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Abstract: Over the past several years, the adoption of HealthCare Monitoring Systems (HCS) in
health centers and organizations like hospitals or eldery homes growth significantly. The adoption of
such systems is revolutionized by a propelling advancements in IoT and Blockchain technologies.
Owing to technological advancement in IoT sensors market, innovations in HCS to monitor patients
health status have motivated many countries to strength their efforts to support their citizens with
such care delivery systems under the directives of a physician who has access to patient’s data.
Nevertheless, secure data sharing is a principal patient’s concern to be comfort to use such systems.
Current HCS are not able to provide reassuring security policies. For that, one of our focus in this
work, is to provide security countermeasures, likewise cost-efficient solution for HCS by integrating
storage model based on Blockchain and Interplanetary File Systems (IPFS). Blockchain technology
is an emerging solution in pharmaceutical industry and starts to take place for HCS and allows
HealthCare providers to track connected devices and control access to shared data, hence protecting
patients’ privacy. Furthermore, the addition of Edge and Fog computing has improved HCS to react
in real-time and enhance their reliability. A variety of communication protocols can connect sensor
devices to edge/Fog layer and the best choice will depend upon connectivity requirements: range,
bandwidth, power, interoperability, security, and reliability. Instead, systems efficiency would decline
and hurt if communication protocol is inconsistent. LoRa (Long Range) communications technology
is emerging as the leader among Low-Power Wide-Area Networks (LPWANs) entering the IoT
domain benefiting from many features such as long-range distances and low power consumption.
This work proposes LoRaChainCare, an architecture model for HCS which combines the technologies
Blockchain, Fog/Edge computing, and the LoRa communication protocol. A real implementation of
LoRaChainCare system is presented and evaluated in terms of cost, run time and power consumption.

Keywords: healthcare; Internet-of-Things; blockchain; edge computing; fog computing; security;
LoRa; IPFS

1. Introduction

Over the past few years, different healthcare monitoring systems (HCS) have been
developed and proposed; aiming to collect, process, and analyze data acquired from
various sensors and devices. These systems are also responsible for monitoring and
observing patient vital signs. The advent of Internet of Things (IoT) technologies has
also facilitated such progress. In this context, the Internet of Health Things is an area
of uncompelling change and expansion in the new age of smart houses, smart cities,
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and all digital things [1,2]. The cloud computing paradigm has emerged as a solution
to develop HCS systems for patients’ monitoring. Such systems include many types of
medical sensors such as ECG, blood pressure, and oxygen monitor linked via a network to
the cloud for storage and processing in order to allow medical professionals to observe,
diagnose and give treatment to patients. In fact, apart the heath legislation and patient
rights and responsibilities, many countries have made efforts to establish HCS systems
and make health services accessible for all individuals of society. As an example, we cite
the Kingdom’s efforts to provide comprehensive health care in an accessible and simple
manner [3].

Cloud-based solution faces many design constraints related to network bottlenecks,
in particular bandwidth and energy [4], are shaping the design HCS. These constraints
are even more serious over the last years, when the amount of data is huge and QoS
demands in healthcare systems are increasing. In this context, according to industrial
report [5], the connected medical devices market was valued at USD 28.24 billion in
2020, and it is expected to reach USD 94.32 billion by 2026. Edge and Fog computing
are considered the key enabling paradigms to solve the network problems of the cloud
centralized computational model to more decentralized models. In these models, the edge
layer collects medical data from sensors, and transmits them to the fog layer, which in
turn performs the treatments and sends the results and observations to the cloud layer via
internet. However, both internet and cloud data centers are exposed to security threats.
As medical data have an important role in disease analysis and in diagnostic results,
securing patients’ health documents is of paramount interest, targeting more than one
privacy measures including access control and data integrity.

Recently, a wide range of IoT health applications and frameworks have been developed
in the one side to automate and make health services accessible to individuals, and in the
other side to facilitate medical data exchange between different actors in a secure and a rapid
way. It is to be noted that personal medical systems have many requirements, such as data
sharing, data security and consistency, data reliability, and convenience [6]. Traditional
healthcare systems are not able to meet these crucial requirements because they cannot
ensure the safe use and sharing of data in a secure and a controlled way. Hence, to face
reliability, fault tolerance and privacy challenges, Blockchain technology is recently adopted
in the medical and e-health domain [7–12]. This technology is a secure and transparent
distributed ledger, and it paves the way for a revolution in existing healthcare systems by
integrating its unique features [13–15]. However adopting such a computationally intensive-
based mechanism to a resource-constrained IoT devices and ecosystems is a challenging
task. In fact, multiple problems arise such as real-time processing, data security and
scalability and architectural based problems. Currently, to the best of our knowledge,
there are no studies that propose a real implementation of HCS and integrates Fog and
Blockchain technologie with a focus on the architectural and scalability issues. For example,
in [14], the proposed framework studies theoretically the transmission of health record
(HER) between Fog layer and Blockchain and no focus on the architectural and scalabilty
issues is presented, nor a proof of concept and framework evaluation have been made.
In this context, we propose LoRaChainCare, a HCS prototype model integrating Fog and
Blockchain to allow close to real-time data processing and scalable and secure patient’s
health. To mitigate real-time requirement, LoRaChainCare integrates Edge and Fog devices
supporting LoRa communication protocol which is a relevant communication technology
for healthcare systems by which energy and security issue are reliable in addition to a
long bandwidth transmission. In addition, LoRachaincare integrates a secure and scalable
storage model based on IPFS and blockchain technology.

Blockchain is a decentralized data management platform that provides immutability.
Thus, it can perfectly support file traceability metadata on a distributed file system like
IPFS, due to the similarity in their structure.

In this paper, we propose a novel IoT architecture integrating Blockchain and LoRa
network to monitor personal health care data in a secure and efficient process. Our proposed
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system is based on a multi-layer architecture to collect data from IoT sensing devices, share
it and store it to be analysed and accessible among different actors. The Edge/Sensor
computing layer collects data from different sources and send relevant ones to the upper
layer which is the Fog layer. This latter is based on the LoRa network. Then, the cloud
layer contains all the resources that will manage the recovered data from the lower layer.
A single main private permissioned Ethereum is also implemented to assure traceability
and security issues of the proposed HCS system. In this context, IPFS is combined with
the Blockchain technology to improve the storage of medical records. Finally, a Data
monitoring/Analytic layer allows to control and monitor the patients’ health data through
mobile or web applications.

