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Abstract: Prostate cancer (PCa) is a life-threatening heterogeneous malignancy of the urinary tract.
Due to the incidence of prostate cancer and the crucial need to elucidate its molecular mechanisms,
we searched for possible prognosis impactful genes in PCa using bioinformatics analysis. A script
in R language was used for the identification of Differentially Expressed Genes (DEGs) from the
GSE69223 dataset. The gene ontology (GO) of the DEGs and the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis were performed. A protein–protein interaction (PPI)
network was constructed using the STRING online database to identify hub genes. GEPIA and
UALCAN databases were utilized for survival analysis and expression validation, and 990 DEGs
(316 upregulated and 674 downregulated) were identified. The GO analysis was enriched mainly in
the “collagen-containing extracellular matrix”, and the KEGG pathway analysis was enriched mainly
in “focal adhesion”. The downregulation of neurotrophic receptor tyrosine kinase 1 (NTRK1) was
associated with a poor prognosis of PCa and had a significant positive correlation with infiltrating
levels of immune cells. We acquired a collection of pathways related to primary PCa, and our findings
invite the further exploration of NTRK1 as a biomarker for early diagnosis and prognosis, and as a
future potential molecular therapeutic target for PCa.

Keywords: prostate cancer; systems biology; bioinformatics; gene network analysis; biomarker

1. Introduction

The most common malignancy diagnosed in men worldwide is prostate cancer
(PCa) [1]. In the most frequent cancers (2018), this malignancy takes the fourth place
among other types of cancers [2]. Mortality rates caused by this heterogeneous disease have
been static, but it does not alter the increased chances of prostate cancer by a man in the
later ages of his life or a man with a family history of prostate cancer [2–4]. Statistics have
also shown that many black men suffer from this situation compared to white or Asian
men [4]. One of the known possible factors influencing the risks of prostate cancer is dietary
habits [5]. Prostate cancer is caused by a number of variables, including smoking, obesity,
race/ethnicity, food, age, chemical and radiation exposure, sexually transmitted illnesses,
and so on [6]. However, the fundamental shift at the molecular level is the confirmed

Genes 2022, 13, 840. https://doi.org/10.3390/genes13050840 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes13050840
https://doi.org/10.3390/genes13050840
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0000-0003-3036-5687
https://orcid.org/0000-0001-7963-3131
https://orcid.org/0000-0002-2562-0914
https://orcid.org/0000-0003-4060-328X
https://orcid.org/0000-0001-6939-9898
https://orcid.org/0000-0002-0602-3719
https://doi.org/10.3390/genes13050840
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes13050840?type=check_update&version=2


Genes 2022, 13, 840 2 of 18

diagnosis of PCa. The glandular development and expression of luminal differentiation
markers androgen receptor (AR) and prostate-specific antigen (PSA) identify most prostatic
malignancies that are adenocarcinomas [7]. A blood test and biopsy-based PSA efficiently
diagnose prostate cancer in the early stages [8]. This is due to mutations and other changes
in the AR or signaling pathways that lead to its increased expression [9], with recent
research revealing that the knocking out of the AR gene reduces PCa cell invasion and
migration [10]. Although PSA is the most widely used biomarker for prostate cancer, it has
low specificity and substantial limitations. Therefore, screening new early diagnostic and
prognostic markers for the pathogenesis and prognosis of prostate cancer is essential [11].
The mutations in BRCA1 and BRCA2 can give rise to prostate cancer [12–14]. It is not
expected that a single gene directs the pathogenesis of the disease, and usually, alterations
in the gene expression profile form a pathogenetic network built up from interactions
between multiple genes.

The genes with equivalent effects in a pathogenetic network are sited in the same
functional portion defined as a module, and they cooperate to fulfill their biological func-
tion [15–17]. Developments in bioinformatics technologies, such as microarrays, tran-
scriptome sequencing, and proteomics, have provided potential advancements in cancer
biomarker research and have been surveyed in several studies on different types of can-
cer [11,18]. Several studies have identified genes that have a significant role in the onset and
development of PCa, such as forkhead box A1 (FoxA1) [19], kallikrein-related peptidase 3
(KLK3) [20], insulin-like growth factor 2 (IGF2) [21], and phosphatase and tensin homolog
(PTEN) [22]. The essential genes discovered by the previous research, on the other hand,
are quite diverse from one another and have nothing in common, which might be explained
by the fact that PCa is a heterogeneous illness in general. We used a single microarray
data set of publicly available human primary prostate tissue and screened the differentially
expressed genes (DEGs) in the first step. Gene annotation and pathway analysis were
performed using gene ontology (GO) enrichment and the Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analysis. A protein–protein interaction (PPI) network was
then constructed to identify the hub genes (HUBs). This study aimed to find an effective
prognostic gene in primary prostate cancer among HUBs by bioinformatics analysis and
validated findings using the cancer genome atlas (TCGA) data. We used the UALCAN
and cBioPortal databases to verify the expression levels and mutational conditions. We
also looked into immune cell infiltration utilizing the tumor immune estimation resource
(TIMER) database.

