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We show that sub-spreading events, i.e. transmission events in which an
infection propagates to few or no individuals, can be surprisingly important
for defining the lifetime of an infectious disease epidemic and hence its wait-
ing time to elimination or fade-out, measured from the time-point of its last
observed case. While limiting super-spreading promotes more effective
control when cases are growing, we find that when incidence is waning,
curbing sub-spreading is more important for achieving reliable elimination
of the epidemic. Controlling super-spreading in this low-transmissibility
phase offers diminishing returns over non-selective, population-wide
measures. By restricting sub-spreading, we efficiently dampen remaining
variations among the reproduction numbers of infectious events, which
minimizes the risk of premature and late end-of-epidemic declarations.
Because case-ascertainment or reporting rates can be modelled in exactly
the same way as control policies, we concurrently show that the under-
reporting of sub-spreading events during waning phases will engender
overconfident assessments of epidemic elimination. While controlling sub-
spreading may not be easily realized, the likely neglecting of these events
by surveillance systems could result in unexpectedly risky end-of-epidemic
declarations. Super-spreading controls the size of the epidemic peak but
sub-spreading mediates the variability of its tail.
1. Background
Emerging infectious diseases are a major and recurring threat to both global
health and economies. The ongoing COVID-19 pandemic has exemplified this,
highlighting a need for improved understanding on how interventions might
be applied and relaxed to jointlyminimize public health risks and socio-economic
costs. Key parameterswhich characterize the impact of interventions on the trans-
mission dynamics of an infectious disease are the time-varying event
reproduction number, denoted Rs at time s, with mean μs [1] and the dispersion
level, k, of the offspring distribution of the epidemic [2]. The first describes trans-
mission potential by measuring the number of secondary infections per primary
case at s. The second defines transmission heterogeneity, i.e. it captures the vari-
ation of possible Rs about mean μs. The values of these parameters often inform
intervention policy and much debate remains on their implications for both epi-
demic control and elimination [3–5].

A μs > 1 forewarns of rising incidence (new cases), necessitating the appli-
cation of controls, while μs < 1 signifies that the epidemic is being controlled,
potentially allowing the relaxation of some interventions [1]. Moreover, the
risk and effectiveness of policies are modulated by k. If k≫ 1 then transmission
is homogeneous (μs is representative of the realized Rs) and we can apply
simple, population-wide controls. Alternatively, if k < 1, then heterogeneity is
large (the epidemic offspring distribution is overdispersed). This means that
infrequent super-spreading events, in which each primary case causes ≫ μs sec-
ondary ones, disproportionately drive overall transmission [2]. The majority of
other transmission events, which we refer to as sub-spreading events, lead to
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fewer than μs or even 0 secondary cases. Heterogeneous epi-
demics may require more targeted, event-specific policy as
population-wide measures can often be ineffectual [2,6].

Many works have examined how k and μs interact to regu-
late the effectiveness of control measures applied to growing
epidemics.When transmission is heterogeneous, the consensus
is that interventions aimed at mitigating super-spreading
events (e.g. by limiting large gatherings) can minimize both
peak epidemic size and resource-usage [2,7,8]. While these
insights inform on how to efficiently impose control measures,
the converse problem of when to safely release interventions
and de-escalate surveillance, for waning epidemics, has been
understudied [9,10]. The importance of this problem will
only elevate as countries debate the value of elimination-
based strategies for handling the ongoing COVID-19 pandemic
[3,11]. In this paper, we investigate this relaxation problem
in the context of achieving reliable and minimum-risk
end-of-epidemic declarations.

The timing of an end-of-epidemic declaration is strategi-
cally crucial as it triggers the removal of restrictions or
control measures, the re-allocation of resources and the
resumption of trade, travel and other economic activities.
However, getting this timing right is both non-trivial and
consequential. Early declarations (and hence intervention
relaxation) can elevate the risk of resurgence or second
waves, whereas late ones can cause needless cost. Much is
unknown about how the transmission dynamics of an infec-
tious disease dictate the tail of an epidemic. Recent studies
suggest that this knowledge gap may have contributed to
early declarations for Ebola virus disease (EVD) in West
Africa [12] and late ones for MERS-CoV in South Korea [13].

Prime among these unknowns is the influence of hetero-
geneity and its associated targeted interventions. While some
studies have started analysing the interacting roles of μs and k
to decipher this influence [12,14], a general framework for rig-
orously testing hypotheses about how heterogeneity and
control choices impact end-of-epidemic declarations is lacking.
We extend theory from [2,15] to develop such a framework,
which allows us to generate novel and principled insight into
how μs and k (and hence possible Rs values) mediate the tail
of an epidemic. We take a bottom-up approach, tracing how
heterogeneity in transmission, defined by variations in Rs

due to k, causes fluctuations in incidence, which then manifest
as noise in the probability of epidemic fade-out or elimination.

As this probability defines our confidence in any end-of-epi-
demic declaration [15], we obtain a measure of the risk of that
declaration. This framework leads to several new results. First,
we observe that while decreasing k (increasing heterogeneity)
reduces the mean waiting time to elimination, measured from
the last observed reported case (a standard reference point
[16]), it also increases the maximum waiting time. This contex-
tualizes the common assertion that heterogeneity increases the
likelihood of epidemic extinction [17], showing that while this
may happen on average, the increased uncertainty it brings
can actually hamper safe end-of-epidemic declarations.

