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Abstract

Two major transitions in animal evolution–the origins of multicellularity and bilaterality–correlate with major changes in
mitochondrial DNA (mtDNA) organization. Demosponges, the largest class in the phylum Porifera, underwent only the first
of these transitions and their mitochondrial genomes display a peculiar combination of ancestral and animal-specific
features. To get an insight into the evolution of mitochondrial genomes within the Demospongiae, we determined 17 new
mtDNA sequences from this group and analyzing them with five previously published sequences. Our analysis revealed that
all demosponge mtDNAs are 16- to 25-kbp circular molecules, containing 13–15 protein genes, 2 rRNA genes, and 2–27
tRNA genes. All but four pairs of sampled genomes had unique gene orders, with the number of shared gene boundaries
ranging from 1 to 41. Although most demosponge species displayed low rates of mitochondrial sequence evolution, a
significant acceleration in evolutionary rates occurred in the G1 group (orders Dendroceratida, Dictyoceratida, and
Verticillitida). Large variation in mtDNA organization was also observed within the G0 group (order Homosclerophorida)
including gene rearrangements, loss of tRNA genes, and the presence of two introns in Plakortis angulospiculatus. While
introns are rare in modern-day demosponge mtDNA, we inferred that at least one intron was present in cox1 of the
common ancestor of all demosponges. Our study uncovered an extensive mitochondrial genomic diversity within the
Demospongiae. Although all sampled mitochondrial genomes retained some ancestral features, including a minimally
modified genetic code, conserved structures of tRNA genes, and presence of multiple non-coding regions, they vary
considerably in their size, gene content, gene order, and the rates of sequence evolution. Some of the changes in
demosponge mtDNA, such as the loss of tRNA genes and the appearance of hairpin-containing repetitive elements,
occurred in parallel in several lineages and suggest general trends in demosponge mtDNA evolution.
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Introduction

Two major evolutionary events occurred early in animal history

and shaped the majority of animals, as we know them today: the

origin of multicellularity and the origin of bilateral symmetry. The

phylogenetic boundaries of these events are well defined among

extant taxa and correspond to the traditional groups Metazoa

(multicellular animals) and Bilateria (all animal phyla except

Porifera, Placozoa, Cnidaria, and Ctenophora). Multiple genomic

changes must have occurred in association with these morpho-

logical transitions, and current genome sequencing projects give us

the first glimpses into these changes [1,2].

Surprisingly, the transitions to multicellular and bilaterally

symmetrical animals also correlate with multiple changes in

mitochondrial genome architecture [3], although the main function

of mitochondria themselves remained unchanged. In particular, the

origin of animal multicellularity is associated with the loss of all

ribosomal protein genes from mtDNA, the disappearance of most

introns, and a large reduction in the amount of non-coding DNA [3].

The origin of bilaterality correlates with further compaction of

mtDNA, multiple changes in the genetic code and the associated

losses of some tRNA genes, along with the appearance of several

genetic novelties [4]. Obviously, the picture presented above is an

extrapolation of our knowledge of extant organisms into the ancient

past and as such can be affected by artifacts of ancestral state

reconstruction [5]. It is also based on a relatively limited sampling of

mitochondrial genomes, especially from non-bilaterian animals, and

additional data from Cnidaria, Ctenophora, Porifera, as well as the

closely related lineages of eukaryotes (e.g., Choanozoa) are essential to

support, expand, or refute it.

Class Demospongiae [6] is the largest (.85% of species) and most

morphologically diverse group in the phylum Porifera. It contains

sponges of various shapes and sizes that occupy both freshwater and

marine environments from shallow to abysmal depths and includes

such oddities as carnivorous sponges [7]. Within the extant

Demospongiae 14 orders are recognized that encompass 88

families, 500 genera and more than 8000 described species [8,9].