2. Materials and Methods
2.1. Microarray Data Extraction

The GSE69223 CEL files were obtained from the National Center for Biotechnology
Information (NCBI) gene expression omnibus (GEO) database (https://www.ncbi.

nlm.nih.gov/geo/, accessed on 20 March 2021) [23]. The data set comprised 30 samples;
15 were primary prostate cancer tissue, and 15 were adjacent normal prostate tissue. The
tumor staging for primary prostate cancer was pT2 or pT3. Sequencing was performed
using the GPL570 platform (Affymetrix Human Genome U133 Plus 2.0 Array) platform
with 54,675 probes.

2.2. Data Preprocessing and Screening of DEGs

The unprocessed CEL files were background-corrected, normalized, and converted
to an expression set by the “affy” package (https://www.r-project.org/, accessed on
20 March 2021, Version 4.0.5) using the MAS 5.0 expression measure (mas5) function and
then log2 transformation was applied to the expression values. The expression data were
scaled using the scale function in R, followed by applying the principal component analysis
(PCA) to remove the outlier samples. The probe IDs were translated into their HUGO Gene
Nomenclature Committee (HGNC) gene symbols corresponding to the official sequencing
platform. The maximum value across the probes was used to compute the expression

https://www.ncbi.nlm.nih.gov/geo/
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value for a particular gene symbol represented by multiple probe IDs [24], and probes
that did not have gene information were excluded. Finally, the Escape Excel plug-in [25]
was used to prevent gene name mangling using Microsoft Excel (2019). Empirical Bayes
statistics (eBayes, p-value < 0.05) was applied through the “limma” package [26] in R to
uncover the DEGs between normal and cancer tissue, according to the following criteria:
|log2 FC| > 1.5 and adjusted p-value (FDR) < 0.05. The adjusted p-value was calculated
using the Benjamini–Hochberg (BH) method by limma package.

2.3. Pathway and Functional Enrichment Analysis

The “clusterProfiler” package in R [27] was applied to annotate and visualize the
functional profiles for the DEGs. GO term enrichment [28] and KEGG pathway analyses [29]
were performed using this package. The cell component (CC), biological process (BP),
and molecular function (MF) terms associated with the DEGs were characterized by the
GO enrichment analysis. The KEGG pathway analysis uncovered biological pathways
correlated with the DEGs. The threshold was set at an adjusted p-value < 0.05 (obtained
using the BH procedure).

2.4. PPI Network Construction and HUBs Selection

The species Homo sapiens was chosen, and the PPI network was constructed using
the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING, https://string-
db.org/, accessed on 12 May 2021) v11.0 b database [30] to investigate the interactions
between the DEGs. Only experimentally validated interactions with the minimum required
interaction score 0.4 (default) were selected and retained. Cytoscape (v 3.9.0) [31] was
used to analyze the network parameters for further HUBs identification and sub-network
visualization. The eigenvector was computed using the “CentiScaPe 2.2” plug-in, while
other topological parameters were computed using the Cytoscape network analyzer tool.

2.5. Overall Survival (OS) Analysis of HUBs

In this case, we used the Gene Expression Profiling and Interactive Analysis (GEPIA,
http://gepia2.cancer-pku.cn/, accessed on 2 August 2021) v2 database [32], which is an
RNA-Seq web server based on the UCSC Xena project, calculated by a standard pipeline.
We used the GEPIA to see if the expressions of the hub genes were relevant to the survival
of PCa patients in the TCGA cohort. Patients with a high level of expression (>median
expression value) and patients with a low level of expression (<median expression value)
were defined. The Kaplan–Meier (KM) method was used to evaluate overall survival [33]
using a log-rank test (statistically significant: p-value < 0.05).

2.6. Validation of Prognostic HUBs Using cBioPortal and UALCAN Databases

The cBioPortal for Cancer Genomics (https://www.cbioportal.org/, accessed on
23 December 2021) [34] and UALCAN (http://ualcan.path.uab.edu/, accessed on 20 March
2022) [35] was tested for expression validation and investigation of genomic alteration
frequencies, including mutations and CNA (amplifications and homozygous deletions) in
our prognostic PCa HUBs, respectively. The prostate adenocarcinoma (PRAD) dataset of
the TCGA was selected in both web-based tools for analysis.

2.7. Tumor Infiltration Analysis

The tumor immune estimation resource (TIMER) web-based tool (http://timer.cistrome.
org/, accessed on 23 December 2021) [36] was queried to explore the correlation between
tumor-infiltrating immune cells in PRAD patients and the expression levels of the prognos-
tic PCa HUBs. The Spearman’s test was used, and the p-value < 0.05 was regarded as the
statistically significant threshold.

https://string-db.org/
https://string-db.org/
http://gepia2.cancer-pku.cn/
https://www.cbioportal.org/
http://ualcan.path.uab.edu/
http://timer.cistrome.org/
http://timer.cistrome.org/
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3. Results
3.1. Data Preprocessing and Identification of DEGs

