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ABSTRACT

PolySearch2 (http://polysearch.ca) is an online text-
mining system for identifying relationships between
biomedical entities such as human diseases, genes,
SNPs, proteins, drugs, metabolites, toxins, metabolic
pathways, organs, tissues, subcellular organelles,
positive health effects, negative health effects, drug
actions, Gene Ontology terms, MeSH terms, ICD-
10 medical codes, biological taxonomies and chem-
ical taxonomies. PolySearch2 supports a general-
ized ‘Given X, find all associated Ys’ query, where
X and Y can be selected from the aforementioned
biomedical entities. An example query might be:
‘Find all diseases associated with Bisphenol A’. To
find its answers, PolySearch2 searches for associa-
tions against comprehensive collections of free-text
collections, including local versions of MEDLINE ab-
stracts, PubMed Central full-text articles, Wikipedia
full-text articles and US Patent application abstracts.
PolySearch2 also searches 14 widely used, text-rich
biological databases such as UniProt, DrugBank and
Human Metabolome Database to improve its accu-
racy and coverage. PolySearch2 maintains an exten-
sive thesaurus of biological terms and exploits the
latest search engine technology to rapidly retrieve
relevant articles and databases records. PolySearch2
also generates, ranks and annotates associative can-
didates and present results with relevancy statistics
and highlighted key sentences to facilitate user in-
terpretation.

INTRODUCTION

Keeping pace with the rapidly growing body of biomedi-
cal literature is proving to be almost impossible. According
to a study by Baasiri et al. (1) a researcher would have to

scan 130 different journals and read 27 papers per day to
follow a single disease, such as breast cancer. A more re-
cent study by Lu (2) showed that the total number of refer-
ences in MEDLINE, a central repository for scientific arti-
cles in the biomedical domain, now exceeds 25 million and
is growing at more than 4% each year. It is also evident that
a considerable amount of useful biological or biomedical
knowledge is essentially buried in the form of free text, wait-
ing to be found and transformed into more accessible for-
mats. Swanson referred to such phenomena as ‘undiscov-
ered public knowledge’ (3). The enormous challenges asso-
ciated with keeping up or digging through this undiscov-
ered public knowledge, especially in the area of biomedi-
cal knowledge, has led to the development of a number of
text-mining tools aimed at supporting biomedical text ex-
traction, fact finding and text summarization. Some of the
better-known or more widely used tools include EBIMed
(4), CiteXplore (5) and GoPubMed (6). Their intent has
been to help life science researchers keep pace with the
exploding quantity of scientific literature and to facilitate
the discovery or re-discovery of important facts or unex-
pected associations. The latter task of ‘association discov-
ery’ is of particular interest and is typified by queries such
as ‘Find all genes that are associated with given disease’
or ‘Find all drugs that target a specific protein’ or ‘Find
all toxins that damage a specific tissue’. These are queries
that are either not easily performed or impossible to per-
form through a regular PubMed search. To address this task
of association discovery we developed a relationship or as-
sociation mining tool called PolySearch (7) (available on-
line at http://wishart.biology.ualberta.ca/polysearch/). Pol-
ySearch was one of the first web-enabled text-mining tools
to support comprehensive and associative text searches of
PubMed abstracts. Specifically the original version of Poly-
Search supports ‘Given X, find all associated Y’s’ types of
queries, where X and Y are biomedical terms pertaining to
human health and biology. X’s can be genes, SNPs, proteins,
diseases, drugs, metabolites, pathways, tissues, organs, and
sub-cellular organelles or structures, or a general text key-
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word; while Y’s can be any or all types mentioned above.
PolySearch’s search strategy is based on a critical assump-
tion that the greater the frequency with which X and Y as-
sociation occurs within a collection of sentences or database
records, the more significant the association is likely to be.
For example, if Bisphenol A (BPA) is mentioned 615 times
in PubMed as being associated with breast cancer, and only
8 times being associated with colon cancer, then one is more
likely to have higher confidence in the potential BPA-breast
cancer association over the BPA-colon cancer association.