This article first aims to review all related background in the context of fog computing,
Blockchain technology and IoT healthcare systems. Then, it discusses related work with a
particular focus on IoT-Blockchain platforms proposed in the healthcare domain. Finally,
a multi-layer IoT-based Blockchain framework integrating the LoRa network, named
LoRaChainCare, is proposed. A real case-study implementation is also presented and
evaluated in terms of Blockchain resources, data transmission time and power consumption.

In summary, major contributions of this article can be summarized as follows:

1. to present a background of the most prominent technologies related to Home Care
Systems mainly: Fog and Edge computing, Blockchain and smart contracts;

2. to discuss and compare the related work dealing with IoT-Blockchain platforms in the
context of e-healthcare;

3. to implement a multi-layer architecture based on IoT and Blockchain aiming to collect
and secure patients’ data access by healthcare service providers and stakeholders
while satisfying security, reliability and energy constraints.

The remainder of this paper is organized as follows. Section 2 introduces relevant
concepts addressed in the paper, in particular the basics of Fog and Edge computing, LoRa
communication protocol as well as Blockchain and smart contracts. Section 3 discusses
literature review. Section 4 presents our design and solution for a new IoT-Blockchain
healthcare system. Then, Section 5 highlights the architecture workflow. Section 6 details
the implementation process of such HCS system, while Section 7 analyses the obtained
experimental results in terms of cost, runtime and power consumption. Finally, Section 8
concludes the paper with a brief outlook on future works.

2. Background

The focus of this section is to depict the Edge and Fog computing paradigms. It also
presents LoRa communication protocol. Moreover, it gives definition and functionality of
Blockchain technology.

2.1. Edge and Fog Computing

Edge computing is the deployment of processing and storage resources near the
location where data are produced. It alleviates the central clouds work by distributing
some computations to processing devices located too close to IoT devices. Such tasks can
be data filtering, analysis, or signal converting. The local data processing vastly reduces
the transmission rate, occurring far less bandwidth and service delay than might otherwise.
The Edge computing integration becomes more important in healthcare systems [16–18] by
empowering it to react as fast as possible in emergency situations.

Fog is first introduced by CISCO, and it refers to the distributed infrastructure between
the Edge device and the cloud. It includes Fog nodes and the necessary network connections
for transporting the data. Any device with computing, storage and network connectivity
come under the definition of fog nodes [19–21]. Fog nodes allow data to be collected and
processed locally and reduce recurring transmissions over the cloud between Cloud and
Edge devices. The proximity of Fog nodes to both IoT devices and end users ensures
real-time computation and improved QoS [19,22].
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2.2. LoRa Communication Protocol

LoRaWAN technology offers a long-range transmission of low data rate with opti-
mized power consumption and a reduced cost. Indeed, data is transferred from the end
device (sensor node) to the LoRa gateway using free unlicensed frequency within the ISM
band so that it can be used, safely, for the e-health applications. Frequencies are ranged
from 868 MHz to 900 MHz. LoRaWAN is able to transmit data up to three miles (five
kilometers) in urban areas, and up to 10 miles (15 km) or more in rural areas. The other
main feature of the LoRaWAN is the low power consumption measured in milliwatts (mW)
so that some battery-operated devices can last for up to 10 years. LoRaWAN is deployed in
a star topology which is adapted for applications that require long-range communication
between a large number of devices that exchange small amounts of data (Data rate depends
mainly on the spreading factor). All the LoRaWAN features are detailed in [23].

The components of a typical LoRa-based architecture and are as follow:

• The end devices: are the LoRa nodes which send the data to the Gateways and they
are classified into 3 classes (A, B or C) depending on the node availability and its
power consumption.

• The LoRa server: handles the entire network including the up-link and down-link
communications coming respectively from the end device to the application server
and from the application server for the end devices. In the other hand, in this server,
several encryption/decryption processes are performed to ensure the data security.

• Gateway: is the bridge between the end devices and the LoRa server. Three frequency
channels and Internet protocol are supported to communicate respectively with end
devices and LoRa server.

• Join server: checks for the end device authentication to send encrypted data through
the LoRa network. The authorization is made through an activation process; Over-The-
Air-Activation (OTAA) or the Activation by Personalization (ABP). The encryption is
performed by the join server generating two session keys (NwKSkey and AppSkey).
Using the ABP technology, the session keys are set statically in the end device and
the network server, and they are not modified at any time. In the OTAA technology,
the generation of the session keys is done dynamically at each device re-connect or
reset. Consequently, the OTAA technique guaranties a better security in the data
transmission between the end device and the network server.

2.3. Blockchain and Smart Contracts

Blockchain, referred to as Distributed Ledger Technology (DLT) for transactions [24],
enabling all participating nodes to validate transactions related data, ensuring thus unal-
terable and transparent history of any digital asset. It eliminates the need for third-party
verification solving thus the problem of trust for sensitive data. All nodes of the net-
work agree at the ledger to put each transaction into a block and validate that block with
public key cryptography to append it to a chain. This validation process is referred as
mining. All miners maintain a copy of the entire chain of blocks. The resulting list of
blocks is chained using hash pointers and creates thus a tamper-evident data structure
or log that helps to track data provenance and traceability abilities. Indeed, the potential
of Blockchain is due to Smart contracts, which are algorithmic program codes, that can
execute aunonomously to perform transactions in Blockchain. They replace third par-
ties that centralize and manage the distributed ledger. All smart contract executions are
recorded on the Blockchain, and made therefore publicly visible by all nodes. Additionally,
Blockchain can help to decrease time and costs of information systems. The security of data
in Blockchain is ensured by its distributed data storage, secure protocols, and mainly its
consensus mechanism.

3. Literature Review

Different state-of-the-art eHealth architectures [25–32] have incorporated Fog and
Edge computing to make the processing and access of health medical data faster.
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In [30,31], authors considered hierarchical infrastructures composed of four layers:
IoT layer, Edge layer, Fog layer, and Cloud layer. In [31], the mobile device receives health
data from user’s sensors and provides the environmental and geolocation information to
send them along to the Fog node. In [30], the authors proposed Mobi-IoST, to address
the problem of a seamless connectivity between IoT devices and cloud servers due to
devices mobility.

In [29], the authors propose fall detection system architecture integrating smart LoRa-
based Edge gateways (Edge layer) and LoRa access points (fog layer). In their work,
health and contextual data are sent using Bluetooth Low Energy (BLE) to a LoRa gateway
for compression and forwarded later to the LoRa-based access point to RNN processing
(recurrent neural network) and distributed storing. Although system implementation
is presented, the authors only evaluated the precision of implemented RNN with no
evaluation considering Edge and Fog performance.