Second, we find that sub-spreading plays a larger part
than super-spreading in setting the uncertainty around the
probability of elimination and hence end-of-epidemic declara-
tions. We confirm this by testing three control strategies, which
target (i) all transmission events, (ii) super-spreading and (iii)
sub-spreading, for a fixed level of control effort ρ (the mean
reproduction number is then ρμs). Strikingly, we see that
waning epidemics, which feature ρμs < 1, are most reliably
eliminated by curbing sub-spreading events. Moreover, we
find the benefits of super-spreading control relative to the sim-
pler approach of (i) largely disappear in this epidemic phase.

Because ρ can equally model the mean case reporting or
ascertainment rate [18], results from (i)–(iii) also concurrently
describe the impact of uniform, size-inverse (super-spreading
events are under-ascertained) and size-biased or preferential
reporting (sub-spreading is under-ascertained), respectively.
Consequently, we uncover that the under-reporting of sub-
spreading events, which is likely, can engender overconfident
and risky end-of-epidemic declarations. These issues are in
addition to known biases caused by under-reporting within
the context of epidemic elimination [15]. Robustly assessing
the endpoint of an outbreakmay therefore require either target-
ing interventions at sub-spreading events, if possible, or, more
likely, increasing contact tracing surveillance to minimize the
under-reporting of those events.

One defining characteristic of heterogeneous transmission
is an excess of sub-spreading events (zero inflation) [2].
However, these events have received little attention in the
literature. Only recently has the importance of sub-spreading
been recognized, in related network epidemic models [19].
Our results draw attention to the unexpected influence of
sub-spreading, clarifying its impact on epidemic elimination
and adding context and detail to the subtleties and un-
certainties of controlling and monitoring epidemics with
overdispersed transmission. Hopefully, our framework will
help inform guidelines for achieving risk-averse and efficient
end-of-epidemic declarations and intervention de-escalations
in the face of heterogeneity and improve understanding of
the complex dynamics driving real epidemics.
2. Methods
2.1. Renewal models with heterogeneous transmission
We consider an outbreak observed daily over the time period (in
days) [1, t] with the number of newly infected cases on day s≤ t
as Is. The incidence curve of this epidemic is denoted
It1 :¼ fI1, I2 . . . , Itg. We model the time-varying transmission of
a communicable disease within a population using a renewal
process [20,21]. This process describes how an infection spreads
from a primary case to secondary ones at time s using two key
variables: the effective reproduction number, Rs, and the gener-
ation time distribution, with probability wu at time u. Here Rs

is the number of secondary cases at time s every effective case
at s− 1 infects, while wu gives the probability that the average
time for a primary to secondary transmission is u days [20].

Under this renewal process framework, incident cases
observed at time s depend on Rs and past cases (over the
period [1, s− 1]) according to the Poisson (Pois) relation on the
left side of equation (2.1).

Is � PoisðRsLsÞ, Rs � Gamðk, msk
�1Þ: ð2:1Þ

Here Ls :¼
Ps�1

u¼1 Is�uwu, which depends on Is�1
1 , is known as the

total infectiousness. It characterizes how many past effective
cases contribute to the next observed case-count at s. The gener-
ation time distribution (which we assume to be equal to the serial
interval distribution) is central to defining the impact of each past
case (via the weights wu) [20].

If we describe an epidemic as consisting of a sequence
of spreading or transmission events, with the reproduction
number of the spreading event at time s as Rs then standard
renewal models assume a fixed Rs [21–23]. This formulation,
while useful, does not account for possible heterogeneities in
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transmission, which are known features of many respiratory dis-
eases such as the SARS and MERS coronaviruses [2]. If we define
a distribution over Rs with mean E½Rs� ¼ ms then these models set
PðRs ¼ msÞ ¼ 1. Heterogeneous transmission is a mean preser-
ving spread of this condition, i.e. events with fixed mean μs
can have different Rs values.

We define super-spreading events as those driven by Rs sig-
nificantly larger than μs. This characterization differs slightly
from the standard in [2], which directly uses numbers of second-
ary cases. Since the renewal model has long-term memory (i.e.
factors in the age of infections via Ls) using Is would not be as
appropriate here. However, because Is behaves like a noisy,
scaled version of Rs (by the properties of Poisson mixtures
[24]), these two definitions are largely consistent. In this work,
we consider the end of the epidemic, which follows the waning
phase of the epidemic. This contrasts the development in [2],
which focuses on the growth phase. We define sub-spreading
events as having Rs notably smaller than μs. This type of event
has received appreciably less attention (than super-spreading
ones) and is our main topic of study.

If we make the usual assumption that Rs is gamma (Gam)
distributed with shape k and scale μsk

−1, i.e. the right side of
equation (2.1), then we obtain the negative binomial (NB)
relation Is � NBðk, msLs=msLs þ kÞ. This is the most common
method for incorporating heterogeneity within renewal model
frameworks [12,14,25]. As k gets smaller the likelihood of both
super- and sub-spreading events increases [2,24]. Special cases
are at k→∞, k = 1 and k→ 0 for which Is has a Poisson, geometric
and logarithmic distribution respectively with mean msLs [18].
Many of the infectious diseases that feature significant hetero-
geneity have been found to exhibit k < 1 [2,26]. This NB model
can also be used to describe reporting noise and other types
of heterogeneity.
2.2. Variation in reproduction numbers and incidence
We explicitly characterize how heterogeneity in transmission
can control the incidence of an epidemic and then assess
the implications of this observation. Consider any arbitrary
distribution over the effective reproduction number at time s,
Rs, with mean μs. Using the law of total expectation, we can
write EI ½Is� ¼ EREI ½Is jRs� with the subscripts clarifying (when
needed) about which variable we are taking expectations.
Using the renewal model (left expression in equation (2.1)), we
obtain the straightforward but general equation (2.2).