PolySearch has proven to be both popular and effec-
tive with >20 000 users and >150 citations. It has also
served as an important text-mining and annotation system
for the curation of a number of metabolomics databases
including DrugBank (8), Human Metabolome Database
(HMDB) (9), T3DB (10), YMDB (11), and ECMDB
(12). PolySearch has also been used to assist in disease–
gene discovery (13,14), protein–protein interaction stud-
ies (15,16), microarray data analysis (17), metabolome an-
notation (9,11,12,18), biomarker discovery (19), as well
as in building and assessing other biomedical text-mining
tools (20,21). PolySearch has also been featured in many
published biomedical text-mining surveys and tutorials
(2,13,22). However, a key limitation with PolySearch has
been the long search times (2–3 min), its limited synonym
set (thesauri) and its relatively small number of search-
able databases. Indeed, since its introduction in 2008 many
other searchable databases and electronic free-text collec-
tions have become available and many technological im-
provements in web interface design, text searching and text
mining have taken place. Likewise, many PolySearch users
have requested more search options such as MeSH terms,
adverse health effects, animal taxonomies, medical terms,
Gene Ontology and chemical ontology terms. In response
to these requests and many ongoing technical developments
we have created a second, much improved version of Pol-
ySearch (called PolySearch2). This faster (up to 25X) and
much improved version now has a far more robust underly-
ing framework. It also includes a much larger collection of
databases (20 versus 7), search terms pairs (308 versus 66),
thesauri (20 versus 9), terms (1 131 328 versus 57 706) and
synonyms (2 848 936 versus 353 862) as well as a substan-
tially improved and modernized interface and its underly-
ing search algorithms. We have also upgraded the physical
server to further improve its performance. A complete de-
scription of the new, updated PolySearch2 server follows.

Improvements and enhancements in PolySearch2

PolySearch2 (http://polysearch.ca) features a number of im-
provements and enhancements including: (i) algorithmic
improvements, (ii) an improved graphical interface and
modernized web technology implementation, (iii) signifi-
cant database and text search enhancements (iv) substan-
tially expanded synonym sets and thesaurus types, and (v)
improved caching and updating. These changes have also
led to substantial performance improvements relative to
the earlier version of PolySearch. Details regarding these
changes and improvements are described below.

Algorithmic improvements

PolySearch2 incorporates a number of algorithmic im-
provements aimed at strengthening the scoring, ranking and
selection of association term candidates. These include: (i)
a new ‘tightness measure’ to further discriminate associa-
tion patterns, (ii) a ‘weight boost’ for database records to
favour explicit database associations over free-text articles,
(iii) a larger collection of system filter words and (iv) a filter
to remove borderline associations.

PolySearch2 now uses a ‘tightness measure’ to reward
more proximal word co-occurrences and penalize more dis-
tant word co-occurrences. Just as in the original version,
PolySearch2 assigns relevant sentences into four categories
(R1 [best], R2, R3 and R4 [worst]) based on a relevancy
score as derived from the search query and the matched
co-occurrence patterns. However, PolySearch2 now mea-
sures the word span between matched co-occurrence pat-
terns found in a relevant sentence. In particular, it assigns
higher relevancy scores to tighter patterns with fewer words
separating the query term and target term(s), and lower rel-
evancy scores to more relaxed patterns with a larger word
span between the query term and the target term(s). An ex-
ample R1 sentence with a tight co-occurrence pattern could
be ‘Exposure to bisphenol A (BPA) increases the risk of
breast neoplasms’, while an example R1 sentence with re-
laxed co-occurrence pattern could be ‘Bisphenol A may play
a role in gene regulation pathways that are potentially re-
lated to the onset and development of breast cancer’. We
found this tightness measure improves the scoring of co-
occurrences and enhances PolySearch2’s ability to distin-
guish genuine associations from incidental co-occurrences
that arise by chance.

Unlike the original version of PolySearch, PolySearch2
now assigns greater weight to relevant database records
than free-text articles. It has been previously shown (7) that
including database records in the search process consis-
tently improves association accuracy. Generally, database
records contain high quality, well-structured and carefully
curated knowledge whereas free-text articles generally con-
tain more ambiguous, implicit knowledge. Therefore, it
stands to reason that database records should be assigned
higher credibility than text articles. However, given the
shear volume of biomedical publications and the relatively
small number of high-quality biomedical databases, one is
more likely to find relevant free-text articles than database
records. To counter this bias, PolySearch2 applies an empir-
ically determined ‘weight boost’ to the information it finds
in database records and assigns greater relevancy scores to
relevant database records than free-text articles. The ‘weight
boost’ reflects the difference in credibility associated with
database records compared to sentences in free-text articles.