Although the aforementioned works have explored Fog and Edge computing for rapid
access and processing of data in healthcare systems, a weak interest is accorded to security
and privacy of patient’s data. Indeed, the distributed topology of Edge/Fog computing
increases the need for securing the network against the attacks.

Blockchain is a cutting-edge technology, which is gaining considerable interest, and in-
tegrated in many works [13,15,33–35] to cope with securing stored data and communication
within network. In [34], the authors propose a three-layer architecture where a Fog layer is
integrated between the healthcare sensing layer and cloud data centres. They integrate a
Blockchain model at the edge of the network that offers trust access and control over the
network. Each Fog node is a collection of blocks, smart contracts and ledgers. In addition
to endorse security, Blockchain technology allows for storing the records of transactions be-
tween the different entities. In [35], the authors proposed FogBus, a platform independent
framework, and presented a cost-efficient prototype for Sleep Apnea patients. The frame-
work integrates both blochchain and Fog computing. Fog Gateway Nodes are connected
to sensing layer via wireless/wired communication protocols such as Zigbee, Bluetooth
and NFC. Fog Computational nodes (FCNs) are provided with processing cores, memory
and bandwidth so that they are able to execute the back-end program of the applications.
Some FCNs are equipped with adequate security features and fault tolerant techniques
such as Blockchain and replication. In [13], patients’vital signs are remotely being moni-
tored by an immutable history log, providing thus a global access to medical information.
The focus of this work is the conceptual design of health data sharing systems based on
Hyperledger Fabric Blockchain-based smart contracts. Four layers compose the developed
system: connectivity layer (routing management, security management, message brokers
and network management), IoT physical layer of health (health devices), Blockchain IoT
service layer (Blockchain-related service), and application layer (user interaction). Sensor
data are sent by the gateway to the IoT server, which in turn, routes them to the Blockchain
where they will be saved in the WorldState (off chain). In [15], Ray et al. investigated the
integration of IoT and Blockchain for e-helathcare and discussed their features to harness
the IoT-centric health services. They proposed an IoBHealth data-flow architecture for
integrating Blockchain and IoT sensory data collected from patients to be securely accessed
and managed by healthcare service providers and stakeholders. The proposed IoBHealth
system is developed as an improved version of the existing MedRec architecture [36]. Its
ultimate aim is to transmit and manage the electronic health record (HER) in a decentralized
way and to guarantee its security, immutability and transparency between the different
stakeholders of healthcare industry. However, no experimental evaluation, nor a compar-
ison to prior work have been made. In [14], authors proposed a Blockchain leveraged
decentralized eHealth architecture integrating Edge and Fog devices and using Bluetooth or
ZigBee protocol for data transmission. The Fog devices run a Blockchain protocol. To cope
with the problem of large data storage on Blockchain, some works [37–39] merge smart
contracts with decentralized peer-to-peer Interplanetary File System (IPFS), which relies on
a global Distributed Hash Table (DHT) to provide HCS records sharing in IoT scenarios.
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These works leverage IPFS technology to improve data sharing and IoT communication in
untrusted environments.

The aforementioned works gave us a better understanding of main challenges in
existing HCS architectures. In Table 1, we give a summary of techniques or methods
adopted in the reviewed papers. We note that the concern in these papers is to bring
performance and security to healthcare systems. However, considering all reviewed paper
in Table 1, they fall into at least one of the following limitation: (i) papers do not justify the
means by which they choose the communication protocols to use between IoT layer and
Fog/Edge layer; and (ii) papers do not integrate Blockchain solution in their methodology
and/or in their evaluation; and (iii) articles do not consider the problem of large data
storing over Blockchain or cloud; and (iv) papers do not provide a system implementation.

Table 1. Comparative analysis of related works.

Layers * Communication
Protocols Blockchain HCS

Implementation IPFS Fog Devices

Ghosh et al. [30] (Mobi-IoST) E-F-C Not specified X X X Road Side
Unit

Mukherjee et al. [31] E-F-C Not specified X X Smartphone

Gi et al. [29] (Edge-AI) E-F-C LoRa X X X LoRa AP

Ray et al. [15] (IoBHealth) F-C Zigbee-Bluetooth X X Smartphone

Sharma et al. [33] F-C Not specified X X laptop

Shukla et al. [34] F-C Not specified X X X RaspberryPi

Tuli et al. [35] (FogBus) F-C Zigbee-Bluetooth X Smartphone

Jamil et al. [13] C Wifi X X

Steichen et al. [37] C Not specified X X

Nguyen et al. [38] F-C Not specified SmartPhone

Md. Ashraf et al. [14] E-F-C ZigBee-Bluetooth X X Smartphone

* E = Edge layer, F = Fog layer, C = Cloud layer; X = Not adopted, = Adopted.

4. Architecture Description

In this section, we describe the proposed architecture and we introduce the concept
of data transmission between layers. The proposed system contains superposed layers
in order to route the collected data from the lowest layer to the highest one. Using a
multi-layer system offers the following advantages:

• The modular aspect of the system facilitates the integration of several functionalities.
The upgrade and the maintenance of sub-systems doesn’t affect the entire architecture

• Designing highest layers is carried out with abstraction of the lowest ones. This
allows to discard the hassle of designing hardware components when developing the
software applications.

• Ensure the interoperability between heterogeneous components. In fact, the system
contains several components with different technical characteristics and connectivity
parameters. This heterogeneity is absorbed and supported in the lowest layers so that
the proposed applications will be addressed to all of them.

In the following section we describe the proposed architecture layers as well as the
participating actors.

4.1. System Actors

In the proposed architecture, several actors intervene to handle the patient data
recovered from the sensor layer. Main actors are presented in Figure 1.
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Figure 1. System Actors.

4.1.1. Main Healthcare Service Provider (MHSP)

This actor can be mainly a hospital administrators which monitor and handle all the
patients data, but also the other actors permissions. Indeed, the MHSP registers all the
patients with their relative data (Etehreum address, Name, Age, Phone number, the doctors
allowed to consult the patient data). When a patient needs an emergency service, the MHSP
is responsible to provide and to put in place the needed materials. Finally, the MHSP
registers the system actors with relative permissions.

4.1.2. Medical Staff (MS)

The medical staff represents any medicine practitioner working in the healthcare
system mainly including doctors, nurses and some paramedical persons. These well
defined MS can interact with their Patient’s medical records. In fact, each MS has specified
permissions related to the patients data. For example, doctors are allowed to monitor
stored data of their patients, as well as real-time data in order to edit a medical report about
the patient’s condition. Nurses are allowed to monitor the stored or the real time data.
And Finally, the paramedical staff is allowed to consult some required actions related to
patient (transferring patient with an ambulance, cleaning patient room, etc.).