Because outlying microarray samples can dramatically bias further analysis, prepro-
cessing procedures to identify and eliminate such samples from each dataset prior to
network construction were critical [37]. Normalization, background correction, and perfect
match (PM)/mismatch (MM) correction were applied using the “mas” algorithm of the
“affy” package. Additionally, log2 (expression values + 1) was generated. Sample outlier
detection (using PCA) was subsequent to the normalization and logarithmic transformation
of all the probe sets. Box plots of 30 samples were plotted before and after normalization,
which can be seen in Figure 1A,B, respectively. After normalization, each box’s median gene
expression values became approximately centric, showing an appropriate normalization
and a significant data distribution. Accordingly, no sample with considerable deference
in Interquartile Range (IQR) was considered an outlier. In addition, Figure 1C,D depicts
the PCA plot for the samples in our dataset before and after the omission of outliers, re-
spectively. Between two groups (tumor and normal), four samples were farther away from
their clusters, because of which there was an inherent overlap between the two clusters
(tumor and normal), which were considered outliers. On removal of these four samples,
we saw that the two clusters were distinct and independent from each other. In conclu-
sion, the outlier samples were: GSM1695588_K400_PN (K400_PN), GSM1695600_K815_PN
(K815_PN), GSM1695606_L083_PN (L083_PN), and GSM1695593_K643_PC (K643_PC).

The probe IDs were translated into HGNC gene symbols corresponding to the
hgu133plus2.db platform using the annotate R package. Utilizing limma, 990 DEGs were
identified in PCa (threshold: |log2 FC| > 1.5 and adjusted p-value < 0.05), including
316 upregulated and 674 downregulated genes. Table 1 represents the top ten DEGs that
were upregulated and downregulated based on the order of fold changes. Table 2 shows
the known PCa biomarkers available within our list of DEGs. The volcano plot was used to
visualize the DEGs dispersions (Figure 2A). The expression pattern of the DEGs between
samples was revealed by hierarchical clustering analysis, indicating that tumor tissues
have substantially different gene expression patterns compared to adjacent normal tis-
sues (Figure 2B). Supplementary Tables S1 and S2 provided detailed information on the
upregulated and downregulated DEGs.

Table 1. The top 10 DEGs that were upregulated and downregulated between tumor and normal
tissues. DEGs, differentially expressed genes; FC, fold change.

Genes Symbol Probe ID Log2FC Adjusted p-Value State

OR51E2 236121_at 4.244412 4.76× 10−4 Upregulated
DLX1 242138_at 3.898046 5.66× 10−5 Upregulated

B3GAT1 219521_at 3.883768 4.70× 10−7 Upregulated
LINC00992 239319_at 3.556998 2.40× 10−5 Upregulated
DNASE1 210165_at 3.435794 4.77× 10−7 Upregulated

FFAR2 221345_at 3.332304 1.67× 10−6 Upregulated
FOLH1B 211303_x_at 3.277545 9.01× 10−5 Upregulated
CLDN3 203954_x_at 3.057903 2.79× 10−6 Upregulated

HPN 204934_s_at 3.054792 3.34× 10−8 Upregulated
TRPM4 219360_s_at 3.014302 3.79× 10−8 Upregulated
CXCL13 205242_at −6.36684 3.98× 10−9 Downregulated
SMTNL2 229730_at −4.85304 1.42× 10−9 Downregulated
SMR3B 207441_at −4.66651 1.09× 10−4 Downregulated

FBXL21P 1555412_at −4.07877 1.59× 10−6 Downregulated
NELL2 203413_at −3.99192 6.67× 10−13 Downregulated

SERPINA5 209443_at −3.56837 2.17× 10−7 Downregulated
BMP5 205431_s_at −3.52423 6.47× 10−10 Downregulated
RBP4 219140_s_at −3.51651 5.50× 10−6 Downregulated

FOXF2 206377_at −3.49783 6.61× 10−10 Downregulated
CA3 204865_at −3.33564 2.15× 10−8 Downregulated
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Figure 1. An overview of the preprocessing plots. The box plots show the expression value of
the total of 30 samples before and after normalization. The ordinate reflects the gene expression
values, while the abscissa displays the distinct samples. (A) The median gene expression values
within each box (shown by the black line) were not equal before normalization. (B) The median
of the expression values were nearly on the same line after normalizing, indicating satisfactory
normalization performance. (C) The PCA plot for 30 samples. (D) The PCA plot for the 26 samples
selected in this study (K400_PN, K815_PN, L083_PN, and K643_PC excluded). PCA, principal
component analysis.

Table 2. The previously known PCa biomarkers among our DEGs.

Genes Symbol Probe ID Log2FC Adjusted p-Value State
AMACR 217111_at 2.272572347 1.59× 10−2 Upregulated
FOXA1 204667_at 1.988720507 2.92× 10−6 Upregulated
KLK2 210339_s_at 1.577097564 1.51× 10−4 Upregulated
KLK4 224062_x_at 1.84883585 1.64× 10−3 Upregulated
PCA3 232575_at 2.979943566 6.63× 10−3 Upregulated
DLX1 242138_at 3.89804597 5.66× 10−5 Upregulated

HOXC6 206858_s_at 2.908075942 1.42× 10−3 Upregulated
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Figure 2. (A) The volcano plot highlighting the DEGs. A plot of log2FC vs. −log10 (adjusted-p-value)
for the DEGs in PCa shows that the downregulated DEGs highlighted in blue are more than the
upregulated DEGs shown in red. The X-axis represents the Log2FC, whereas the Y-axis displays
the adjusted p-value (−log10 scale). (B) The hierarchical clustering analysis of the 990 DEGs. Each
column indicates a sample, and each row demonstrates the gene expression level. The color scale
ranges from red to green to represent high to low expression. (C) The expression heatmap of 22 HUBs.
FC, fold change; DEGs, differentially expressed genes; and HUBs, hub genes.