Although traditionally three subclasses have been distinguished, two

of them do not appear to be monophyletic. Instead, recent

molecular studies [10,11] provide strong support for five major

clades within the Demospongiae: Homoscleromorpha (G0) (Homo-

sclerophorida), Keratosa (G1) (Dictyoceratida+Dendroceratida),
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Myxospongiae (G2) (Chondrosida, Halisarcida, and Verongida),

Marine Haplosclerida (G3), and all the remaining groups (G4)

(Figure 1). Our knowledge of mtDNA diversity within the

demosponges has been rudimentary, with only five sequences

representing 3 of the 5 major groups available [12–15]. Previous

studies revealed that demosponge mtDNA resembles that of most

other animals in its compact organization, lack of introns, and well-

conserved gene order, but at the same time contains extra genes,

including atp9, trnI(cau), trnR(ucu), encodes bacterial-like ribosomal

and transfer RNAs, and uses a minimally derived genetic code in

protein synthesis [12]. Furthermore, additional unusual features

found in the mitochondrial genomes of Oscarella carmela [14] and

Amphimedon queenslandica [15] suggested that more mitochondrial

genomic diversity might exist among the demosponges. Here we

describe complete mitochondrial sequences from 17 species of

demosponges and analyze them with five previously published

mitochondrial genomes from this group that were available at the

time this study was conducted. Taken together, our sampling covers

all recognized order-level diversity within the Demospongiae and

provides the first analysis of general evolutionary trends in

mitochondrial genome organization for this group. Such a

comprehensive approach to the analysis of demosponge mtDNA

is needed because, at least in the fossil record, the evolution of

demosponges closely mirrors the evolution of all bilaterian animals

with the first demosponge fossils appearing in Precambrian deposits

and a major radiation occurring in the Lower Cambrian [16,17].

Results

Genome organization and nucleotide composition
All twenty-two analyzed mtDNAs of demosponges were

circular-mapping molecules, each containing a conserved set of

thirteen protein-coding and two rRNA genes identical to that

found in the mtDNA of most bilaterian animals [18]. In addition,

atp9, a gene for subunit 9 of ATP synthase was identified in

mtDNA of all demosponges except Amphimedon queenslandica [15],

and tatC, a gene for twin arginine translocase subunit C, was found

in Oscarella carmela [14]. The number of tRNA genes showed more

variation. Although 24 or 25 tRNA genes were present in most

analyzed demosponge mitochondrial genomes, as few as 2 and as

many as 27 tRNA genes were found in mitochondrial genomes of

some demosponge species (Figure 2, see below). In addition, a

sequence with a potential to form a tRNA-like structure, named

trnX, was located downstream of cox1 in Xestospongia muta and

Ephydatia muelleri mtDNA. Inferred tRNA(X) had a well-conserved

primary (65.3% nucleotide identity) and secondary structure,

except for the putative anticodon arm, which differed both in

length and in sequence between the two species.

The sampled demosponge mitochondrial genomes displayed

moderate size variation (16–26 kb; mean = 19.7 kb), most of

which could be attributed to the expansions of non-coding regions

usually caused by the presence of repetitive elements (Figure 2).

We detected no obvious phylogenetic pattern associated with this

variation, and no similarity in the sequence of repetitive elements

among different species. Most demosponge mitochondrial ge-

nomes were larger than their counterparts in bilaterian animals.

However, even the largest demosponge mitochondrial genomes

were dwarfed in comparison to those in the choanoflagellate

Monosiga brevicollis and the placozoan Trichoplax adhaerens, which

have a much higher percentage of non-coding DNA and, in the

case of M. brevicollis, an expanded gene set (Figure 2).

All analyzed mitochondrial genomes were relatively uniform in the

overall nucleotide composition (A+T content between 56–72%) and,

on average, displayed negative AT- and positive GC-skews of the

Figure 1. Phylogenetic analysis of demosponge relationships using mitochondrial genomic data. Posterior majority-rule consensus tree
obtained from the analysis of 2,558 aligned amino acid positions under the CAT+F+C model is shown. Other methods of phylogenetic reconstruction
produced similar topologies [11]. The numbers at each node are Bayesian posterior probabilities. Nodes with $95% support are marked with an
asterisk. For simplicity, non-demosponge clades were collapsed to triangles. The full tree is presented in Figure S1.
doi:10.1371/journal.pone.0002723.g001
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coding strand (Figure 3). The sense strand of protein and tRNA genes