E½Is� ¼ LsE½Rs� ¼ Lsms: ð2:2Þ
The above equation shows that for any renewal model there is a
direct relationship between mean incidence and μs.

Similarly, we apply the law of total variance to get:
V½Is� ¼ ER½VI ½Is jRs�� þ VR½EI ½Is jRs�� [24] (with V½:� indicating var-
iance). Expanding this for renewal models we derive equation
(2.3), which holds for any Rs distribution.

V½Is� ¼ E½Is� þ L2
s V½Rs�: ð2:3Þ

If we substitute the statistics from the standard gamma Rs distri-
bution (right expression in equation (2.1)) we recover the usual
variance of the NB incidence distribution, i.e. Lsms þ L2

sm
2
s k

�1

[12]. The key takeaway from equation (2.3) is that, given the
past (summarized by Ls), the variance of the reproduction num-
bers linearly controls that of the incidence at any time. Equations
(2.2) and (2.3) explain why we can generally map dynamics of Rs

onto those of Is.
As a result, we can decipher the influence of super- and sub-

spreading events (which are, respectively, linked to the tail and
head, i.e. the right and left portions of the Rs distribution) by
investigating the level of heterogeneity or variation among repro-
duction numbers. This is useful because it is hard to reliably
estimate secondary cases caused by past primary cases during
the waning stages of the epidemic [13].

The impact of control measures [2] or under-reporting [18]
(which are often mathematical analogues) can be measured by
their signature on the variance-to-mean ratio (VM) of the inci-
dence: VM½Is� :¼ V½Is�=E½Is�. Using equations (2.2) and (2.3), we
obtain equation (2.4) connecting the VM ratios of Rs to Is.

VM½Is� ¼ 1þ LsVM½Rs�: ð2:4Þ
Thus, once again the statistics of Rs strongly modulate those of Is
at any time, for a given Ls. While this result is simple, its ramifi-
cations, which are meaningful, have not been explored.

Understanding how properties of the Rs distribution map
onto the related Is one, which is a mixed Poisson distribution,
provides insights into other epidemic properties. From mixed
Poisson theory [24], we deduce that (a) if Rs is unimodal and con-
tinuous then Is is also unimodal, (b) the shape of Is will be similar
to that of the mixing distribution describing Rs (e.g. when Rs is
exponential, Is becomes geometrically distributed) and (c) every
mixed Poisson distribution corresponds to a unique mixing dis-
tribution, i.e. multiple Rs distributions cannot map to the same
Is distribution [24]. Properties (a)–(c) establish that much about
super- and sub-spreading events can be learned from Rs. We
will exploit these relationships to better understand epidemic
elimination and heterogeneity.

2.3. Elimination probabilities and epidemic lifetimes
We define an epidemic to be eliminated (or extinct) [5] at some
time s if no future infected (local) cases are observed, i.e. Is+1 =
Is+2 = · · · = I∞ = 0 [5,15]. If we initially assume that all future
mean reproduction numbers, m1

sþ1, are known, then we can con-
struct the probability of elimination given some sample R1

sþ1
from m1

sþ1 (see equation (2.1)) as zs ¼ PðP1
j¼sþ1 I j ¼ 0 jR1

sþ1, I
s
1Þ.

As we condition on the sample R1
sþ1 and because incidence is

non-negative and Ij does not depend on R1
jþ1, we can decompose

zs to get equation (2.5).

zs :¼
Y1

j¼sþ1

P(I j ¼ 0 jRj, Is1): ð2:5Þ

From equation (2.1), PðI j ¼ 0 jRj, Is1Þ ¼ e�L jR j (also see [3])
and we obtain equation (2.6), with future L j computed by incor-
porating the I jsþ1 ¼ 0 terms from above as pseudo-data [15,27].

log zs ¼ �
X1

j¼sþ1

L jR j: ð2:6Þ

Hence, the elimination probability has an uncomplicated log-
linear dependence on the sample sequence of reproduction num-
bers and accordingly depends on all future spreading events.
This type of relationship is maintained even if we generalize
equation (2.1) to include case observation noise (e.g. due to
importation or delays) [22,28]. Methods for inferring zs given
these noise sources are currently being developed in [10,15].

While equation (2.5) can be computed at any time, commonly
elimination is only considered when zero-case days are observed
in sequence [13,16]. Keeping to convention, we will often present
results in terms of Δs, which is the time relative to that at which
incidence was last non-zero, t0. We compute the relative time at
which the epidemic is eliminated with a% confidence, given
the transmission event sample R1

sþ1 , as tα in equation (2.7).