4.1.3. Patient

Patient actor represents any person receiving or registered to receive medical treatment.
To guarantee the user’s self-sovereignty, while ensuring the patient’s right to privacy,
the patient could select the medical staff that could access to his personal data. Therefore,
he is allowed to monitor all his data and especially the doctor’s reports to follow up the
health and the treatment evolution.

4.2. Architecture Infrastructure

In order to ensure the best system requirements, it is necessary to implement an
appropriate infrastructure.

The infrastructure of the proposed approach contains a set of superposed layers which
are described below.

4.2.1. Edge/Sensor Computing Layer

The Edge/Sensor computing layer is the point of contact with patients, collecting
their health data and exchanging messages and communicating with devices for further
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monitoring. It provides also protocol interoperability by supporting various protocols
and standards. The data collection is ensured through several sensors that are passive
components used to collect all the data about the patient’s health. Many parameters could
be measured such as temperature, SPO2, heart rate. . . In addition, this layer contains
some actuators which receive the commands from the corresponding actors after the
data analysis. For example, when the data collected from the sensors indicate that the
patient need some treatment, doctors can give commands to the syringe driver to push the
appropriate quantity of drug.

These Sensors are connected to processing nodes. Each node analyzes, locally, the re-
covered data so that it can select the data to send to the next layer. Indeed, the patient’s
parameters are sensed periodically and sometimes there is no change between two suc-
cessive measurements. Consequently, it would be useless to send the same data to the
Cloud/Blockchain and to support extra fees to save insignificant data. This solution allows
optimizing the power consumption (since the sensor node consumes more energy when
using the wireless communication). Moreover, the proposed solution optimizes the use of
the cloud and Blockchain resources.

4.2.2. Fog/Network Layer

This layer includes all the gateways which receive the data from the Edge layer using
the LoRa network. Then the gateways transmit this data to the cloud layer using the wifi
network in order to be analyzed. In fact, LoRa is a Low Power Wide Area Network (LP-
WAN) which offers an optimised power consumption but with a limited data throughput
(1%). The end device sends data, using connected LoRa Antenna, to the LoRa Gateway
through an available channel. A LoRaWAN Gateway supports at least 3 frequency chan-
nels with a given bandwidth. For example 868.10 MHz, 868.30 MHz and 868.50 MHz are
supported by all the gateways with a bandwidth of 125 KHz.

The same end device is able to communicate with several gateways not only with an
exclusive one. After each transmission, this node changes the used channel randomly.

After receiving the data, the gateway sends it to the LoRa server using the Internet
Protocol. If the LoRa server receives the same data of the same end device through several
gateways, it eliminates duplication thanks to a frame counter included in the exchanged
payload. This frame counter is used also to reduce the risk of message being spied and
re-injected in the LoRa network by a hacker.

4.2.3. Cloud/Server Layer

This layer contains all the resources to manage the recovered data from the Fog layer.
It includes mainly the LoRa server, the Join server and the application server. In This part,
we will merge the LoRa server and the Join server as they manage all the LoRa network
including the exchanged data and the activation process. In this work we used the OTAA
process to allow the end device to integrate the LoRa network. Indeed, the security issue of
the OTAA activation process is better than the ABP’s one.

4.2.4. Blockchain Network

In our proposed model, we implement a single main private permissioned Ethereum
Blockchain to monitor the healthcare data of patient in HCS while ensuring his security
and privacy. In this network, participants may be known in advance and may be partially
trusted where smart contracts are used to manage interactions and roles agreed between
actors, and thus ensure the patient data privacy.

4.2.5. Data Monitoring/Analytics Layer

This layer contains sevaral tools to control the patient data:

• An off-chain InterPlanetary File System (IPFS) is used to store the user’s personal data,
such as the license of participation in the drug supply chain, ensuring the reliability,
accessibility and integrity of the stored data. Data integrity is preserved by generating
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a unique hash (i.e., the SHA-256 hash of the data) for each uploaded file on its server,
where only the IPFS hash, which acts as a pointer, is stored on the Blockchain and
accessible by the smart contract, and any changes that occur in any of the uploaded file
are reflected in the associated hash. In particular, the encrypted participation license
can be stored separately from the Blockchain in an off-chain storage (e.g., through
a private network of nodes, which is either joint or disjoint from the Blockchain
network), while the Blockchain only stores a pointer to the encrypted data residing
on this off-chain storage. This allows our proposed system to ensure the security and
privacy requirements, since IPFS hashes act as control pointers to encrypted data.

• Web Application: This application is used to manage all the actors permissions re-
garding the patient data. Each of these actors is able to authenticate through this web
application in order to communicate with the Blockchain network and the patient data.

5. Architecture Workflow

In this section, we describe the architecture workflow and the different functionalities
of the proposed system. Like illustrated in Figure 2, the architecture workflow could be
modeled with 4 parts. All these parts communicate together using exchanged data.

Figure 2. Proposed Architecture Workflow.

5.1. Patients and Medical Staff Registration

Before starting the data monitoring and storing processes, all the active actors should
be registered in the main system. The MHSP (Main Healthcare Service Provider) is respon-
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sible to register all the patients who benefit from the hospital services. The MS (Medical
Staff) is also registered to ensure the different hospital services.

• Patients Registration: It includes the registration of the hospitalized patients, but also
the elderly persons staying home and who’s health state is monitored by the hospital’s
medical staff. All the patients parameters are stored in the Blockchain such as the
Ethereum address which used as an ID, Name, Age, phone number, etc. Each patient
is affected to a corresponding MS to manage all the patient requirements. For example,
one or many doctors should monitor his health state, give the corresponding diagnosis
and set reports describing the proper treatment. Patients are able to authenticate in
the proposed system and they are authorized to consult their own data.

• Medical Staff Registration: The MS includes doctors, nurses and paramedical staff.
The MHSP register each one of them and set their personal parameters like Ethereum
address as an ID, Name, Role, Licence ID, etc. The most important thing is to affect
the right permissions to each one of the MS since the proposed system is an access
based control. Doctors are able to consult the historical data of the patients to which
they are assigned. They are also authorised to ask for real time data before writing a
report describing the health state and prescribing the right treatment.
Nurses are allowed to consult the historical and real time data of patient to which they
should carry on. They are able to request for a doctor intervention in case of critical
condition thought a web interface.
Finally, the paramedical staff are allowed to view all the MHSP requests related to a
given patient, such as preparing a specific meal to a patient, transferring a patient to
the radiology department, taking samples from a patient to the analysis laboratory,
etc. Each patient is selected with his ID so that all the needed parameters are shown to
the requested Medical Staff.