had a negative AT-skew in all species, that of rRNA genes had a

positive AT-skew, while non-coding regions and 3rd codon positions

showed a large variation in AT-skew both among and within major

demosponge groups (Figure 3B). All types of sequences in

demosponge mtDNAs showed positive GC-skews except for the

tRNA genes in Igernella notabilis and the non-coding regions in

Ephydatia muelleri and Aplysina fistularis. The genomic values for AT-

and GC-skews correlated more strongly with those for protein genes

(R2 = 0.89 and 0.95, respectively) and rRNA genes (R2 = 0.61 and

0.93) than those for tRNA genes (R2 = 0.06 and 0.57) and non-coding

regions (R2 = 0.13 and 0.34), while genomic A+T content correlated

most strongly with that of rRNA genes (R2 = 0.89) comparing to non-

coding regions (R2 = 0.78), tRNA genes (R2 = 0.65), and protein

genes (R2 = 0.44). Interestingly, non-coding regions and 3rd codons

(that are usually assumed to experience similar mutational pressure)

Figure 2. The size (A) and gene content (B) of demosponge mtDNA. Demosponge species are subdivided into five major groups
(G0–G5). Selected species from other animal groups and the outgroup Monosiga brevicollis are included for comparison. Species are abbreviated as
following: mb, M. brevicollis; ta, Trichoplax adhaerens; ms, Metridium senile; hs, Homo sapiens; oc, Oscarella carmela; pa, Plakortis angulospiculatus; hl,
Hippospongia lachne; in, Igernella notabilis; vs, Vaceletia sp.; af, Aplysina fistularis; cn, Chondrilla nucula; hd, Halisarca dujardini; ac, Amphimedon
compressa; aq, Amphimedon queenslandica; cp, Callyspongia plicifera; xm, Xestospongia muta; as, Agelas schmidti; ck, Cinachyrella kuekenthali; ef,
Ectyoplasia ferox; em, Ephydatia muelleri; gn, Geodia neptuni; to, Topsentia ophiraphidites; ib, Iotrochota birotulata; pw, Ptilocaulis walpersi; ax, Axinella
corrugata; te, Tethya actinia.
doi:10.1371/journal.pone.0002723.g002
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showed little correlation in all three types of measurements (R2 values

are 0.05, 0.3 and 0.58 for A+T content, AT- and GC-skews,

respectively).

All but four pairs of sampled mitochondrial genomes had unique

gene orders, with the number of shared gene boundaries between

individual genomes ranging from 1 to 41. The extent of gene order

variation and the type of gene rearrangements differed among

major groups of demosponges (Figure 4). Gene arrangements of

protein and rRNA genes were generally well conserved within G2,

G3 and G4 and the predominant type of change within these groups

was tRNA transposition. By contrast, more rearrangements were

found within G0 (13% of shared boundaries between two sampled

genomes) as well as within G1 (59% of shared boundaries among

three genomes). Still, most of the rearrangements were transposi-

tions and only two inversions were found in the whole dataset (in

Oscarella carmela and Aplysina fistularis).

Protein coding genes
The protein coding genes identified in all 22 demosponge mtDNAs

showed 0.33–11.81% variation in size and 31.9–87.3% average

pairwise identity calculated based on inferred amino acid sequences

(Table S1). Atp8 was the least conserved gene both in terms of size

(11.81% variation), pairwise sequence identity among demosponges

(31.9% on average, range 8.5–85.7%), and genetic distance to

cnidarian homologues (Figure 5), followed by nad6. By contrast, atp9,

a gene encoding another subunit of the ATP-synthase complex, was

the most conserved, with an average pairwise identity of 87.3%

(range 76.9%–100%). Other genes were relatively uniform both in

their average pairwise identities across the demosponges and the

calculated rates of sequence evolution (Figure 5).

Codon usage in all analyzed demosponge mitochondrial genomes

was consistent with the minimally modified genetic code inferred in

our previous study [12]. All 22 mtDNAs share similar codon usage

bias with an effective number of codons equivalent to 41.863.5.