ta ¼ argmin
s

zs � t0 � a

100
: ð2:7Þ

The above equation also gives the time that an epidemic, com-
posed of spreading events R1

sþ1, can be declared over with at
least a% confidence [15,29]. This confidence reflects the remain-
ing variability among possible epidemic trajectories despite
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Figure 1. VM ratios of incidence and reproduction numbers. We simulate 2000
epidemics under a reproduction number profile that has fixed mean of 2.5 up to
s = 80 and then a step change fall to 0.5 until elimination, using the generation
time distribution from [14]. We vary the offspring dispersion parameter k of the
renewal model used to generate the epidemics and compute the VM ratios of
event reproduction numbers Rs and incidence Is at every time s. In line with
equation (2.4), there is a strong correspondence between VM[Rs] and VM[Is]
(mediated by the total infectiousness Ls) and smaller k (larger heterogeneity)
inflates both values.
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conditioning on the fixed future R1
sþ1 sample and the past

observed incidence Is1.
If we think of the epidemic as a process that generates infec-

tions then its survival function, which captures the probability of
the epidemic propagating at least 1 future case after s, is precisely
1− zs. The mean lifetime of the epidemic then follows from
survival theory (where it is called the mean time to failure) asP1

s¼1ð1� zsÞ [30]. Given R1
sþ1, we can compute this lifetime

exactly, as L1
sþ1 only depends on future incidence values,

which are all 0 for this condition [15]. Hence zs has an influential
role in determining the risk of epidemic survival. As end-of-epi-
demic declaration times depend on zs, this risk has potentially
important public health and economic implications.

However, we do not know what sample from m1
sþ1 will be

realized, and must account for this uncertainty, which derives
from the heterogeneity in transmission and hence depends on
the levels of super- and sub-spreading. Since, practically, an
authority would want a single time for declaring an epidemic
to be eliminated or over [16], we need some way of summarizing
the range of zs curves and hence tα values that could result. We pro-
pose two such statistics: the mean �zs and the minimum zs,min. The
resulting declaration times are then �ta and tα,max. The mean elim-
ination probability was used in [15], while the worst case
(minimum) was proposed in [29].

We derive �zs exactly from equation (2.6) as E½e�
P1

j¼sþ1
RjL j �.

This yields equation (2.8) withMRj as the moment generating func-
tion according to the distribution ofRj, whichwe evaluate atL j [31].

�zs ¼ E½zs� ¼
Q1

j¼sþ1 MRjð�L jÞ: ð2:8Þ

This formulation has immediate consequences [20]. First,
�zs �

Q1
j¼sþ1 e�L jm j . Ignoringheterogeneitywill therefore on average

result in ourunderestimating the eliminationprobabilityandsoover-
estimating when the outbreak is over with a% confidence. This
extends earlier works, which used simpler branching process epi-
demic models to link heterogeneity and extinction [2], to more
realistic renewal epidemic descriptions [7].

Second, because MRj has a unique correspondence to the dis-
tribution over Rj [31], sub- and super-spreading events have
direct roles in shaping the mean elimination probability. For
example, given some threshold c, Chernoff’s bound stipulates
that MRj ð�L jÞ � e�cL jPðRj � cÞ, with PðRj � cÞ specifying our
spreading event likelihoods. Last, under the gamma distribution
in equation (2.1) we can explicitly compute equation (2.8) to
obtain equation (2.9) [31].

�zs ¼
Y1

j¼sþ1

(1þ L jm jk
�1)�k: ð2:9Þ

The above equation provides intuition into how the offspring dis-
persion parameter k controls the mean elimination probability
and hence the epidemic lifetime. Applying the product rule,
we can show that d�zs=dk , 0, proving that as heterogeneity
rises, i.e. k gets smaller, �zs (and hence �taÞ always increases
(respectively, decreases).

While the worst case elimination probability, zs,min, does not
admit such analytic development and so is computed via simu-
lation, we gain some insight about its behaviour from the
variance among the zs curves: V½zs� ¼ V ½Q1

j¼sþ1 e
�L jR j �. Each

term in this product is independent so we decompose this toQ1
j¼sþ1 E½e�2L jR j � �Q1

j¼sþ1 E½e�L jR j �2 to get equation (2.10) with
�zs taken from equation (2.8).

V½zs� ¼
Y1

j¼sþ1

MRjð�2L jÞ � �z2s : ð2:10Þ

We obtain an explicit form for equation (2.10) by substituting
the moment generating functions for gamma distributions as in
equation (2.9). It follows that limk!1 V½zs� ¼ 0. We generally find
that as k falls, variation among zs curves and hence possible tα
times increases (see Results). The gap between tα,max and �ta,
consequently, widens with heterogeneity.

Understanding how variation in Rsmaps to uncertainty in elim-
ination times is themain focus of this work. Specifically, we examine
how changes to this variation, due to different control or case ascer-
tainment strategies, express themselves in our ability to reliably
adjudge the endpoint of the epidemic. In the Results, we exploit
the mathematical framework developed here to investigate how �zs
and zs,min, which are two measures of the aggregate risk of an epi-
demic, depend on super- and sub-spreading events. Based on
these, we attempt to derive schemes for reliably eliminating an epi-
demic, i.e. reducing its lifetime with minimum risk. This moment
generating function approach to epidemic elimination or fade-out
is novel, as far as we are aware.
3. Results
3.1. Reducing variation among reproduction numbers
In equation (2.4), we showed howVM ratios of the event repro-
duction numbers, Rs, directly control those of the incidence
values, Is. We first verify this relationship on numerous epi-
demics simulated according to the heterogeneous renewal
model of equation (2.1). We consider epidemics characterized
by an initial exponential growth followed by drastic control
(e.g. a lockdown measure) and compute the VM ratios of
both Is and Rs for all times s of the epidemics. Figure 1 shows
that as heterogeneity increases (i.e. k falls) the VM of Is and
Rs both rise, despite different mean values across the possible
epidemics as well as varying total infectiousness Ls.