PolySearch2 also incorporates a more extensive collec-
tion of ‘system filter’ words than the original version of the
program (29 718 filter words versus 7011 filter words). In
particular, PolySearch2 now recognizes co-occurrence pat-
terns more consistently thanks to this larger, more extensive
collection of filter words. System filter words are essentially
words that signify a strong association. For example, the
word ‘catalyzes’ in ‘Enzyme X catalyzes reaction Y’ indi-
cates a strong association between Enzyme X and reaction
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Y. The new and improved set of filter words were initially
mined from the entire collection of MEDLINE abstracts
using Natural Language Processing techniques. In creating
PolySearch2’s list of system filter words, we tagged the oc-
currence of all biomedical entities in the current collection
of MEDLINE abstracts, extracted text flanking each pair
of co-occurrence entities and classified the flanking text ac-
cording to the co-occurring entity types. We then built N-
gram models for common verbs, adjectives, adverbs and
phrases present in the flanking text for each pair of co-
occurrence entity types. The list was carefully assessed and
manually curated to produce the final filter word set. This
collection of system filter words helps PolySearch2 recog-
nize strong associations from mere co-occurrences. It also
allows it to perform consistently better at recognizing term
associations than the original version of PolySearch.

The final algorithmic enhancement to PolySearch2 in-
volved the application of a more stringent cut-off to boost
precision at the cost of sacrificing a small degree of recall
(i.e. the precision-recall trade-off). Associations discovered
in PolySearch2 are ranked and sorted using Z-scores calcu-
lated from PolySearch2’s raw relevancy score (see (7)). As-
sociations with average relevancy scores are assigned zero
Z-scores, as they represent borderline or marginal associ-
ations derived from a particular search. PolySearch2 now
removes associations with zero Z-scores to boost its preci-
sion. This is done at the risk of removing a small number
of possible genuine associations. For users concerned about
the emphasis of recall over precision in their results, Poly-
Search2 also provides an option to include borderline cases
(or ’zero Z-score’ associations).

Improved graphical interface and web implementation

PolySearch2 (http://polysearch.ca) features a completely re-
designed web interface. Figure 1 shows a screenshot mon-
tage of various pages from PolySearch2’s new web interface.
Figure 1A shows the query submission page where users can
initialize a search query. As with the original PolySearch,
PolySearch2 still supports a ‘Given X, find all associated
Y’s’ type of query. Users can initialize a search by selecting
the desired type of X (query term) and Y (target term) from
pull-down menus and enter a search query keyword. At this
point, user can submit a ‘Quick Search’ request or further
configure the search using ‘Advanced Options’ (Figure 1B).
Both of these features are new to PolySearch2. The Quick
Search option will direct PolySearch2 to search previously
computed cache results or to mine associations from the top
2000 relevant articles or database records across all text col-
lections and databases. In the Quick Search, PolySearch2
automatically generates a synonym list (from the Poly-
Search2 thesauri) and proceeds with its regular searching,
sorting, scoring, annotation and display (described in de-
tail in (7)). ‘Advanced Options’ (Figure 1B) offers a greater
degree of customizability to the search. For instance, users
can edit the automatically generated synonym list (from the
PolySearch2 thesaurus), edit custom filter words for identi-
fying association patterns, provide custom negation words
for filtering out sentences with negative associations, pro-
vide custom target terms to search, select or de-select source
text collections and databases, indicate the number of doc-

uments to search, permit the inclusion or exclusion of hits
with zero Z-scores (for higher recall) and/or provide an E-
mail address for notifications.