5.2. Data Processing

After registering the patients, specific sensors related to their disease are used to
measure all the needed parameters such as temperature, SPO2, ECG, blood pressure, sugar,
etc. These sensors are connected to a processing platform which performs three actions:

• Data Acquisition: The processing platform recovers data from several heterogeneous
sensors (digital, analog, serial...) so that it converts the data to a comprehensive
information.

• Data Processing: Classical systems proposed in the state of the art save all the re-
covered data in the off-chain data storage or in the cloud or Blockchain platforms.
For the off-chain servers, data could be modified or deleted due to malicious ac-
tions (for example in the case of death that is due to medical malpractice). For the
Cloud/Blockchain platforms, data storage requires resources fees. Thus, if the data is
stored periodically (Every 1 or 2 min...), it may cost huge expenses especially when
some data is insignificant (For example: The same “normal” temperature all the day).
Therefore, in the proposed architecture, several processing tasks are performed. Each
parameter is analysed and compared to given thresholds. Only values that exceed
the thresholds will be stored in the Blockchain platform. Algorithm 1 shows a heart
rate processing pseudo code. In this algorithm we studied the variation related to
the patient’s age. To do so, we used the traditional formula proposed by Fox et al in
1971 [40]. However the maximum heart rate can depend on other parameters like the
patient’s sex, diseases, activities, the drugs he takes.

• Data Modulation: After analyzing data and decide which one will be stored in the
Blockchain platform, the processing platform integrates a LoRa shield to ensure the
modulation then the transmission of the data with the LoRa protocol.
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Algorithm 1 Heart rate Analysis.

heart_R← Read heart rate from sensor
age← Read age from Blockchain . Using the patient ID
Function heart_rate (heart_R: Integer, Age: Integer): Boolean
Store← False
if (heart_R ≥ 120− age) or (heart_R ≤ 60) then

Store← True
end if
heart_rate← Store
EndFunction

5.3. Data Transmission

The LoRa Shield sends the modulated data through the integrated antenna to the
gateways whose ranges cover the considered end device. Indeed, the LoRa device is not
registered in a specific gateway but into a given LoRa server, so that the patient data can
reach several gateways in order to find an available channel. This data is demodulated in the
received gateway then sent to the LoRa server using the internet protocol. The transmitted
frame includes mainly the encrypted data using the AppSKey, the MIC field for the end
device authentication and the frame counter which is used for security purposes and data
duplicate elimination.

The data sent from the end device to the LoRa server is called up-link message. The data
sent from the Application/LoRa server to the end device is called down-link message.

Finally, the data reaches the application server. Many communication protocols
could be used such as the MQTT (Message Queuing Telemetry Transport)and the HTTP
POST. In the proposed architecture we used the MQTT protocol. Indeed, MQTT is a light
protocol based on the publisher-subscriber relationship instead of the client-server one.
Consequently, the application server has no longer to request data when it has no idea
when it will arrive. Especially in our proposed systems, the data are not sent periodically,
but it depends on the data processing performed in the end device. Patient data will be
transmitted to the subscriber client (Application server) as soon as it arrives to the Broker.

This application server could be used to:

• Store the patient data into the Blockchain platform.
• Recover patient parameters from the Blockchain (for example the Patient Age).
• Send user commands (patient or Medical Staff) to LoRa Devices requesting for real

time data (Down-link Stream).

5.4. Patient Monitoring

One of the main purpose of the proposed system is to ensure the patient data monitor-
ing. In Fact, this data can be monitored through mobile application or Web application.

• Mobile application: is used by the patient himself to consult his own data. After the
patient authentication, he is able to discover all about his health state (list of assigned
doctors, the diagnosis, drugs, doctor’s reports...) according to the permission given by
the MHSP.

• Web application: is used by the Medical Staff to monitor the patient information.
Indeed, after the authentication, each one of the Medical Staff is able to handle all the
application functionalities according to the permission given by the MHSP. For ex-
ample, doctor can consult all the patient data which are assigned to him and whose
parameters are stored in the Blockchain platform. He can ask for realtime parame-
ters using the LoRa down-link communication through the LoRa application server.
Finally, he is able to write a report about the patient health state. This file will be
uploaded by the doctor and stored into the IPFS platform. The Hash of the uploaded
file is then added to the Blockchain platform.
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Sensors are connected to the Arduino Uno platform which processes the data includ-
ing data acquisition, data conversion, checking whether measurements are in normal or
abnormal range and data modulation. Data modulation is performed to send patient data
to the LoRa Gateway using the Arduino connected to LoRa Shield.

6. Implementation Process

Our implementation environment is based on a case study in which a patient, reg-
istered by the MHSP, is equipped with vital-signs sensors to monitor his health data by
the MS.

In LoRaChainCare, data communication is ensured from the lowest layer (IoT end
devices) to the highest one (application and Blockchain platforms) thought the Fog-based
LoRa gateway. The IoT devices consist of health sensors such as ECG sensors, body
temperature sensors, SPo2 and heart rate sensors, etc., as well as environmental sensors
used to control the status of hospitalization rooms. The LoRa gateway is responsible
for processing requests (Joining) and providing the required sensors reading to the MS.
The Gateway sends the uplink data to the LoRa server and the Application server using
Internet Protocol and MQTT protocol respectively. Finally, data is stored in the Blockchain
platform. The proposed system uses the Ethereum Blockchain network [41] which uses
smart contract in order to make transactions and store data on the Blockchain’s registry. This
is achieved through the Solidity computational programming language, that stores smart
contract programs in the form of Ethereum Virtual Machine (EVM) bytecode, and enables
the execution of transactions in the form of function calls within that code/program.
The smart contract is a collection of code (its functions) and data (its state) that resides at a
specific address on the Ethereum Blockchain.

User accounts can then interact with a smart contract by submitting transactions
that execute a function defined on the smart contract. Likewise, transactions are logical
operations defined in the smart contract that can interact with assets. The transactions are
responsible for modifying the value of participants and assets in the Blockchain network.

Some account permissions allow user to submit files and reports into the IPFS dis-
tributed platform then store the Hash into the Blockchain in order to reduce the gas fees.

The implementation of the proposed system is divided into several interactive sub-
systems including mainly the hardware part which, includes the end nodes and the com-
munication protocols and the software part which, includes Blockchain, smart contracts,
web and mobile application.

6.1. Hardware Implementation

The hardware implementation consists of connecting sensors to Arduino Uno as well
as establishing communication with LoRa gateways. In Figure 3, we present the developed
LoRaChainCare system. For the LoRa network we used the Dragino Single Channel V2 kit
which includes the LG01-N gateway and the LoRa shield based on the sx1276 transceiver.