This solidifies the idea of modulating VM[Is] via the control
of VM[Rs]. We consider three main strategies ((i)–(iii) below)
for implementing control in a heterogeneous epidemic. To sim-
plify notation, we drop the subscript s and constrain all control
protocols to reduce themean reproduction number from μ to ρμ
with ρ≤ 1. Consequently, after control the new distribution
describing R satisfies

Ð1
0 PðRÞdR ¼ 1 and

Ð1
0 PðRÞRdR ¼ rm.

These descriptions equally model case reporting or ascertain-
ment schemes, where ρ now defines the sample or reporting
fraction instead [18].
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(i) Uniform control (constant reporting). Also called popu-
lation-wide control and introduced in [18], this protocol
assumes that all event reproduction numbers are
reduced by the constant fraction ρ. This is achieved by
rescaling equation (2.1) so that R∼Gam(k, ρμk−1) and
is the simplest type of control that can be applied.
Uniform control admits the analytic VM[R] = ρμk−1,
which falls linearly as ρ→ 0. It is equivalent to constant
(or Bernoulli) reporting with the probability of observ-
ing or sampling any type of spreading event set at ρ.

(ii) Super-spreading control (size-inverse reporting). Also
called targeted control, and formulated in [7], this strat-
egy disproportionately reduces super-spreading events
and is within the class of individual-specific control
measures detailed in [2]. It is implemented by upper-
truncating the distribution of R at some maximum
value b and rescaling so that

Ð b
0 PðRÞdR ¼ 1 andÐ b

0 PðRÞRdR ¼ rm. Here b defines the event R we
consider to be associated with super-spreading. This
is equivalent to size-inverse case ascertainment where
super-spreading events are under-sampled. In this ana-
logy b is the right under-reporting point, i.e. we never
observe events caused by R > b.

(iii) Sub-spreading control (size-biased or preferential report-
ing). This is a novel intervention that we introduce. It
focuses on removing the sub-spreading events and is the
converse of (ii). The gamma distribution of R is lower-
truncated at some minimum value a and rescaled so thatÐ1
a PðRÞdR ¼ 1 and

Ð1
a PðRÞRdR ¼ rm. We use a to

define sub-spreading events. This scheme is analogous
to a size-biased case reporting strategy in which events
producing few cases are under-sampled, with a as the
left under-reporting point of the R distribution, i.e. we
never sample R< a. As (ii) and (iii) do not admit simple
VM expressions we investigate them through simulation.

As a→ 0 and b→∞ all three control or reporting measures
(and the scale parameter of their respective gamma R distri-
butions) converge. They also converge as k→∞ since the R
distribution becomes degenerate at ρμ under these conditions
and there is no heterogeneity. For simplicity, from this point
we will usually refer to schemes (i)–(iii) via their control classi-
fication, switching to their reporting analogue only later when
discussing results. We treat uniform control as a baseline since
it ignores the specific form of the R distribution. While prefer-
entially limiting super-spreading is sensible, and has been
shown to have superior performance relative to uniform con-
trol [2], sub-spreading control has, to our knowledge, not been
investigated. This is likely because it seems counterintuitive to
focus on events with low transmission potential.

However, we propose sub-spreading control based on the
observation that a key source of the extra variability that over-
dispersed distributions possess results from the increased prob-
ability of observing a zero sample, i.e. zero inflation [32]. In an
epidemicwith heterogeneous transmission an excess of zero sec-
ondary cases would likely result from the sub-spreading event
reproduction numbers. Here we investigate, for a fixed mean
control effort ρ, whether the excess zeros or the extreme-tail
events (i.e. the super-spreading ones) are more critical for shap-
ing VM[I] (later we map VM[I] onto our elimination
probabilities). We examine various k and compute the VM
ratios for control strategies (i)–(iii) in figure 2 for increasing con-
trol effort, i.e. decreasing ρ.
Intriguingly, we find that when the controlled mean R, i.e.
ρμ, is large, super-spreading control is most effective in redu-
cing the VM ratio of the reproduction numbers. However, as
the epidemic is better controlled and so ρμ falls, sub-spread-
ing control becomes the best intervention with respect to the
VM ratio. This would make sense if as the mean controlled
reproduction number falls the tail (super-spreading) events
become increasingly improbable, meaning that most of the
variability derives from the sub-spreading events. We con-
firm this notion in figure 3, which examines the cumulative
distribution function F(R) at the extreme values of figure 2.

Herewe see that, at large ρμ, limiting super-spreading forces
F(R) towards 1 at the fastest rate, i.e. the clippingof super-spread-
ingevents closes the effective support of theRdistributionearlier
than the othermeasures. In this regime, the tail events of the dis-
tribution are important. Elimination is not practically possible at
such a large reproduction number, but this provides an interest-
ing perspective for comparing to the low ρμ regime. There,
because the tail events are strongly improbable, super-spreading
and uniform control converge in behaviour. Interestingly, sub-
spreading control forces F(R) more quickly to 1 than other
measures, by truncating the small reproduction numbers. This
may explain its performance in figure 2.

This assessment of the VM ratios and the effective repro-
duction number support (i.e. how quickly F(R) converges to
1) does not invalidate the results of [2], where a variant of
super-spreading control increased VM ratios. We will resolve
these apparent contradictions in a later section, highlighting
the difference between renewal models and the branching
processes used in [2]. We next investigate whether these
reductions in VM[R] and VM[I ] actually improve our ability
to constrain zs and the epidemic lifetime and hence to achieve
reliable end-of-epidemic declaration times.