3.2. DEGs Enrichment Analysis

As reported by the KEGG pathway analysis obtained from the clusterProfiler package,
the DEGs were linked to pathways, including focal adhesion, dilated cardiomyopathy,
protein digestion and absorption, hypertrophic cardiomyopathy, calcium signaling pathway,
arrhythmogenic right ventricular cardiomyopathy, ECM-receptor interaction, PI3K-Akt
signaling pathway, proteoglycans in cancer, and arginine and proline metabolism (Table 3).
The top 20 enriched KEGG pathways are depicted in Figure 3A.

The results of the GO analysis, also performed using the clusterProfiler package,
revealed mainly the enrichment of DEG in the collagen-containing extracellular matrix
(belonging to the cellular component), the extracellular matrix (a member of the biological
process), and the organization of the extracellular structure (part of the biological process)
(Table 4). The 10 enriched GO terms for the cellular component, the biological process, and
the molecular function are shown in Figure 3B. Supplementary Tables S3 and S4 provide
comprehensive information on the GO and KEGG enrichment findings.

3.3. PPI Network Construction and HUBs Selection

Based on the STRING interaction score > 0.4, our network consisted of 886 nodes
and 3579 edges built and visualized by Gephi (Figure 4). Various topological/centrality
distributions of the PPI network can be seen in Figure 5. The top 50 genes ranked on the
basis of four topological algorithms (i.e., Degree, Betweenness, Closeness, and Eigenvector)
were carried out to detect the potential key genes in the PPI network. As shown by the
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Venn plot in Figure 6, 22 genes were overlapped within four topological algorithms and
were considered HUBs in our study. The epidermal growth factor (EGF), transforming
growth factor β 3 (TGFB3), brain-derived neurotrophic factor (BDNF), caveolin 1 (CAV1),
cadherin 2 (CDH2), collagen type I α 2 chain (COL1A2), decorin (DCN), fibrillin 1 (FBN1),
fibroblast growth factor 2 (FGF2), C-X-C motif chemokine ligand 12 (CXCL12), insulin-like
growth factor 1 (IGF1), laminin subunit β 1 (LAMB1), matrix metallopeptidase 14 (MMP14),
5′-nucleotidase ecto (NT5E), neurotrophic receptor tyrosine kinase 1 (NTRK1), peroxisome
proliferator activated receptor γ (PPARG), epithelial cell adhesion molecule (EPCAM), snail
family transcriptional repressor 2 (SNAI2), bone morphogenetic protein 4 (BMP4), neural
cell adhesion molecule 1 (NCAM1), secreted protein acidic and cysteine rich (SPARC), and
vinculin (VCL) were our hub genes. EGF and EPCAM were upregulated, and others were
downregulated. Among the DEGs, EGF had the highest node degree (99).

Table 3. The top 10 DEGs enrichment analysis of the KEGG pathway. KEGG, Kyoto Encyclopedia of
Genes and Genomes. The Rich factor is the proportion of selected gene numbers (DEGs) compared to
all gene numbers involved in each pathway term. The degree of pathway enrichment increases as the
Rich factor increases.

KEGG ID Description Category Gene Count Rich Factor BH-p-Value
has04510 Focal adhesion KEGG pathway 29 14.42% 2.06× 10−5

has05414 Dilated cardiomyopathy KEGG pathway 18 18.75% 6.87× 10−5

has04974 Protein digestion and absorption KEGG pathway 18 17.47% 1.35× 10−4

has05410 Hypertrophic cardiomyopathy KEGG pathway 16 17.77% 3.10× 10−4

has04020 Calcium signaling pathway KEGG pathway 27 11.25% 1.48× 10−3

has05412 Arrhythmogenic right ventricular
cardiomyopathy KEGG pathway 13 16.88% 2.56× 10−3

has04512 ECM–receptor interaction KEGG pathway 14 15.90% 2.56× 10−3

has04151 PI3K-Akt signaling pathway KEGG pathway 33 9.32% 5.47× 10−3

has05205 Proteoglycans in cancer KEGG pathway 22 10.73% 9.18× 10−3

has00330 Arginine and proline metabolism KEGG pathway 9 17.64% 1.69× 10−2

Figure 3. The scatter plots of the KEGG pathway and the GO enrichment. (A) The top 20 KEGG
pathways are shown in a scatter plot. (B) The scatter plot of the top 10 separate GO terms. The Rich
factor is the proportion of DEGs numbers among all gene numbers (in the database), indicated in
the pathway term that is linked to it. KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, gene
ontology; DEGs, differentially expressed genes; BP, biological process; MF, molecular function; and
CC, cellular component.
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Table 4. Top 10 GO enrichment analyses of the DEGs. GO, gene ontology.