Synonymous codons ending with A or T were clearly preferred (56–

85% for individual species; 73.6% on average), while the codon

CGC was not used at all in mitochondrial coding sequences of 12

species. Tethya actinia displayed the most biased mitochondrial codon

usage with no AAC, CGC, CTC, CTG, and TGC codons present.

ATG was the most common initiation codon, followed by

GTG, which occurred frequently in nad6 (15 out of 22 species) and

occasionally in other genes (Table S2). The unusual start codon

ATT was inferred for cox2 in Hippospongia lachne, nad3 in Cinachyrella

kuekenthali and nad6 in Vaceletia sp. and a TGG start codon was

inferred for nad2 in Ephydatia muelleri, nad6 in Tethya actinia, Axinella

corrugata, Amphimedon queenslandica and tatC in Oscarella carmela (Table

S2). Such initiation codons are common in mitochondrial coding

sequences of bilaterian animals [4], but are rare, although not

unprecedented, in non-bilaterian animals and non-animal out-

groups [19,20]. The stop codons TAA and TAG were inferred for

all coding sequences except nad5 in Amphimedon compressa, Ectyoplasia

ferox, Ephydatia muelleri, and Callyspongia plicifera as well as nad4L in

Cinachyrella kuekenthali. No standard or abbreviated stop codons

were found for the latter genes and the mechanism of their

translational termination remains unclear.

Among the five major clades within the Demospongiae (G0–

G4), a significant acceleration in the rates of evolution was found

in G1, especially in the lineage leading to Vaceletia sp. and

Hippospongia lachne (Figure 5; RRTree P = 1.00E207). We tested

whether the G1 accelerated rates could have been the result of

positive selection as suggested by Bazin et al. [21] but did not find

significant support for this hypothesis by either the M1–M2 test in

PAML or by the synonymous vs. non-synonymous substitution

rate test with the DNASP program [22].

Introns in cox1
Although introns are common in mtDNA of two groups of non-

bilaterian animals, Cnidaria and Placozoa, only one mitochondrial

intron (in cox1 of Tetilla sp.) has been reported so far in

Figure 3. Nucleotide composition of mtDNA in five major
groups of demosponges. (A) A+T content; (B) AT-skew; (C) GC-skew.
The values are shown for the sense (non-template) strand of the whole
genome (genome), its concatenated genetic components (protein
genes, rRNA genes, and tRNA genes), 3rd codon positions in protein
genes, and for the corresponding strand in intergenic regions. Colored
bars indicate the mean value for each group of demosponges; error
bars show standard deviation.
doi:10.1371/journal.pone.0002723.g003
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Figure 4. Mitochondrial gene arrangements in demosponges. Protein and rRNA genes (larger boxes) are: atp6, 8-9–subunits 6, 8 and 9 of the
F0 ATPase, cox1-3–cytochrome c oxidase subunits 1-3, cob–apocytochrome b (cob), nad1-6 and nad4L–NADH dehydrogenase subunits 1-6 and 4L, rns
and rnl–small and large subunit rRNAs, tatC–twin-arginine translocase component C. tRNA genes (smaller boxes) are abbreviated using the one-letter
amino acid code. The two arginine, isoleucine, leucine, and serine tRNA genes are differentiated by subscripts with trnR(ucg) marked as R1, trnR(ucu)–
as R2, trnI(gau)–as I1, trnI(cau)–as I2, trnL(uag)–as L1, trnL(uaa) as L2, trnS(ucu)–as S1, and trnS(uga)–as S2. All genes are transcribed from left to right
except those underlined to indicate an opposite transcriptional orientation. Genes are not drawn to scale and intergenic regions are not shown.
doi:10.1371/journal.pone.0002723.g004
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demosponges [23]. Among the 22 demosponge mitochondrial

genomes analyzed for this study, we found two additional group I

introns, both of them in cox1 of Plakortis angulospiculatus. These

introns were 388 bp and 1118 bp in size (henceforth intron 1 and

2, respectively), and separated by only 9 nucleotides (3 codons) in

the gene. Intron 2 in P. angulospiculatus was found after position 726

in cox1, at the same location as the intron reported for Tetilla sp.