3.2. Reducing variation among elimination times
We examine two data-justified measures of the end of an epi-
demic: the mean elimination time �ta and the maximum
elimination time tα,max. Both have previously been used for
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assessing end-of-epidemic declarations [13,15]. As is conven-
tion, we focus on 95% confidence and set α = 95. Times �ta and
tα,max are obtained by finding when the mean and minimum
of the zs curves, i.e. �zs and zs,min, generated from possible
future epidemic trajectories, first cross 0.95, respectively. We
generate possible zs by drawing samples from the distributions
of R1

sþ1 and then computing equation (2.6). All zs curves
incorporate the known past incidence Is1 (see Methods).

We set Is1 to the daily new infections observed over the
MERS-CoVepidemic in South Korea in 2015, whichwas inves-
tigated in [29].We then compute probabilities of zero case-days
forward in time as in [15] but for various hypothetical k-values
and assess the elimination statistics using theR1

sþ1 distributions
of the control measures (i)–(iii) from above. In appendix A, we
perform complementary analyses using the incidence of the
SARS 2003 epidemic in Hong Kong from [22] and simulated
EVD data from [33], obtaining consistent results.

In figure 4, we present a range of mean and worst case zs
curves for various k with blue indicating the smallest k and
red the largest. All times are given relative to the last
observed non-zero case day. For all control measures, we
notice an interesting trend. First, and as expected from
equation (2.8), we see that k ranks the mean zs curves, with
more heterogeneity (smaller k) leading to a larger �zs. This be-
haviour is also consistent with [2,30]. Second, we find that this
ranking is inverted when we consider the worst case zs,min

instead, i.e. epidemics with more heterogeneous transmission
have larger worst case extinction or fade-out times.

This result is striking. It means that control actions which
increase heterogeneity, and have been proposed as the most
effective type of interventions [2], may lead to a false sense of
confidence in the end of the epidemic. This follows from their
larger worst case elimination times. Heterogeneity has the
contrasting effect of contracting the mean lifetime of the epi-
demic but prolonging its maximum lifetime (counted in zero-
case days). Since authorities would want a single decision
time for safely declaring an epidemic to be over [16] and relax-
ing interventions (e.g. to re-open trade or travel), this creates a
practical, potentially costly and unexpected complication.

However, we observe that non-uniform control measures
can help alleviate this problem. The sub-spreading control
scheme considerably shrinks the variation among zs curves.
This proceeds from the results of the previous section, where
we found that, at small mean reproduction numbers (which
is realisticwhenwe are near the tail or end of an epidemic), lim-
iting sub-spreading significantly reduces VM[Rs] and hence
VM[Is] (see equation (2.4)). We assess this in more detail by
examining all the zs curves, which led to the means and
minima in figure 4, and the distributions of the 95%declaration
times, t95, that result. We provide these in figure 5.

As k becomes larger the difference among all control
measures expectedly shrinks. For epidemics with signifi-
cant heterogeneity (k < 1), we observe that both uniform and
super-spreading control result in large variations in zs (red
and grey curves in figure 5a, which mostly overlay each
other). This manifests in a notable spread of 95% declaration
times (red and grey bars of figure 5b, also overlaid). Sub-spread-
ing control is, however, able to suppress much of this variation
yielding more deterministic elimination probabilities and
declaration times (blue curves and bars in figure 5) and thus
minimizing the possibility of early or late declarations.

We observe consistency in this trend for both EVD and
SARS incidence curves in figure 7 of appendix A. We further
confirm the ability of sub-spreading control as a means of
making heterogeneous incidence curves more deterministic



1.0

0.5

0 10 20
uniform super-spreading sub-spreading

uniform super-spreading sub-spreading

z s
 | 

k 
=

 0
.1

1.0

0.5

0 10 20

z s
 | 

k 
=

 0
.5

1.0

0.5

0 10 20

z s
 | 

k 
=

 1

1.0

0.5

0 10 20

z s
 | 

k 
=

 2

0.6

0.4

0.2

0
5 10 2015

0.6

0.4

0.2

0
5 10 20

20

15

P
(t

95
 | 

k 
=

 0
.1

)

P
(t

95
 | 

k 
=

 0
.5

)

0.6

0.4

0.2

0
5 10 2015

0.6

0.4

0.2

0
5 10 15

P
(t

95
 | 

k 
=

 1
)

P
(t

95
 | 

k 
=

 2
)

Ds (days) Ds (days)

t95 t95

(a)

(b)

Figure 5. Elimination curves and declaration times for various control strategies. We compute elimination probabilities (zs) of future trajectories of zero case-days
starting from the incidence data of the MERS-CoV epidemic in South Korea in 2015 and in line with [29]. Each trajectory is formed by sampling from the future
reproduction number, R1sþ1, distributions for uniform, super-spreading and sub-spreading control measures. This procedure is repeated for 2000 possible trajectories.
(a) The zs distribution from these trajectories for various offspring dispersion parameters k and (b) the corresponding 95% declaration times (t95). All times are
relative to that of the last observed case and we use a mean controlled reproduction number of ρμ = 0.5 at every future time. We find that sub-spreading control is
most effective at reducing the variability (or equivalently increasing the reliability) of both zs and t95. We bolster this assertion with additional examples in figure 7.