Once a search is completed, the user will be redirected to
a result overview page (Figure 1C) showing the associated
entities of the selected target category (or all categories if
the search is against ALL target categories). In Figure 1C,
a screenshot listing the diseases found to be associated with
the toxin BPA is shown. The resulting overview table is
sorted by Z-scores in descending order, and can be sorted
according to values in a certain column by clicking on the
column header. The overview table lists the Z-score and Pol-
ySearch Relevancy Score (R-score) as well as the name and
synonyms for each associated entity. Users can review query
settings, browse through full tables in a printable format or
download their results in JSON format by clicking the ap-
propriate links on this page. Clicking on the ‘Details’ button
on each row takes users to a detailed result page (Figure 1D)
showing the supporting evidence in colour-coded and hy-
perlinked sentences from each relevant article in each text
collection or biomedical database. For results with MED-
LINE abstracts or PubMed Central articles, there is an ad-
ditional ‘Details’ button for each row. Clicking on this spe-
cific ‘Details’ button takes user to view the full MEDLINE
abstract in highlighted and hyperlinked text (Figure 1E). A
result navigation bar with light grey background just below
the headers of all result pages (Figure 1C–E) is provided for
users to quickly review and navigate within the result hier-
archy. These features are described in more detail on Poly-
Search2’s Documentation web page.

In addition to the substantially modified and updated
graphical interface, PolySearch2 also underwent a complete
upgrade and re-implementation of the web front-end us-
ing the latest web technology standards (HTML5 & Twit-
ter Bootstrap). We have also upgraded the underlying physi-
cal server to further improve its performance. PolySearch2’s
back-end API and front-end web server are deployed on
a dedicated tower server machine with eight cores operat-
ing at 1.4 GHz and multiple Solid-State Drives to facilitate
rapid document retrieval and analysis. A PolySearch2 API
for bulk text mining is also available upon request (with cer-
tain limitations). The architecture of PolySearch2 (see Fig-
ure 2) also allows it to be easily scaled to work across multi-
ple machines on a computer cluster. It can also be adapted
to a multi-computer cloud platform. PolySearch2 has been
tested on a variety of platforms and is compatible with most
common modern browsers (FireFox, Safari, Internet Ex-
plorer and Chrome) on both computer workstations and
mobile devices. PolySearch2’s analytical algorithm was im-
plemented in Python and it uses ElasticSearch (see below)
to manage document repository and cache results.

Database and text search enhancements

For PolySearch2 we completely re-implemented the un-
derlying text-mining framework based on the latest search
engine technology (ElasticSearch, http://www.elasticsearch.
org/) (see Figure 2). The utilization of ElasticSearch allowed
us to internally host all text collections and databases (to-
talling 165 Gigabytes) across an ElasticSearch cluster run-
ning multiple nodes, and efficiently retrieve relevant docu-
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Figure 1. A screenshot montage of PolySearch2’s query interface and result display showing (A) the PolySearch2 query submission form, (B) the advanced
option page for further query refinement, (C) the PolySearch2 result overview table and (D) the detailed result page showing the supporting evidence for a
single association.
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Figure 2. PolySearch2’s system overview showing the architecture of PolySearch2 web server, API and the underlying search engine.

ments. This has led to the ability to search against all the-
saurus types simultaneously leading to a significant perfor-
mance improvement and a nearly 25X acceleration in search
times.

In PolySearch2, we have significantly expanded the num-
ber of text collections and databases (by more than 80%)
to include a total of 6 free-text collections and 14 popu-
lar, text-rich bioinformatics databases. The latest release of
PolySearch2 searches against over 43 million articles cover-
ing MEDLINE abstracts, PubMed Central full-text articles,
Wikipedia full-text articles, US Patent abstracts, open ac-
cess textbooks from NCBI and MedlinePlus articles. We be-
lieve these free-text collections cover a wide range of human
knowledge from general information (Wikipedia, textbooks
and MedlinePlus), to more specific biomedical knowledge
(MEDLINE and PubMed Central), to technical innova-
tions (US Patent applications).

While free-text collections represent a body of implicit
knowledge, biomedical databases represent more specific or
more quantitative, high quality curated knowledge. As il-
lustrated in the original PolySearch paper (7), incorporat-
ing relevant database records into the search greatly en-
hances the resulting accuracy. To further improve on the

performance of PolySearch2, we incorporated DrugBank
(a popular drug and drug metabolite database) (8), HMDB
(a human metabolite database) (9), T3DB (a toxin and
toxin-target database) (10), YMDB (a yeast metabolome
database) (11), ECMDB (an Escherichia coli metabolome
database) (12), OMIM (Online Mendelian Inheritance in
Man) (23), the UniProt database (24), the Human Protein
Reference Database (25), DailyMed (FDA-approved drug
listing information database) (26), KEGG reactions and
pathways (27) and the MetaCyc (28) metabolic pathway
database. For more information on PolySearch2’s text col-
lections and databases sources, please consult PolySearch2’s
Documentation web pages.