[23]. Intron 2 in P. angulospiculatus and its counterpart in Tetilla sp.

share 81.2% nucleotide sequence identity, have a similar

secondary structure, and both contain an ORF homologous to

LAGLIDADG-type homing endonuclease with identical LAGLI-

DADG motifs (LAGLIEGDG and LAGFLDADG). By contrast,

introns 1 and 2 in P. angulospiculatus share only 43.5% sequence

identity in the aligned overlap regions and intron 1 does not

contain any ORF.

Recently, group I introns highly similar to, and in the same

position as intron 2 in P. angulospiculatus and its homolog in Tetilla

sp. were reported in cox1 of 20 scleractinian corals [24].

Phylogenetic analysis of amino-acid sequences derived from

intronic LAGLIDADG ORFs in P. angulospiculatus, Tetilla sp.,

scleractinian corals, and several outgroup taxa grouped introns

found in Tetilla sp. and P. angulospiculatus with 72% bootstrap

support and placed them as a sister group to Scleractinian corals

with 100% bootstrap support (Figure S2). The results of this

analysis are consistent with the vertical evolution of this intron in

cnidarians and sponges and suggest that its sporadic presence

among sampled taxa is due to independent losses rather than the

horizontal intron transfer proposed earlier [23]. This inference is

reinforced by the observations that the genetic distance between

LAGLIDADG ORFs in P. angulospiculatus and Tetilla sp. is similar

to that between their host genes and that both ORFs contain a

TGA codon at the same position (data not shown). The latter

finding makes it highly unlikely that the two introns have been

transferred in parallel from the nucleus, because TGA signifies a

stop codon in cytoplasmic translation.

rRNA genes
Genes for the small and large subunit ribosomal RNAs (rns and

rnl) were located in close proximity of each other (separated by 1–3

tRNA genes) in most analyzed genomes, with the most common

gene order being +rns+trnG+trnV+rnl (Figure 4). The two exceptions

to this pattern were found in Igernella notabilis, where the two genes

were separated by atp9, and Oscarella carmela, where rnl and rns were

separated by multiple genes and had opposite transcriptional

orientations. The size of rns ranged between 828 (Hippospongia

lachne) and 1516 bp (Ephydatia muelleri), with the average size being

1224 bp. The size of rnl varied between 2166 (Hippospongia lachne)

and 3487 bp (Axinella corrugata), with the average size being 2589

bp. The size differences in rRNA genes were due to two factors.

First, some helices outside the core region of each rRNA were

shortened or lost in several lineages, especially G1 (Figure 6).

Second, unusual repetitive elements (see below) were inserted in

rRNA genes in several distantly related species, in particular

Axinella corrugata, Ephydatia muelleri, Igernella notabilis, and Vaceletia sp.

(Figure S3).

tRNA genes
Sampled demosponge mitochondrial genomes contained as few

as 2 and as many as 27 tRNA genes. The variation in the number

of tRNA genes was due to the loss of all but two mitochondrial

tRNA genes (trnM(cau) and trnW(uca)) in G1, partial losses of tRNA

genes in Agelas schmidti (at least one gene), Amphimedon queenslandica

(at least 7 genes), and Plakortis angulospiculatus (at least 18 genes), the

sporadic presence of trnM(cau)e among sampled species, and

duplication of trnT(ugu) and trnV(uac) in Oscarella carmela mtDNA.

Given that at least 24 species of tRNAs are needed for

mitochondrial translation in demosponges [12], we expect that

the loss of tRNA genes from mtDNA is compensated by the

import of required tRNAs from the cytoplasm.

In accord with our previous study [12], tRNA genes in all

studied demosponge mtDNA were well conserved in terms of size,

primary sequence and inferred secondary structure. All inferred

mt-tRNA structures had well conserved D- and T-loops (7–11 and

7 nucleotides in length, respectively) with a potential to form the

standard tertiary interactions G18-U55 and G19-C56. Variable or

semi-invariable nucleotide positions, and secondary and tertiary

interactions known for prokaryotic and nuclear tRNAs were also

well conserved (Figure 7). At the same time, an unusual A11-T24

pair in tRNAPro
UGG and an unusual G11-C24 pair in tRNA

Trp
UCA

were present among all sampled demosponges. The first of them is

characteristic for demosponges, glass sponges, and placozoans

[12,14], while the second–for all bilaterian animals [25]. The R11-

Y24 pair is otherwise a distinctive feature of bacterial, archaeal,

and organellar initiator tRNAMet
CAU that is strongly counter-

selected in elongator tRNAs [26].