GO Term Description Category Gene Count Rich Factor BH-p-Value
GO:0062023 collagen-containing extracellular matrix CC 75 18.47% 8.56× 10−24

GO:0030198 extracellular matrix organization BP 62 16.84% 3.03× 10−16

GO:0043062 extracellular structure organization BP 62 16.80% 3.03× 10−16

GO:0005201 extracellular matrix structural constituent MF 40 24.53% 9.28× 10−16

GO:0042383 sarcolemma CC 30 22.05% 4.84× 10−11

GO:0005539 glycosaminoglycan binding MF 39 17.03% 4.73× 10−10

GO:0060485 mesenchyme development BP 43 15.41% 1.91× 10−9

GO:0048762 mesenchymal cell differentiation BP 37 16.81% 3.84× 10−9

GO:0048565 digestive tract development BP 28 20.89% 6.63× 10−9.
GO:0042692 muscle cell differentiation BP 50 12.98% 1.02× 10−8

Figure 4. The PPI network of the DEGs. The circle size and color are set for degree and betweenness
scores, respectively. The larger the circles, the greater the degree score. In addition, richly colored
circles have a higher betweenness score. PPI network, protein–protein interaction network; DEGs,
differentially expressed genes.

Figure 5. The topological property/centrality distribution plots showing the node degree distribution,
the betweenness centrality, the closeness centrality, the clustering coefficient, the neighborhood con-
nectivity, the average shortest path length distribution, the topological coefficient, and the eccentricity
of PPI network. PPI network, protein–protein interaction network.
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Figure 6. The Venn plot shows 22 overlapping HUBs between the top 50 genes ranked based on four
topological algorithms: degree, eigenvector, closeness, and betweenness. The green, yellow, blue, and
red areas represent the top 50 genes ranked based on closeness, betweenness, degree, and eigenvector.
HUBs, hub genes.

3.4. OS Analysis of HUBs

We used GEPIA to explore the prognostic worthiness of HUBs and performed an
OS analysis. As shown in Figure 7, only NTRK1 (downregulated) had a statistically
significant (log-rank p-value < 0.05) impact on the PCa patients’ OS. As a result, the
relatively low expression of NTRK1 was significantly related to a poor prognosis of PCa,
while the remaining 21 hub genes were not reported to be correlated to PCa prognosis
(Supplementary Figure S1).

Figure 7. The KM curve was used to estimate OS in PCa patients according to the GEPIA database.
The expression of NTRK1 was shown to have a significant impact (log-rank p-value < 0.05) on the PCa
prognosis using KM estimates (log-rank test). The solid line shows the survival curve, and the dotted
line represents the 95% CI. Patients with expression levels above the median are shown with red
lines, while those with levels below the median are marked with blue lines. GEPIA, gene expression
profiling interactive analysis. OS, overall survival; KM, Kaplan–Meier; PCa, prostate cancer; and CI,
confidence interval.
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3.5. Validation of Prognostic HUBs Using cBioPortal and UALCAN Databases

The cBioPortal was used to investigate the specific genetic alterations of NTRK1 (prog-
nostically significant) and 21 other hub genes across the TCGA-PRAD messenger RNA
(mRNA) cohort comprising 501 patient samples. All these 22 HUBs were altered in 34% (i.e.,
172 cases) of the patient samples, most of which were deep deletions (19.24%: altered in
96 cases) followed by amplifications (6.61%: altered in 33 cases), missense mutations (4.61%:
altered in 23 cases), and multiple alterations (4.01%: altered in 20 cases). OncoPrint results
for all these HUBs, as shown in Figure S2, revealed genetic alterations, including amplifica-
tion, mRNA upregulation, mRNA downregulation, and various others in 34% of patient
samples. The top five highly mutated HUBs were NT5E, SNAI2, FBN1, FGF2, and NTRK1.
As only NTRK1 was prognostically significant, unlike other HUBs, we further analyzed
only this gene and eliminated the rest. Figure 8A shows the overall alteration frequency
barplot of NTRK1 in the PRAD dataset with a deep deletion frequency of 1.8% (9 samples),
a missense mutation frequency of 1.2% (6 samples), and an amplification frequency of
0.4% (2 samples). As shown in Figure 8B, the Lollipop plot displayed the frequency and
location of all possible mutations in the Pfam protein domains where NTRK1 had a somatic
mutation frequency of 1.2% (i.e., eight missense mutations + 1 inframe mutation).