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210444

7

in behaviour by simulating complete epidemic trajectories
under each control measure in the bottom panel of figure 6.
There we see that the VM ratios of the incidence are indeed
minimized by sub-spreading control measures (the mean
incidence from all control measures there is approximately
the same).

At this point, we re-interpret these results from the
perspective of case ascertainment. The similarity of super-
spreading and uniform control means that reporting strat-
egies that sample possible spreading events with a constant
probability or inversely to their reproduction numbers have
approximately the same effect on elimination waiting times.
This likely follows from the vanishingly low probability of
super-spreading. However, size-biased sampling, which is
not only the analogue to sub-spreading control, but also
likely to occur in practice [18], has an important effect. Failing
to observe sub-spreading events leads to a strongly overcon-
fident view of elimination. The epidemic tail appears far less
variable when those events are excluded, leading to risky
end-of-epidemic declarations.

Last, we comment on differences between our renewal
model approach and the Galton–Watson (GW) branching pro-
cess used in [2]. Both models have significant dynamical
disparities. Specifically, GW processes are truly only valid
early in an epidemic, use a fixed generation time and assume
that the number of infected in the next generation only depend
on those in the current generation. These characteristics make
the GW process unsuitable for the analysis of elimination stat-
istics [7], especially when the generation time distribution is
known (a) to be non-degenerate, (b) to have long memory and
(c) to determine the epidemic growth rate [12,20,34].

Further, our problem of interest is ill defined for
GW processes since, under these models, we always obtain
t95 = 1 (time is now defined in generations). This follows as
PðP1

j¼sþ1 I j ¼ 0 j Is ¼ 0Þ ¼ 1. Our results therefore do not
apply to GW processes and should not be expected to corre-
spond with computations of the probability of extinction
from [2]. Nevertheless, we make some key comparisons. In
[2], increasing heterogeneity elevated the extinction probability
of an epidemic by promoting early burn-out. This partially
holds true for renewal models, but (a) mostly affects t0 and
(b) is not meaningful here as we condition on a significant epi-
demic having existed.

Since elimination measures only become an important
consideration after t0 and for epidemics of notable size
[16,29], burn-out due to overdispersion does not benefit our
analysis. The extra dynamics beyond t0, which do not exist
for GW processes, form our problem of interest. However,
the VM ratio behaviour of our control schemes (i)–(iii) is
quite general and still works under GW models. In figure 6,
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we show that the GW process (top panel) conserves the
ordering of VM ratios from the renewal model (bottom
panel), hence confirming the relative importance of sub-
spreading control for achieving reliable elimination.
4. Discussion
Understanding how transmission heterogeneity shapes the
dynamics of diverse phases of an emerging epidemic is cru-
cial if we are to safely and efficiently apply or relax
interventions during those phases. While much research has
focused on super-spreading and the growing phases of
epidemics, sub-spreading and the dynamics of waning infec-
tious diseases have been understudied [9,30]. In this paper,
we investigated both, by developing a general framework
to measure how the variation or heterogeneity (embodied
by k) around mean transmission at some time s (summarized
by μs, the mean of Rs) engenders risk in the probability of
epidemic elimination, zs.

We extended the popular theory of transmission hetero-
geneity from [2] to precisely describe how variations (via
VM ratios) in event reproduction numbers, Rs, manifest in
fluctuations of the incidence, Is (figure 1). The resulting pro-
portional relationship meant that the Rs distribution directly
modulates the observed Is curve [24]. We then generalized
the formulae of [3,15] to derive how these variations propa-
gate uncertainty onto zs. Since end-of-epidemic declarations
depend on when zs crosses a confidence threshold, this uncer-
tainty makes adjudging when an epidemic is over complex,
risky and potentially costly [13,16].

Using our framework, we found that when epidemics are
strongly heterogeneous, i.e. k < 1, the maximum and mean
declaration times, relative to that of the last observed case,
depend contrastingly on k (figure 4). Although the average
time to declaration decreases as k falls, supporting previous
work linking heterogeneity to epidemic extinction [14], the con-
comitant increase in variabilitymeans that the safest declaration
time actually increases and the risk of early or late declarations
can be severely amplified. Variation originating from trans-
mission heterogeneity is therefore not beneficial for achieving
safe and reliable end-of-epidemic declarations.

Consequently, we investigated if targeted control can ame-
liorate this end-of-epidemic volatility. We considered three
control schemes (for the same mean level of control ρ), which
were non-selective or targeted either super- or sub-spreading
(figures 2 and 3). Intriguingly, we found that, because the con-
trolled mean of the event reproduction numbers ρμs is below 1
at pre-elimination settings, curbing super-spreading only mar-
ginally improved on non-selective approaches. However,
sub-spreading appeared to be the main contributor to end-of-
epidemic declaration risk, meaning limiting those events can
significantly reduce that risk; forcing the epidemic tail to be
more deterministic and increasing the reliability of resulting
intervention relaxation policies.

This result, while new and surprising, is supported by cur-
rent understanding. Overdispersed distributions have two
defining characteristics: tall heads and fat tails [24], where
head and tail refer to the left and right ends of our Rs distri-
butions. Since ρμs < 1 near elimination and because we only
start measuring time once a sequence of days with no cases
appear (in accordance with official guidelines [16]) fat tail
events are extremely unlikely to affect epidemic dynamics. Con-
sequently, it is the tall head, i.e. the excess of events with Rs ≪
ρμs, which is responsible for sustained overdispersion. Curbing
sub-spreading suppresses this remaining source of risk.