Figure 5. Relative rates of evolution of individual species (A)
and individual genes (B). Rates are estimated by average genetic
distances to orthologous genes from four cnidarians. Each boxplot
represents data for 13 individual genes in (A) and 22 demosponge
species in (B). Lower horizontal bar, non-outlier smallest observation;
lower edge of rectangle, 25 percentile; central bar within rectangle,
median; upper edge of rectangle, 75 percentile; upper horizontal bar,
non-outlier largest observation; open circle, outlier.
doi:10.1371/journal.pone.0002723.g005
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Figure 7. Secondary structures and consensus sequences of demosponge mitochondrial tRNAs. The secondary structure of each type of
tRNAs was folded based on sequence and structure alignment. Nucleotides in uppercase letters indicate .90% sequence conservation, lowercase
letters indicate .75% sequence conservation, and the dots represent ,75% conservation.
doi:10.1371/journal.pone.0002723.g007
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Among individual tRNA genes, trnW(uca) had the most

conserved primary structure (84.9% pairwise sequence identity

on average) while trnS(uga) was the least conserved (66.7% identity

on average). The inferred gene for elongator tRNA(M) (trnM(cau)e)

that is present in 11 out of 22 analyzed genomes also displayed

high sequence conservation (average pairwise identity 79.6%), an

observation that suggests its intermittent occurrence among

sampled genomes is due to multiple losses rather than de novo

evolution through gene duplication and/or recruitment [e.g., 27].

Interestingly, the other gene for methionine tRNA (trnM(cau)f) is

more conserved among the species where trnM(cau)e is present,

than among species were it is absent (78.1% vs. 67.8% pairwise

identity on average).

Our previous analysis discovered several cases of tRNA gene

recruitment in Axinella corrugata [27]. The more expanded dataset

of demosponge mitochondrial tRNA genes assembled for this

study revealed several additional instances of tRNA gene

recruitment in demosponge mtDNA (to be described elsewhere).

Intergenic regions and repeats
The combined size of non-coding regions in the 22 demosponge

mtDNAs analyzed in this study varied from 371 bp in Geodia neptuni

to 6077 bp in Axinella corrugata or from 2 to 24% of the total

genome size. In contrast to bilaterian animals, the distribution of

non-coding nucleotides was more even in demosponge mtDNA,

with the largest intergenic region usually containing ,15%, and at

most 39% (in Iotrochota birotulata), of all non-coding nucleotides. We

found little conservation in the position of the largest intergenic

regions among the sampled genomes, even for the species that

share identical gene arrangements, such as Chondrilla nucula and

Halisarca dujardini, Geodia neptuni and Cinachyrella kuekenthali, and

Hippospongia lachne and Vaceletia sp. Furthermore, we detected little

sequence conservation either among individual regions within

each mtDNA or between identically located non-coding regions in

different species, except for the presence of repetitive elements in

some genomes, as described below.

Multiple repetitive elements were found in several analyzed

genomes. Repeats larger than 100 bp were found only in Vaceletia

sp., with the two biggest repetitive elements (229 bp) located in the

intergenic regions that flank nad2, while 20–100 bp repeats were

discovered in multiple species. The most abundant repeats were

found in Vaceletia sp., Igernella notabilis, Ephydatia muelleri, and Axinella

corrugata, where they have been located in most intergenic regions,

as well as in ribosomal RNA genes and even some protein coding

genes. The presence of repeated elements was very sporadic in

respect to phylogeny, with repeats often present/absent in closely

related species. Overall, repeats were very rare in sampled species

from G0, G2 and G3, but more common in G1 and G4.