Figure 8. The validation of NTRK1 using the UALCAN and cBioPortal databases. (A) The barplot
shows the alteration frequency of NTRK1 (3% of 499 PRAD cases) across the TCGA-PRAD dataset
(TCGA, Firehose Legacy). The blue bar depicts 1.8% deep deletions, the green bar depicts 1.2%
missense mutations, and the red bar depicts 0.4% amplifications. (B) The lollipop plot showing nine
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nonsynonymous mutations in NTRK1 protein domains. The grey horizontal bar represents the whole
length of the NTRK1 protein, and the number of amino acids is displayed below the grey bar. The
protein domains are shown with the red, blue, and green colored solid boxes. The locations and
the frequencies of the mutations were denoted by the solid vertical lines and lollipop-like dots at
their ends, respectively. The green and brown lollipops represent eight missense mutations and
one inframe mutation. The NTRK1 expression levels in the TCGA-PRAD cohort are shown by box-
and-whisker plots based on (C) the sample types, and (D) the nodal metastasis statuses (N0 means
no regional lymph node metastasis; N1 means metastases in 1 to 3 axillary lymph nodes). (E) The
molecular signatures, and (F) the TP53 mutation status via the UALCAN database. ** p-value < 0.01,
and *** p-value < 0.001 vs. normal.

The NTRK1 expression in the TCGA-PRAD cohort was validated using the UALCAN
database, based on the sample types, the nodal metastasis, the molecular signature, and
the TP53 mutation status. As shown in Figure 8C, the expression level of NTRK1 in the
primary tumor and the normal cells is significantly different (p-value = 1.73× 10−3). In
Figure 8D,F, a significant correlation of NTRK1 expression with nodal metastasis [normal
vs. N0 (p-value = 1.74× 10−3), normal vs. N1 (p-value = 1.62× 10−3)] and TP53 muta-
tion status [normal vs. TP53-Mutant (p-value = 6.01× 10−4), normal vs.TP53-nonmutant
(p-value = 2.00× 10−3)] is depicted. Figure 8E represents significant differential expression
based on molecular signatures [normal NTRK1 vs. ERG fusion (p-value = 6.62× 10−4), nor-
mal vs. ETV1 fusion (p-value = 4.22× 10−4), normal vs. FLI1 fusion (p-value = 2.12× 10−3),
and normal vs. SPOP mutation (p-value = 1.06× 10−3)].

3.6. Tumor Infiltration Analysis

The TIMER database was used to evaluate the significant correlation of NTRK1 with
tumor-infiltrating immune cells across TCGA-PRAD cohort. The NTRK1 expression had
a significant positive correlation with the infiltrating levels of T cell CD8+ (r = 0.127,
p-value = 9.71× 10−3), T cell CD4+ (r = 0.275, p-value = 1.17 × 10−8), dendritic cell
(r = 0.347, p-value = 3.34× 10−13), macrophage (r = 0.123, p-value = 1.18× 10−2), neu-
trophil (r = 0.264, p-value = 4.47× 10−8), and T cell NK (r = 0.103, p-value = 3.49× 10−2),
as shown in Figure 9, respectively.

Figure 9. The scatter plots exhibiting significant positive correlations of NTRK1 with the infiltrating
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levels of T cell CD4+, T cell CD8+, neutrophil, dendritic cell, macrophage, and T cell NK across
TCGA-PRAD cohort. In addition, the Spearman’s correlation value and the estimated statistical
significance are shown as the legends for each scatter plot. PRAD, prostate adenocarcinoma.

4. Discussion

Finding new potential biomarkers to achieve the early detection of PCa in the primary
stages and identify new molecular drug targets is necessary and plays a considerable
role in helping patients most likely to benefit from treatment. Our study concentrated
on a single cohort profile dataset through a microarray analysis. Therefore, we tried to
achieve the highest possible quality in terms of gene expression levels by removing the
outlier samples and using an efficient normalization method. We identified 990 DEGs
between the primary PCa and the adjacent normal tissues, including 316 upregulated and
674 downregulated genes from the GEO dataset-GSE69223. It is apparent that the number
of downregulated genes is notably higher than the upregulated genes. We performed a
functional enrichment analysis using the clusterProfiler package to better understand the
interactions among the DEGs. The DEGs were involved mainly in the organization of the
collagen-containing extracellular structure, the organization of the extracellular matrix,
the structural constituent of the extracellular matrix, the extracellular matrix, and the
sarcolemma, according to the current enrichment analysis of the GO term (Table 4). The
enrichment analysis of the KEGG pathway showed that the DEGs were involved in several
cancer-related pathways: the calcium signaling pathway, the PI3K-Akt signaling pathway,
the Wnt signaling pathway, the cGMP-PKG signaling pathway, and the focal adhesion,
which are important in tumor growth and carcinogenesis [38–43]. In addition, the DEGs
were mainly involved in the digestion of proteins and the absorption and cardiomyopathy
pathways (Table 3). Our analysis represents NTRK1 as a new protein involved in PCa
prognosis. Moreover, as we have shown in Supplementary Tables S1 and S2 (summarized
in Table 2), we obtained some known PCa biomarkers such as α-methylacyl-CoA racemase
(AMACR) [44,45], forkhead box A1 (FOXA1) [46–48], two members of the kallikrein related
peptidase (KLK) gene family KLK2 [49,50] and KLK4 [51–53], prostate-cancer-associated
3 (PCA3) [54–56], distal-less homeobox 1 (DLX1), and a member of the homeobox (HOX)
family HOXC6 [57], which play specific roles in PCa development.