For the health monitoring, we used 2 healthcare sensors: ECG(AD8232) and Pulse
heart rate sensor (SEN-11574). For the patient room control, we used one environmental
sensor—DHT11 which measures the room temperature and humidity. The voltage supply
of these sensors is equal to 3.3 V. All these sensors are connected to an Arduino Uno
platform which is connected also to the LoRa shield.

Table 2 gives a summary about the used sensors. The normal ranges are set by the
MS depending on the patient parameters like (age, deceases, gender. . . ). In the case of the
ECG monitoring (AD8232), the sensor reports the heart activity which will be processed by
the Arduino platform to compute the Heart Rate variability (HRV). The heart rate sensor
measures the number of heart beat per minute and finally, the DHT11 sensor measures the
room temperature and humidity. If the readings exceeds the threshold values, detected
values will be transmitted through the LoRa network to the Blockchain platform and the
MS will be notified. Abnormal values indicate an urgent health status such as bradycardia
and tachycardia.
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Figure 3. Developed system for LoRaChainCare.

Table 2. Description of healthcare sensors connected to Arduino Uno.

Sensor Description Readings Possible Disease

ECG AD8232 reads the cardiac electrical activity PR interval first degree of heart block early activation of ventricules

DHT11 sensing room temprature and humudity PHR bradicardia, tachycardia

SEN-11574 sensing heartbeat rate H, T defined by MS

The different vital-sign readings can be visualized using serial plotter which is an
Arduino IDE tool.

In Figure 4, we depict the acquired ECG signal of the electrodes through the AD8232
sensor. As shown, this signal is a series of a P wave, QRS complex, and a T wave. The
P wave indicates atrial depolarization, the PR interval represents the time during which
a depolarization wave travels from the atria to the ventricles and finally R peak counts
the heart beats per minute. The period between two successive R peak determines the PR
interval.

The system will contribute towards possible cardiac abnormalities detection in case
of higher beats per minute ( high R peak ). Similarly, a PR interval variations indicates a
cardiac anomalies.

Figure 4. Visual Patient’s ECG sensor readings.
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6.2. Software Implementation

In this section, we present the HCS Blockchain implementation using Ethereum and the
development of the web-based user interface designed to interact with the HCS Blockchain
services.

6.2.1. Smart Contract Implementation

The smart contract algorithm, includes actors and transaction descriptions to be
established in the proposed healthcare Blockchain. Also, we demonstrate how the exploited
smart contracts were built with specific reference to the data structures and their interfaces.

In our system, we designed and implemented all the different functions within one
single smart contract written using solidity language and deployed on Ethereum Blockchain.
Table 3 summarizes the different actors, assets and transactions for the smart contract of
the proposed system. The actors includes MHSP, doctors, patients, and nurses, whereas
the assets are health sensors and related readings. Thus, a structure data type is used
to represent each actor in this proposed system. An effective data extraction through a
mapping of a key-value pair is provided by Solidity. Other members of the structure, such
as address, string and unsigned integer are used to represent different actor’s information.
A mapping variable for each actor is defined with actor’s address (in the form of address
datatype) as keys pointing to the corresponding actor’s structure. A code snippet for the
described data structure of patient is provided in Listing 1. Also, to increase security of
smart contract against unauthorized access, we implement an access control permissions to
control the functions that restrict the access to specific actor. Solidity provides a simple way
using modifiers. A modifier allows controlling the behavior of smart contract functions.
Listing 2 presents a code snippet for the modifiers that are used to restrict access to
patient only.

Listing 1. Related data structures of patient.

1 s t r u c t p a t i e n t {
2 s t r i n g r o l e ;
3 s t r i n g fullname ;
4 uint8 age ;
5 address p a t i e n t _ i d ;
6 s t r i n g [ ] f i l e s ;
7 address [ ] d o c t o r s _ l i s t ;
8 uint32 ph_num ;
9 s t r i n g [ ] d iagnos is ;

10 uint256 [ ] addmission_date ;
11 uint256 [ ] discharge_date ;
12 uint256 [ ] Temperature ;
13 s t r i n g [ ] Ecg ;
14 uint256 [ ] Heart_rate ;
15 uint256 [ ] Temp_Arr_Time ;
16 uint256 [ ] Ecg_Arr_Time ;
17 uint256 [ ] HR_Arr_Time ;
18 }
19 mapping ( address => p a t i e n t ) publ ic p a t i e n t s ;

Listing 2. Modifier of patient access control.

1 modif ier checkPat ient ( address id ) {
2 requi re ( p a t i e n t s [ id ] . p a t i e n t _ i d > address (0 x0 ) ) ;
3 _ ;
4 }
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Table 3. Smart Contract for the proposed LoRaChainCare.

Type Components Description

Asset Sensors and readings The health sensors and the related readings

MHSP Hospital administrator

Actors Doctor Medical staff

Patient User

Nurse Medical staff

Transactions

registerPatient Transaction which is used to register a patient

registerDoctor Transaction which is used to register a doctor

getPatientInfoForPatient Transaction which allows patient to get the Patient’s stored information

getPatientInfoForDoctor Transaction which allows allowed doctor to get the patient’s stored information

getPatientDataForPatient Transaction which allows patient to get the Patient’s stored sensors data

getDoctorInfo Transaction which allows to get the doctor’s stored information

getDoctorsList Transaction which allows to get the list of doctors of a patient

getPatientList Transaction which allows to get the list of patients of a doctors

grantAccessToDoctor Transaction which is used to search for a patient

addFileByPatient Transaction which allows patient to add medical report

addFileByDcAndMHSP Transaction which allows MHSP and allowed doctors to add medical report to patient

getFiles Transaction which allows patient to get his medical report

setEcg Transaction to store the collected data from ECG sensor

setTemperature Transaction to store the collected data from Temperature sensor

setHeartRate Transaction to store the collected data from Heart Rate sensor

getEcg Transaction to get the stored data of ECG sensor

getTemperature Transaction to get the stored data of Temperature sensor

getHeartRate Transaction to get the stored data of Heart Rate sensor

Listing 3 presents two functions of the scenario of secure patient’s health monitoring
from sensors based on Blockchain. The MHSP registers the Patient and Doctor in the
Blockchain network and passed as an input the required information, such as the Ethereum
address, full name, etc. Thereafter, the received data is well saved in the Blockchain
ledger. Then, the patient grants the access to get his vital-sign information using healthcare
sensors and to his medical information to a tier of the doctor. Therefore, this doctor is
allowed to monitor the vital-sign information of this patient based on the functions getECG,
getTemperature, and getHeartRate. The full Smart contract code is publicly available
in a Github repository (https://github.com/RawyaMars/LoraChainCare/blob/main/
contracts/healthCare.sol, 22 Decembere 2021).