Discussion

Our analysis of 22 complete mtDNA sequences representing all

14 orders of demosponges revealed both remarkable conservation

and also an extensive diversity in mitochondrial genome

organization within this group. Among the features shared among

all sampled demosponge mitochondrial genomes are compact

organization of the genetic material, similar gene content, well

conserved structures of encoded tRNAs, a minimally modified

genetic code for mitochondrial translation, and the absence of a

single large ‘‘control’’ region characteristic of mtDNA in bilaterian

animals. Genomic features that showed substantial variation

include the number of tRNA genes, rRNA structures, the

presence/absence of introns, and gene arrangements. In partic-

ular, two groups clearly stand out in our analysis with respect to

their genome organization: G0 (order Homosclerophorida) and

G1 (orders Dictyoceratida, Dendroceratida, and Verticillitida).

As reported previously, the mitochondrial genome of the

homosclerophorid Oscarella carmela contains 44 genes–the largest

complement of genes in animal mtDNA–including tatC, a gene for

subunit C of the twin arginine translocase that has not been found

in any other animal mtDNA, and genes for 27 tRNAs [14]. By

contrast, the mtDNA sequence of the homosclerophorid Plakortis

angulospiculatus determined for this study contains only 20 genes

and lacks tatC as well as 19 of the 25 tRNA genes typical for

demosponges. Other differences between these two genomes

include distinct gene arrangements (only 4 shared gene boundar-

ies) and the presence of two group I introns in P. angulospiculatus

cox1. Furthermore, the estimated genetic distances between these

two species are greater than those between many orders of

demosponges, indicating an ancient radiation and the presence of

extensive genetic diversity within this group.

Mitochondrial genomes of the three species within the G1

group are also unusual. These genomes lack all but two tRNA

genes (for methionine and tryptophan tRNAs)–a feature previously

associated with cnidarian mtDNA [28]. Furthermore, this is the

only group of demosponges where a significant acceleration in the

rates of mitochondrial sequence evolution has been detected.

There appears to be no causal connection between these two

observations, as the loss of all but two tRNA genes is shared by all

three species in the group, while the accelerated sequence

evolution is much more pronounced in Dictyoceratida and

Verticillitida. The retention of trnW(uca) and trnM(cau) as the only

tRNA genes in the genome supports our previous inference [29]

that these genes are difficult to replace because of the unique role

of their products in mitochondrial translation: tRNAMet
CAU is used

for the initiation of mitochondrial translation with formylmethio-

nine [30] while tRNA
Trp
UCA must translate the TGA in addition to

the TGG codons as tryptophan. The presence of such constraints

can cause a parallel genomic evolution in independent lineages.

An unusual mitochondrial genome has been previously reported

for the haplosclerid demosponge Amphimedon queenslandica [15].

This genome lacks atp9 and at least seven tRNA genes, contains

deletions in several protein coding genes, and displays accelerated

rates of sequence evolution in both protein and RNA genes. Our

analysis of three additional species from the same order,

Amphimedon compressa, Callyspongia plicifera, and Xestospongia muta,

found no similar features in the latter taxa. These results most

likely indicate that A. queenslandica mitochondrial genome has

undergone an unusual evolution and is a poor representative of the

G3 group, although incorporation of nuclear sequences, such as

nuclear Numts [31], in the mtDNA assembly cannot be ruled out.

Given that A. queenslandica has become a model system for the

study of demosponge biology, the evolution of its unusual mtDNA

should be investigated in more details.

Another interesting result that came out of this study is the

discovery of two group I introns in cox1 of P. angulospiculatus.

Several lines of evidence, including phylogenetic analysis, the

identical location in cox1, a similar extent of genetic divergence to

their host genes, and the presence of TGA codons at the same

position, support the vertical evolution of one of these introns from

the common ancestor shared not only with Tetilla sp. (order

Spirophorida), but also with scleractinian corals. This in turn

suggests that the absence of this intron in most demosponge

lineages is due to massive parallel loss. While examples of such

losses are well known in nuclear genomes [32–37], an interesting

question posed by this result is why mitochondrial introns are

retained so scarcely in demosponges but so commonly in

cnidarians?
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Finally, this study is interesting in what we did not find–any

structures and/or sequences potentially involved in the mainte-

nance and expression of mtDNA. Obviously, replication and

transcription initiation/termination signals do exist in these

genomes, but they were not detected by our comparative genomic

analysis. Further data collection and experimental work will be

essential to elucidate the mechanisms of these processes in

demosponge mitochondria.