Improved synonym collections

PolySearch2’s custom thesauri or synonym collections are
critical for the detection of biomedical terms mentioned
in its databases and text collections. The original version
of PolySearch had a thesaurus that consisted of nine cat-
egories with 57 706 terms, including names and/or syn-
onyms for genes/proteins, gene families, diseases, drugs,
metabolites, pathways, tissues, organs and sub-cellular or-
ganelles or structures. In PolySearch2, we have significantly
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expanded the number of thesauri from 9 to 20 categories,
and from just 57 706 terms to over 1.13 million term en-
tries with more than 2.84 million synonyms. PolySearch2’s
thesaurus collection now includes terms and synonyms for
toxins (10), food metabolites, biological taxonomies (26),
Gene Ontology terms (29), MeSH terms and MeSH com-
pounds (30), along with ICD-10 (International Classifica-
tion of Disease) medical codes (31).

PolySearch2’s gene/protein thesaurus and gene family
thesaurus were compiled from the latest release of UniProt
(24), Entrez Gene (26), the Human Genome Organisation
Gene Nomenclature Committee (32) and the Human Pro-
tein Reference Database (HPRD) (25). The disease the-
saurus was compiled from Online Mendelian Inheritance
in Man (OMIM) and the Unified Medical Language Sys-
tem (UMLS) (33). PolySearch2’s drug and metabolite the-
sauri were compiled from the latest version of DrugBank
(5) and HMDB (6), respectively. PolySearch2’s pathway the-
saurus was derived from names used for KEGG pathways
(27) while PolySearch2’s tissue thesaurus and organ the-
saurus were created manually and the sub-cellular local-
ization thesaurus was derived from the HPRD (25). Pol-
ySearch2’s toxin thesaurus and food metabolite thesaurus
were compiled from the latest version of the Toxic Expo-
some Database (T3DB) (10), and FooDB (http://foodb.ca/)
respectively. The biological taxonomy thesaurus was de-
rived from NCBI’s taxonomy archive (26). PolySearch2’s
thesauri also feature many manually curated terms and syn-
onyms for positive health effects, adverse health effects,
drug actions, drug effects and chemical taxonomies. All of
these thesauri may be searched via PolySearch2’s Thesaurus
page, and all may be downloaded via PolySearch2’s Down-
load page.

Caching and auto-updating

PolySearch2 now has significantly expanded support for
caching and automated update capability. Caching allows
PolySearch2 to archive the results of common queries made
by users so that if the same query is made by another user,
then only a trivial update (if any) needs to be performed over
the previously cached material. This leads to nearly instant
(1–2 s) results for many common associative queries. Pol-
ySearch2 also regularly queries itself with thesaurus terms
to increase its cache coverage far beyond what users may
commonly generate.

The original version of PolySearch accessed the content
of all (or nearly all) of its databases via the web. This ensured
absolute data currency for all its databases, but it slowed the
operation down substantially as all queries were subject to
problems due to heavy website traffic loads, intermittent in-
ternet outages, varying data download speeds and the ex-
tra time needed to download large datasets over the web.
Because PolySearch2 searches locally maintained databases
on a (very large) local disk, none of these download or web
access issues are encountered. However, moving to local
databases meant that the data currency problem had to be
addressed. Consequently, a number of custom scripts and
‘Cron’ jobs were developed so that new documents and new
database updates are automatically retrieved on a daily ba-
sis and indexed to ensure that PolySearch2’s text collections

always contain the documents or data that are no more than
24 h old.

Performance evaluation (PolySearch versus PolySearch2)

To assess the performance of PolySearch2, we conducted
a speed test comparing only the speed of the original Pol-
ySearch with PolySearch2 on various queries with equiv-
alent parameters. We then performed four evaluations to
compare their accuracy. Finally, three additional evalua-
tions were conducted to assess the performance of Poly-
Search2 on several novel search tasks. Performance statis-
tics including precision, recall, f-measure and accuracy are
presented in Table 1 for all seven evaluations. All seven
evaluation datasets are available on PolySearch2’s ‘Down-
load’ page. Table 1 also lists some of the key feature differ-
ences between PolySearch and PolySearch2. We also eval-
uated PolySearch2’s performance using the BioASQ (34)
Task 3B semantic indexing and question answering gold
standard training dataset and the results will be available on
the ‘Evaluation’ page on the PolySearch2 website by May
1st, 2015.