Listing 3. Patient and Doctor registration Smart Contract functions.

1 func t ion r e g i s t e r P a t i e n t ( address _id , s t r i n g memory _fname , uint8 _age , uint32 _ph_num )
publ ic CheckMHSP ( ) {

2 p a t i e n t s [ _id ]= p a t i e n t ( { r o l e : " p a t i e n t " , p a t i e n t _ i d : _id , fullname : _fname , age : _age , ph_num :
_ph_num , f i l e s : new s t r i n g [ ] ( 0 ) , d o c t o r s _ l i s t : new address [ ] ( 0 ) , d iagnos is : new s t r i n g [ ] ( 0 ) ,
addmission_date : new uint256 [ ] ( 0 ) , d ischarge_date : new uint256 [ ] ( 0 ) , Temperature : new uint256
[ ] ( 0 ) , Ecg : new uint256 [ ] ( 0 ) , Heart_rate : new uint256 [ ] ( 0 ) , Temp_Arr_Time : new uint256 [ ] ( 0 ) ,
Ecg_Arr_Time : new uint256 [ ] ( 0 ) , HR_Arr_Time : new uint256 [ ] ( 0 ) } ) ;

3 }
4 func t ion r e g i s t e r D o c t o r ( address _id , s t r i n g memory _fname , uint8 _ l i c e n c e I d , uint32 _ph_num

) publ ic CheckMHSP ( ) {
5 doctors [ _id ] = doctor ( {
6 r o l e : " doctor " , doctor_id : _id , fullname : _fname , l i c e n c e I d : _ l i c e n c e I d , ph_num : _ph_num ,

p a t i e n t s _ l i s t : new address [ ] ( 0 )
7 } ) ;
8 }

https://github.com/RawyaMars/LoraChainCare/blob/main/contracts/healthCare.sol
https://github.com/RawyaMars/LoraChainCare/blob/main/contracts/healthCare.sol
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A Smart Contract Development Environment

In this work, we employed an Ethereum-based private network, where the Solidity
programming language, developed by Ethereum, was used for implementing the Smart
Contracts. At first, we designed and implemented all the different functions within one
single smart contract. At this phase, we used a Solidity compiler, called Remix IDE [42],
which allows testing simple transactions for correctness and eliminating bugs. In the second
phase of code development, we use a development environment and testing framework
for Ethereum, named Truffle, which is used also for the compilation and migration of the
Smart Contracts. Truffle is a stronger development environment compared to Remix as
it not only serves as a Solidity compiler but also allows flexible ways for testing smart
contracts by supporting different test environments.

6.2.2. Web Application Development

Once we completed a major development task on Ethereum’s smart contracts and
their implementation in the truffle project, we reached another major challenge. In order to
implement the described architecture, we developed a web application that would be based
on ReactJS [43] and represents all involved actors sides. React is a free and open source
front end JavaScript library enabling to build modern web applications. It was originally
developed and maintained by Facebook and its community. It is a versatile framework,
and it also has a short learning curve and allows for easy, testable and maintainable code.
Since it is the most interactive user interface, we have chosen to work with it. The user can
easily interact with the reactJs application interface where both the creation and deployment
of the contract is done. To retrieve information about the status of the Blockchain and
smart contracts, this ReactJs web application uses web3.js API, which is a JavaScript library
provided by Ethereum. The web3.js library offers developpers the ability to interact with
Smart Contracts through a HTTP or IPC connection. Hence, we also used the Metamask [44]
browser plugin to authenticate and interact with Smart Contracts in the browser. Figure 5
shows the web-based user prototype of the HCS Blockchain implemented using Ethereum.
The figure interface shows the different information and functionalities of the patient,
as well as patient healthcare data. The Figure 5a shows the patient information and the
patient’s functionalities including granting access to doctor and adding medical reports.
Figure 5b shows the patient’s records of the health care data.

(a)

Figure 5. Cont.
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(b)

Figure 5. Web-based patient interface of the HCS Blockchain implementation. (a) Patient information
and functionalities; (b) Patient monitored health care data.

7. Evaluation

To evaluate the performance of the proposed system, we used Ganache tool [45] to
test the functionalities of the implemented smart contracts. Ganache represents a personal
Blockchain for distributed application development on Ethereum. Ganache automatically
generates a set of private and public keys for each account with balance of 100 ETH
(Ether—a currency for transaction on Ethereum platform) and used for experimentation
along with the simulated node role. We used Ganache to conduct the performance of
the designed system in terms of cost analysis, runtime analysis, and power consumption
analysis. The Metamask browser extension was configured and connected to all these
nodes on the local host to the port 8545. The truffle was also configured over the same port
in order to talk to the Blockchain.

7.1. Cost Analysis

We provide a Cost Analysis of Ethereum smart contract code and function calls.
To perform a transaction on the Ethereum Blockchain, there are fees required to be send to
the Ethereum Blockchain, and those fees are what is called gas. A very useful and easy-
to-use way for estimating execution and transaction costs, which are key types of costs,
is offered by the MetaMask wallet. The execution cost represents costs associated with
performing various functions of the smart contract, whereas the transaction cost considers
several factors such as the deployment of the contract and the data sent to the Blockchain
network. As an illustration, Table 4 highlights the gas cost of each function implemented
in the smart contract, along with the costs converted to fiat currency (USD). In Solidity,
not all functions require a charge in gas for execution, indeed, only write transactions in
the Blockchain require gas. This means that calling a contract to view data (e.g., a balance,
contract variables, requesting data) does not require paying a gas fee. Table 4 demonstrates a
very low cost of the functions in USD. The highest cost function is the addFileByDcAndMHSP
function that is executed by the doctor and MHSP. Its relatively high cost could be explained
by the change of different variables in the function that requires storage, which are the IPFS
hash file and the patient address. Conversely, TemperatureSensor and HeartRateSensor
functions show the lowest cost, since they only send the value of temperature and the heart
rate pulse to the Ethereum Blockchain. From the observations shown above, it is evident
that gas charges are proportional to the number of times the state of the smart contract
has changed, also indicating that the storage can significantly raise costs, therefore it is
critically important that the user uploads the correct details, as there is no way to reverse
the function once it has been executed and the gas charges are permanently lost.
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Table 4. Gas Costs of the Smart Contract’s Functions.