AMACR plays a key role in the peroxisomal β-oxidation of dietary branched fatty acids.
Previous studies have shown that AMACR is upregulated in prostate cancer. However,
the mechanism underlying the correlation between AMACR and prostate cancer has not
been clarified yet. In a meta-analysis of 22 studies on 4385 participants from various
geographic regions, the results show the association between PCa risk and AMACR. In
this study, AMACR expression is significantly associated with an increased diagnosis
of PCa [58]. FOXA1 helps to shape AR signaling through direct interactions with the
AR and drives the growth and survival of normal prostate and prostate cancer cells.
FOXA1 also possesses an AR-independent role in regulating epithelial-to-mesenchymal
transition [47]. Previous in vitro studies have shown that FOXA1 increases pro-angiogenic
factors, including EGF, endothelin-1, and endoglin in prostate cancer cells and promotes
endothelial cell proliferation, migration, and tube formation. Moreover, in vivo studies
and a clinical samples investigation have shown that FOXA1 facilitates prostate cancer
angiogenesis [59].

KLKs are involved in the regulation of tumor growth, neoplastic progression, tumor
angiogenesis, and metastasis. Tailor et al. exhibited significant gene upregulation of KLK2
and KLK4 in PRAD. KLK2 can increase ECM degradation due to its proteolytic effects
on fibronectin, laminin, gelatin, fibrinogen, and collagenases, leading to metastasis. In
addition, KLK4 has been shown to increase the activation of plasmin via the activation of
the urokinase plasminogen activator, which helps with the angiogenesis, invasion, and
metastasis of the tumor [60].

PCA3 is significantly elevated in patients with prostate cancer, and several available
studies show the utility of PCA3, as a urinary biomarker, for the diagnosis of early prostate
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cancer with reasonable specificity and sensitivity [61,62]. Liang et al. have shown that
DLX1 is upregulated in the prostate clinical samples and exerts its oncogenic roles on
PCa by activating β-catenin/TCF signaling and promoting the growth and migration of
PCa cells [63]. In earlier studies, it has been reported that HOXC6 is involved in PCa
development. Recently, Zhou et al. have shown that upregulated HOXC6 could participate
in the progression of PCa and function as an independent prognostic marker for cancer [64].

Subsequently, after bioinformatical analysis and the construction of the PPI network,
we identified potential HUBs in primary PCa (Figure 2C). One of the key genes with the
highest degree (99) in the network was the EGF, which was upregulated in this study, and
only NTRK1 (downregulated) was significantly (p-value < 0.05) associated with PCa prog-
nosis (Figure 7). A UALCAN-based analysis in PRAD supported that the downregulation
of NTRK1 was significantly associated with tumorigenesis (Figure 8C), and this expression
decreases when the status of the nodal metastasis increases (Figure 8D). The TP53 mutation
status does not affect the NTRK1 downregulation in tumor cells, according to (Figure 8F).
As represented in (Figure 8A,B), there was an intermediate tumor mutational burden (TMB)
in NTRK1. NTRK1 had a somatic mutation frequency of 1.2%, and most of the mutations
are accumulated in the tyrosine kinase domain (Pkinase_Tyr).

NTRK1 or TrkA is a nerve growth factor (NGF) receptor that is part of the tyrosine
kinase receptor family. Protein kinases play a critical role in PCa tumor proliferation,
development, and metastasis [65], and several malignancies have been shown to cause
changes in NTRK1 expression or mutations in this gene [66]. NTRK1 is actively involved in
developing, protecting, and maintaining neurons [67–70]. This study shows the downregu-
lation of NTRK1 in PCa cells, and thus its tumor-suppressive role is expected. However,
the tumor-suppressive behavior of NTRK1 in PCa is controversial as many studies have
delineated the pro-tumorigenic role of NTRK1 in PCa. The alternative splicing of NTRK1
could result in numerous different protein isoforms, and three of them (TrkAI, TrkAII,
and TrkAIII) have been described in humans [66]. The human NTRK1, which is 25 kb in
length, is located on chromosome 1q21-q22 and is made up of 17 exons. The full-length
isoform is TrkAII, is mostly found in neuronal tissues, and if we remove exon 9 there will
be TrkAI in most non-neuronal tissues. Exons 6, 7, and 9 of TrkAIII are missing, making it
unable to bind to NGF; therefore, TrkAIII is autophosphorylated, does not bind to NGF,
and antagonizes NGF/TrkAI signaling [66,71].

As we understood, the oncogenic and tumor-suppressive nature of NTRK1 depends
on several things, such as the tumor environment and NTRK1 splicing patterns. Studies
have shown that the upregulation of regular NTRK1 isoforms (TrkAI/II) in normoxia
condition will have a good prognosis in neuroblastoma (NB), so it plays an antioncogenic
role in NB. Moreover, under hypoxic conditions, the upregulation of TrkAIII occurs, which
provides tumor progression and metastasis promotion; it plays an oncogenic role in NB
and indicates relevance to the NB-regulated tumor-promoting switch by generating an
angiogenic, stress-resistant, and tumorigenic NB phenotype via IP/Akt signaling [71–75].
At the molecular level, the activation of NTRK1 confers pro-differentiation programs by
binding the specific ligand, binding the NGF, inhibiting angiogenesis, increasing immuno-
genicity, inducing the differentiation and growth arrest, and mediating apoptosis. On the
contrary, downregulating NTRK1 results in proliferation and angiogenesis and thus tumor
growth and aggressiveness [73]. Future studies on the splicing patterns of NTRK1 in PCa
are needed, and we think that the downregulation of NTRK1 can still be meaningful in the
poor prognosis of PCa patients.

