed
that an altered circadian function and altered expression
of the central circadian clock genes, BMAL1/CLOCK
(Npas2) in mood disorders [125]. Also, Circadian Loco-
motor Output Cycles Kaput (CLOCK) genes are strongly
involved in the circadian rhythm and these are closely
related with external factors [126]. Therefore dysfunc-
tions of circadian time regulatory mechanisms in the
aged brain may underlie the etiology of PSD in the
elderly. The effect of circadian rhythm on PSD outcome
in the elderly is still an unexplored field.

Therapy of post-stroke depression
Norepinephrine (NE), serotonin (5-HT), and dopamine
(DA) overlap in the brain and all three transmitters are
implicated in the symptoms of depression Depressive
symptoms may result from dysfunction of any or all of the
monoamine neurotransmitter systems. The effects of NE,
5-HT and DA overlap in the brain and all three transmit-
ters are implicated in the symptoms of depression. Because
these monoamine transporters (MATs) are important regu-
lators of the extracellular neurotransmitter concentration,
mouse gene knockouts of serotonin transporter (SERT),
the noradrenaline transporter (NAT) and also the dopa-
mine transporter (DAT) located in the plasma membrane
of corresponding neurons provide interesting models for
possible effects of chronic antidepressant treatments.
Inhibition of neurotransmitter reuptake by drugs acting at
SERT, NET and/or DAT can produce antidepressant effects
[127,128].
The mechanism of PSD was suggested to involve mul-

tiple pathways, like immune activation, hypoxia, apoptosis
and necrosis of neuronal or glial cells or hyperactivation
of the hypothalamic-pituitary-adrenal axis. Many studies
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reported different therapeutic strategies designed to im-
prove the PSD outcome. Of these, cortisol-lowering ther-
apies and increases of neurotropic factors like BDNF
were reported to be novel possible therapeutic strategy
for PSD [129].
In addition, a growing body of evidence indicate a bene-

ficial effect of antidepressants and especially of SSRIs on
postischemic outcome [9]. Antidepressants may also exert
direct actions on the brain, providing neuroprotection and
promoting brain plasticity and neurogenesis.
Antidepressants treatment initiated soon after stroke in

non-depressed post-stroke patients may prevent the later
PSD but the time window of treatment remains to be opti-
mized [130]. A number of studies have also reported
beneficial effects of antidepressant pharmacotherapy on
long-term functional outcome after stroke including acti-
vities of daily living as well as cognitive functioning
[9,131-135]. Other in vivo and in vitro studies have shown
that fluoxetine and paroxetine which are the most com-
monly prescribed antidepressants, prevented degeneration
of nigrostriatal dopaminergic neurons. These drugs rever-
sed the hypoactivation found in the primary motor cortex
of patients [136] and the increased activation was cor-
related with improved performance after drug intake and
repression of proinflammatory markers [9]. These results
remain, however, to be validated in large clinical trials of
stroke patients.

Conclusions
In conclusion, depression is the most frequent neuro-
psychiatric disease of brain ischemia, affecting up to 35%
of all such patients. PSD is associated with negative
outcome of functional recovery, cognition and social
reintegration of stroke patients. During de past decade,
significant efforts have been made to establish an effi-
cient treatment of PSD in the elderly. So far, preclinical
and translational research on PSD is largely lacking. The
implementation and characterization of suitable animal
models is clearly a major prerequisite for deeper insights
into the biological basis of post-stroke mood disturbances
and may also pave the way for the discovery of novel
therapeutic targets. Nevertheless it is unlikely that mono-
therapies will provide a cure for PSD. Rather multithe-
rapeutic strategies should be at the focus of future clinical
trials conducted on PSD and mood disorders patients
without cerebral ischemia that show the same clinical
profile. In this light, future research is needed to identify
the molecular mechanism of disease and to establish
the pathways that are modulated by antidepressant
drugs leading to a better cognitive recovery in the elderly
patients.
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