Methods

Genome sequencing and phylogenetic analysis
Taxon sampling, DNA extraction, PCR amplification, and

sequencing were described in our previous article [11]. Phylogenetic

analysis of demosponge relationships was conducted with the

PhyloBayes program [38] as described previously [11], except that

mitochondrial sequences from several taxa (mostly cnidarians) have

been added: Agaricia humilis NC_008160, Anacropora matthai

NC_006898, Aphrocallistes vastus EU000309, Branchiostoma floridae

NC_000834, Capsaspora owczarzaki, Colpophyllia natans NC_008162,

Discosoma sp. CASIZ 168915 NC_008071, Hydra oligactis EU237491,

Montipora cactus NC_006902, Mussa angulosa NC_008163, Placozoan

sp. BZ2423 NC_008834, Placozoan sp. BZ49 NC_008833, Pocillopora

damicornis NC_009797, Porites porites NC_008166, Pseudopterogorgia

bipinnata NC_008157, Rhodactis sp. CASIZ 171755 NC_008158,

Seriatopora caliendrum NC_010245, Siderastrea radians NC_008167.

Annotation and analysis of coding sequences
We used flip (http://megasun.bch.umontreal.ca/ogmp/ogmpid.

html) to predict ORFs in assembled sequences; similarity searches in

local databases and in GenBank using FASTA [39] and NCBI

BLAST network service [40], respectively, to identify them. Protein-

coding genes were aligned with their homologues from other species

and their 59 and 39 ends inspected for alternative start and stop

codons. Inferred amino acid sequences of encoded proteins were

aligned with ProbCons [41] using default parameters. Genetic

distances between demosponges and four species of cnidarians

(Briareum asbestinum, Metridium senile, Montastraea annularis and Ricordea

florida) were calculated with the TREE-PUZZLE program [42], using

the mtREV matrix, estimated frequencies of amino acids and 8

gamma rate categories. Effective numbers of codons [43] were

calculated with the chips program within the EMBOSS package [44].

Annotation and analysis of RNA genes
Genes for small and large subunit ribosomal RNAs (rns and rnl,

respectively) were identified based on their similarity to homolo-

gous genes in other species, and their 59 and 39 ends were

predicted based on sequence and secondary structure conserva-

tion. The secondary structures of selected rRNA genes were

manually folded by analogy to published rRNA structures, and

drawn with the RnaViz 2 program [45].

Transfer RNA genes were identified by the tRNAscan-SE

program [46] and aligned manually in MacGDE 2.3 [47] using

their secondary structure as a guide. This alignment was used to

calculate sequence conservation at each position and average

pairwise identity values for individual tRNAs. For the latter

calculation we excluded all tRNAs from Plakortis angulospiculatus,

Amphimedon queenslandica and all species in G1, which encode

incomplete sets of tRNAs in their mtDNA.

Intronic sequences
We used intron prediction programs RNAweasel [48] and

Rfam [49] to search for introns in coding sequences. The exact

positions of two introns found in cox1 of Plakortis angulospiculatus

were adjusted based on cox1 alignments with homologous

sequences from other demosponges. The inferred amino acid

sequence of the large ORF found in one of the P. angulospiculatus

introns was aligned with the sequences of LAGLIDADG ORFs

analyzed by Rot et al. [23] and Fukami et al. [24] and used for a

phylogenetic analysis. We selected the best model for these ORFs

with the ProtTest program [50] and performed a maximum

likelihood search and bootstrap analysis in TREEFINDER [51],

using the WAG model of sequence evolution, estimated amino

acid frequencies and 4 gamma categories.

Intergenic regions and repeated sequences
Intergenic regions were extracted from each genome with the

PEPPER program (http://megasun.bch.umontreal.ca/ogmp/

ogmpid.html) and searched for similarity using FASTA. In

addition, we searched for interspersed identical repeats in

individual genomes using FINDREP (http://megasun.bch.

umontreal.ca/ogmp/ogmpid.html) with minimum repeat subse-

quence lengths of 20 bp and 100 bp respectively.
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