According to (Figure 9), it can be inferred that there is a positive correlation between
the suppression of the NTRK1 gene and the decrease in immune cell infiltration, such
as T cell CD8+. CD8+ T cells and monocytes have been known to suppress PCa. The
presence of iNKT cells has been shown to delay prostate cancer progression; however, M1
macrophages and neutrophils infiltration are associated with a poor prognosis [76]. The
higher number of T cells, especially CD8+ T cells, memory cells, and CD4+ Th1 cells, can
produce a better prognosis in some cancers [77]. Moreover, CD4+ T cells have been linked
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to human cancers, and they are thought to play a role in PCa growth and promotion [76,78].
As mentioned before, some immune cells such as CD8+ T, monocytes, and NKT cells have
a cancer suppression pattern; thus, low levels of these cells’ infiltration could lead to a poor
prognosis. However, other immune cells (such as M1 macrophages and neutrophils) have
a cancer amplifier pattern. However, these are in line with our findings, which show that
intermediate TMB in NTRK1 causes low levels of tumor infiltration of immune cells, notably
CD8+ T cells, and the role of CD8+ T cells is more established over other immune cells in
the killing of cancerous cells and is used in cancer immunotherapy [79]. The stage of the
disease where the host immune response may decrease with increased tumor development
has been proposed as a primary factor of immune cell infiltration [80]. Pajtler et al. have
provided some evidence that NTRK1 leads to increased immunogenicity in neuroblastoma,
which may contribute to a less malignant phenotype and/or the spontaneous regression
of neuroblastoma cells [81]. It can be suspected that the suppression of the NTRK1 gene
might ignite prostate cancer with the decrease in the level of infiltration of CD8+ T cells.

Finally, in the NTRK fusion-positive tumors, genomic co-alterations and DNA rear-
rangements were often found, notably in genes implicated in cell-cycle-associated regu-
lators, PI3K signaling, the MAPK pathway, and the tyrosine kinase families [70]. Fusions
have been regularly found in rare malignancies, including mammary analog secretory
carcinoma, congenital infantile fibrosarcoma, secretory breast carcinoma, and congenital
mesoblastic nephroma, as well as in several pediatric case malignancies. NTRK gene
fusions can be found in a small percentage of frequent adult cancers, including head and
neck cancer, non-small-cell lung cancer, colorectal cancer, salivary gland cancer, thyroid
cancer, bladder cancer, brain tumors, and soft tissue sarcomas [66,82,83]. Figure 8E shows
a decrease in the expression of the NTRK1- FLI1/ETV1/ERG gene fusions compared to
normal tissue. The downregulation of NTRK1 has been detected in several cancers, such as
PCa and breast cancer, which lead to tumor progression [84].

Note that (1) this research was entirely based on public databases. As a result, more
research is required to confirm the validity of the results; (2) although our objective was to
identify a trustworthy candidate associated with the prognosis of primary prostate cancer,
there is always the probability of having missed some details.

5. Conclusions

Consequently, we recognized the key genes and pathways correlated with the patho-
genesis and the prognosis of primary PCa by a bioinformatics analysis. The downregulation
of NTRK1 was linked with the poor prognosis of PCa and may be used as a prognostic
marker of primary PCa. Nevertheless, NTRK1 expression was shown to significantly corre-
late with immune cell infiltration levels, such as the CD8+ T cells currently used in cancer
immunotherapy. Eventually, further molecular biological studies and clinical research are
imperative to confirm these results and their specific functional roles in PCa.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/genes13050840/s1, Figure S1 an OS analysis of PCa HUBs
based on the GEPIA database determined by the KM curve. The expression of other 21 HUBs
was not shown to significantly impact the prognosis of PCa in using KM estimates (their Log-rank
p-value ≥ 0.05); Figure S2 the OncoPrint summarizes the genomic alterations in 22 PCa HUBs across
the TCGA-PRAD cohort, comprising 501 patient samples. The bottom row represents the frequency of
the genomic alterations in these HUBs, with green, orange, grey, red, blue, and golden bars signifying
missense, splice, truncating, amplification, deep deletion, and inframe mutations, respectively. The
first, second, third, fourth, and fifth rows depict the clinical annotation bars such as samples per
patient, profiled in mutations, and putative copy-number alterations from GISTIC, the mutation spec-
trum, and the mutation count; Table S1 a detailed information of the upregulated probes; Table S2
detailed information on the downregulated probes; Table S3 detailed information on the KEGG
enrichment results; Table S4 detailed information on the GO enrichment results.
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