We validated these theories on empirical MERS-CoV, SARS
and simulated EVD epidemics (where we computed forward
probabilities of no future cases based on these given data) and
observed significant reductions in end-of-epidemic declaration
time spread (figures 5 and 7) when sub-spreading was con-
trolled. The conditions under which these effects were
prominent (when k < 0.5) are realistic for these and many
other infectious diseases [2,26]. An efficient strategy for control-
ling and then reliably eliminating an epidemic might therefore
re-direct interventions from targeting super-spreading to
sub-spreading transmission as infections enter waning phases.

Unfortunately, such selective strategiesmay be infeasible or
difficult to realize. Predicting or simply identifying specific
spreading event-types has proven difficult and hampered
attempts at targeting super-spreading [8]. As sub-spreading
frequently involves zero secondary cases, these events may
be significantly harder to investigate. Intensive contact tracing
and isolation schemes can help ameliorate some of these issues.
Ongoing studies into associations amongmeasurable traits, for
example, viral loads or symptom severity, and infectiousness
or transmissibility, may also make identifying and curbing
specific spreading events easier [35,36]. However, even if
these identification problems are overcome, policy resistance
can nullify the benefits of targeted strategies [37].

Despite these points, our analysis of spreading events and
our framework have several practical implications. First, we
showed that the benefits of curbing super-spreading likely
diminish with incidence. If targeted control is more costly
than population-wide surveillance measures, this can support
policy switches as the epidemicwanes. Second,we exposed the
inherent risk of control measures that neglect sub-spreading.
This knowledge can evidence more risk-averse approaches
to end-of-epidemic declarations, in line with works such as
[14]. Third, key formulae within our framework (equations
(2.2)–(2.8) and (2.10)) are valid for arbitrary reproduction
number distributions. Consequently, we can test the influence
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of other types of heterogeneity (e.g. demographic or spatial
effects) on epidemic lifetimes and even incorporate empirical
effective reproduction number distributions when available.

An important consequence of our analyses emerges from
themathematical analogue between control and case ascertain-
ment [18]. Uniform, super-spreading and sub-spreading
control are equivalent to constant, size-inverse and size-
biased reporting. Size-biased reporting protocols are common
in practice and generally include any preferential sampling
scheme that observes infectious events with likelihoods that
grow with the number of secondary cases produced by that
event [24,38]. We investigated a specific size-biased scheme,
similar to that in [18], where sub-spreading events are unob-
served. This leads (by analogy to our sub-spreading control
results) to a drastic underestimation of the variance of possible
elimination times exhibited by heterogeneous epidemics.

Previously, it was shown that the mean end-of-epidemic
declaration time is biased by any type of under-reporting
[15]. As a result, practical surveillance schemes, which will
almost surely feature some degree of size-biased reporting,
are likely to promote simultaneously biased and overconfi-
dent end-of-epidemic declarations. These effects emphasize
why sustained high-quality epidemic monitoring is crucial
for guiding the relaxation of interventions or the reopening
of economies during the waning phases of outbreaks. In the
absence of such monitoring our results recommend a more
cautious approach to designating the end of an outbreak.

While the results we have presented expose the complex-
ities and biases in adjudging epidemic fade-out, there are
some limitations to our analyses. We have assumed that the
control effort or reporting rate of ρ can be realized with
equal ease for both the uniform and selective strategies and
that gamma or truncated gamma reproduction number
distributions are sensible. These are necessary and standard
assumptions for comparing strategies and sensibly summar-
izing heterogeneity [2,7] but their validity may depend on
the disease being considered and the properties (e.g. contact
networks) of the area under study. Scale may also matter. For
example, across larger regions population-wide measures
may more easily achieve a given ρ than more targeted ones.

Moreover, we have not accounted for how interventions
(e.g. lockdowns or quarantines) may alter the contact networks
and behaviours of individuals and hence the characteristics of
serial interval or generation time and offspring distributions
(which may vary across epidemic phases) [39]. Such changes
could affect the adequacy of the renewal models we have
employed or the practical effectiveness of the strategies we
have examined. While lack of data precludes improvement
here, we note that our framework for investigating epidemic
fade-out (a) is sufficiently general to handle empirical (and
non-gamma) reproduction number distributions if such
knowledge is available, (b) remains valid if up-to-date serial
intervals and dispersion parameters are used and (c) applies
to the waning phases of the epidemic, after most drastic
changes would likely have already settled.

Our frameworkprovides a general toolkit for testinghypoth-
eses about targeted controls or case ascertainment schemes and
measuring their influence on end-of-epidemic declaration times.
It can also be easily extended to include additional factors such
as imported cases or to investigate other types of heterogeneity
(e.g. age-based reproduction numbers) [15]. As the current
COVID-19 pandemic underscores, much still remains unknown
about the relative merits of elimination approaches, e.g. ‘zero
COVID’ strategies [11], and the influence of heterogeneity
[4,40]. Improved understanding of epidemic dynamics can
only aid preparedness and decision-making. We hope that
our framework, which exposed unexpected consequences of
understudied spreading events [19], can contribute towards
this goal and help inform safe intervention relaxation and
end-of-epidemic declaration strategies.
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Appendix A. Declaration time histograms for
SARS and EVD
See figure 7.
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