In the speed test, we calculated the speedup factor by
dividing the execution time of the old PolySearch by the
execution time of PolySearch2 on an identical set of 10
search queries. Both systems were located in the same net-
work and both were accessed over the Internet. The cache
look-up was disabled on both systems. The evaluation was
carried out with 10 arbitrary keywords having more than
10 000 potentially relevant documents. The keywords were
‘Autism, Acetaminophen, Influenza, Rheumatoid Arthri-
tis, Escherichia coli, Vitamin, Nucleus, p53, ATP, cancer’.
A typical PolySearch2 query with 2000 or fewer relevant
documents was completed in less than 20 s. On the other
hand, a typical PolySearch query was completed in 2–5 min.
We found that the time that both PolySearch and Poly-
Search2 take for keywords and search types is quite con-
sistent, so document size is actually the main factor in de-
termining overall execution time. Based on our data, Poly-
Search2 achieved a 5x to 25x speedup over PoySearch, de-
pending on the number of documents (from 500 to 10 000)
it analysed. In general, the more documents that are anal-
ysed, the greater the speedup, as PolySearch2’s initialization
overhead is amortized across a larger number of document
analyses.

Next we evaluated PolySearch2’s performance on four
gold standard datasets (Table 1, tests 1–4). Specifically
we evaluated PolySearch2’s performance in mining: (1)
disease–gene associations, (2) drug–gene associations, (3)
protein–protein interactions and (4) metabolite–gene asso-
ciations. PolySearch2’s f-measures in these tasks were 88.95,
89.75, 93.79 and 90.74, respectively. Compared to the orig-
inal PolySearch system, PolySearch2 achieved a 3–12% im-
provement in its association accuracy.

Finally, we evaluated PolySearch2’s performance on three
new gold standard datasets (Table 1, test 5–7). These tests
were designed to identify (5) adverse drug effect associa-
tions for identifying ’dangerous drugs’, (6) toxin–disease as-
sociations and (7) toxin–adverse effect associations. Perfor-
mance statistics for the legacy PolySearch are not available
for these datasets due to the novel search types and the size
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Table 1. Performance evaluation and feature comparison of PolySearch2 versus PolySearch

PolySearch PolySearch2

Prediction accuracy P R F Accu. P R F Accu.

#1 Disease/gene 0.6533 1.0000 0.7903 0.6533 0.8708 0.9091 0.8895 0.8525
#2 Drug/gene 0.7490 1.0000 0.8565 0.7490 0.9701 0.8351 0.8975 0.8571
#3 Protein/protein 0.8396 1.0000 0.9128 0.8396 0.9432 0.9326 0.9379 0.8962
#4 Metabolite/gene 0.7834 1.0000 0.8785 0.7834 0.9579 0.8619 0.9074 0.8614
#5 Drug/adverse effects - - - - 0.9233 0.8022 0.8585 0.7737
#6 Toxin/disease - - - - 0.9054 0.7864 0.8417 0.7810
#7 Toxin/adverse effects - - - - 0.8808 0.6822 0.7689 0.7854
Thesaurus categories Nine categories 20 categories
Thesaurus terms 57 706 terms with 353 862 synonyms 1 131 328 terms with 2 848 936 synonyms
Filter words 7011 29 718
Database numbers One free-text collection and six databases Six free-text collections and 14 databases
Number of search types 66 query combinations 308 query combinations
Analysis speed 6.5 documents per second 165 documents per second
Mobile friendly? No Yes

P stands for Precision, R stands for Recall, F stands for F-measure, and Accu. stands for accuracy. All evaluation datasets are available on PolySearch2’s
download page. Evaluation #1 assesses PolySearch2’s ability to identify disease–gene association. Evaluation #2 assesses PolySearch2’s ability to identify
drug–gene/protein associations. Evaluation #3 assesses PolySearch2’s ability to identify protein–protein interactions. Evaluation #4 assesses PolySearch2’s
metabolite–gene associations. Evaluation #5 assesses PolySearch2’s ability to identify drugs with significant adverse effects, or ‘dangerous drugs’. Evalua-
tion #6 assesses PolySearch2’s ability to identify toxin–disease association. Finally, evaluation #7 evaluates PolySearch2’s ability to identify toxin–adverse
effect associations. Analysis speed is calculated based on multiple runs on a query with 10 000 relevant documents.

of the testing dataset. PolySearch2’s f-measures on these
tests were 85.85, 84.17 and 76.89, respectively.

The above result shows that PolySearch2 is substantially
faster, more efficient and somewhat more accurate than
the original PolySearch system. The improvement in com-
putational efficiency is primarily due to the fact that we
internally host all text collections and databases in Poly-
Search2. In the original PolySearch all queries were con-
ducted through web-based APIs (which required querying
and downloading abstracts from NCBI) or screen scraping
on-line databases which is inherently slow. The automated
update function in PolySearch2 helps ensure the currency of
our corpus. The improvement in association accuracy can
be attributed to the tightness measure we introduced to fur-
ther discriminate matched association patterns, the assign-
ment of weight boosting to database records in contrast to
text articles and the imposition of more stringent cut-offs
to boost precision at the expense of recall (precision-recall
trade-off).

Limitations

No text-mining system is perfect and certainly PolySearch2
is not without some limitations. One notable limitation is
its inability to progressively or interactively adapt to specific
search needs. High-end search engines such as Google and
Yahoo monitor user feedback through surreptitious moni-
toring of user mouse clicks, web-page access and web-page
dwell times. This helps these search engines customize or
adapt to user preferences and needs. Ideally, PolySearch2
should be able to adapt to a search task by considering user
feedback on the quality of discovered associations. For ex-
ample, users may indicate certain associations to be false
positives and in subsequent runs PolySearch2 should ide-
ally learn from these negative examples and adapt itself to
match a user’s specific search needs and thereby achieve
higher accuracy. We are currently testing several feedback

systems and considering adding a ‘search satisfaction’ feed-
back system in future versions of PolySearch2. Another lim-
itation with PolySearch2 (and for most text-mining systems)
is its inability to self-assess its results and to extract specific
knowledge on its own. While PolySearch2 performs well
at extracting strong associations between biomedical enti-
ties it is not yet capable of assessing its discovered associa-
tions or extracted relations. For example PolySearch2 is able
to identify a potential association between BPA and breast
cancer but it is not able to infer a cause-and-effect relation-
ship from the discovered association. Part of this limitation
is due to the lack of training data to perform assessments
and to extract relationships. To address this issue, we are
hoping to use Machine learning (ML) and Natural Lan-
guage Processing (NLP) techniques to eventually convert
PolySearch2 from a simple association discovery tool to a
more general knowledge extraction tool. We are currently
working to incorporate this capability into future releases
of PolySearch2.

CONCLUSION

In this report we have described PolySearch2 (http://
polysearch.ca), a web server designed to facilitate data
mining and the semi-automated discovery of text associ-
ations between a wide range of biomedical entities. Poly-
Search2 supports ‘Given X, find all associated Ys’ type of
queries with X and Y from more than 20 types of biomed-
ical subject areas including human diseases, genes, SNPs,
proteins, drugs, metabolites, toxins, metabolic pathways,
organs, tissues, subcellular organelles, positive health ef-
fects, negative health effects, drug actions, Gene Ontology
terms, MeSH terms, ICD-10 medical codes, biological tax-
onomies and chemical taxonomies. Some of the most sig-
nificant improvements for PolySearch2 include a significant
modernization of its underlying text-mining framework; a
complete upgrade and re-implementation of the web inter-

http://polysearch.ca
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face using the latest web technology standards; a substan-
tially improved algorithm for improved scoring and rank-
ing of associations; significantly expanded custom thesauri
and term collections; an expanded number of text collec-
tions and databases (by >80%); along with significantly im-
proved support for caching and automated updating. Pol-
ySearch2 now offers greater speed (up to 25X faster), ac-
curacy (3–12% improvement on f-measures), customizabil-
ity (additional configurable options) and usability (mod-
ern and mobile-friendly web interface) than the original
version. We believe that with these recent enhancements,
PolySearch2 can better facilitate text-based discovery (and
re-discovery) of latent associations among many types of
biomedical entities and topics.
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