Function Caller Function Name Gas Used Cost in Ether Cost in USD

MHSP signupPatient 132,585 0.00265170 $10.70

MHSP signupDoctor 131,283 0.00262566 $10.60

MHSP grantAccessToDoctorByMHSP 107,183 0.00214366 $8.65

MHSP/Doctor addFileByDcAndMHSP 276,361 0.00552722 $22.31

Patient addFileByPt 136,018 0.00272036 $10.98

Patient grantAccessToDoctor 76,746 0.00153492 $6.19

EcgSensor setECG 74,740 0.00149480 $6.20

TemperatureSensor setTemperature 74,733 0.00149466 $6.03

HeartRateSensor setHeartRate 74,743 0.00149486 $6.03

7.2. Runtime Analysis

The proposed system was implemented and evaluated according to the runtime
which means the transmission time from the end device to the application server and
the Blockchain platform. For this purpose, we performed several experimentations to
accurately evaluate the runtime in each layer. Figure 6 shows the performed processes to
compute the transmission time through each level.

Figure 6a shows some time details about the processing tasks in the end device. It
includes the program starting time, the time of the end node join request, join accept receipt,
the payload transmission, etc. These Times are represented in os_systicks which means
the number of systicks since the program starting time. In the LMIC (LoRaMAC-in-C)
configuration, the OSTICKS_PER_SEC is equal to 64,516 so that one second corresponds to
64,516 systicks. When the program starts. The end node has to send a join request to the
LoRa server to be able to send the patient data through the LoRa network, the Join request
process starts after 11,067 systicks next to the beginning of the program and the request is
sent effectively to the LoRa server at 00:26:16.01 (starting time + 129,851/64,516). All the
times in Table 5 are computed in the same way.

Figure 6a presents two separate processes: the Join request and the patient data
transmission. The Join request is performed only one time after the end device reset. Once
the end device is recognized by the LoRa network and the keys are generated, the patient
data will be continuously sent through the LoRa network with a duty cycle = 1%. The Join
request is processed in a total of 494,339 − 11,067 = 483,272 = 7.49 s.

Table 5. Transmission Time Details through all the Layers.

Process Time Process Time

Starting Time 00:26:14 payload sent by the End Device 00:26:21.68

Sending Join Request 00:26:16.01 Payload in the Gateway 00:26:24.4575

Join request in the Gateway 00:26:18 Payload in the LoRa Server 00:26:24.5378

Join Accept sent by the LoRa server 00:26:20 Payload in the application Server 00:26:24.8549

join Accept received 00:26:21.65 Payload in The Blockchain 00:26:25
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Figure 6. Transmission Time Determination.

Now the total data transmission time between the end device and the Blockchain
platform is determined using Equation (1)

Ttot = TED + TLoRa + TS + TB (1)

with TED corresponds to the time spent by the Arduino platform to prepare the Frame (data
encryption, headers...). Here, we are not considering the data acquisition from the sensors
and the data analysis. TLoRa is the time spent in the wireless communication through the
LoRa Gateway. TS corresponds to the runtime into the LoRa Server and the Application
server. Finally, TB is the Blockchain data storage time and it is expressed in timestamp.
According in Figure 6a–d,

Ttot = 0.03 + 2.86 + 0.32 + 0.15 = 3.36 s

These times are reported for a temperature transmission (integer) through the pro-
posed system. The Frame counts for 26 bytes including the encrypted payload and several
other parameters to be transmitted through three protocol layers (physical, MAC and
application).

The wireless communication corresponds to 85.11% of the total transmission time.
It includes The LoRa frequency based communication between the end device and the
Gateway as well as the Internet protocol communication between the Gateway and the
LoRa server.
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The TB is relatively small (4.4% of the total time) since we made experimentation in a
local Blockchain platform using Ganache environment. This Time could be considerably
higher if we target a public Blockchain platform.

7.3. Power Consumption Analysis

The main advantage of the LoRa Network is the reduced power consumption com-
pared to other long range networks such as 3G/4G. LoRa is called an LPWAN which stands
for Low Power Wide Area Network. When registering the end device into the LoRa server,
it is possible to choose one of the three LoRa classes of an end device which are A, B or
C described previously in Section 2.2. In this analysis, we adopted the class A node and
we measured the power consumption of the several performed tasks. Table 6 shows the
characteristics of the sx1276 LoRa transceiver which is used in this experimentation [46].

Table 6. Sx1276 Power characteristics.

Mode Current Supply Power Consumption

Idle 1.5 µA 4.95 µW

Transmission (Tx) 20 mA 66 mW

Receiver (Rx) 10.3 mA 34 mW

Table 7 shows the power consumption of the Atmega328p micro-controller as well as
the used sensors [47–50].

Table 7. Atmega328p Processor and sensors Power consumption.

Component Current Supply Power Consumption

Atmega328p (Active) 9 mA 45 mW
(Idle) 1.75 mA 8.75 mW

DHT11 0.3 mA 1 mW

AD8232 170 µA 561 µW

SEN-11574 3 mA 9.9 mW

In Order to estimate the power consumption of the end node, we consider the follow-
ing facts:

• The Atmega328p processor is active during all the performed tasks
• The Atmega328p processor goes in the Idle mode after the LoRa Rx window.
• In this section, we consider the Class A node where the Acknowledgment is received

in the first Rx Window
• We suppose that the measurements are done each 60 s and all the data is sent to the

LoRa server.

Taking account of these hypothesis, the power consumption at a given time is repre-
sented by Equation (2).

Ptot = Pproc + Pmeas + PTx + PRx (2)

where Pproc, Pmeas, PTx, PRx are respectively the power consumption of the processor, the mea-
surement functions, the transmission and receipt. According to the time measurements
performed in Figure 6 and Table 5 and the power model studied in [51], we reported the
power consumption and the dissipated power for each task in Table 8.
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Table 8. Power consumption and Time duration of active modes.

Mode Power Consumption (mW) Time Duration (s)
Active processor 45 5.68

Idle processor 8.75 54.32

Measurements 11.46 0.125

Transmission 66 0.58

Reception 34 1.12

Table 8 shows the power consumption of the active modes during the measurements
and Tx/Rx transmission. The processor is active during these modes (processing, mea-
surement, transmission and reception). All the remaining time to the next measurement,
the processor is set to the Idle mode.

The average of power consumption in a given period P is presented in the following
Formula (3)

Paver = (Eproc + Emeas + ETx + ERx + EIdle)/P (3)

Eproc, Emeas, ETx, ERx, EIdle are the energy dissipation of the different modes and which
are represented in the following Equation (4).

Eproc = PprocTproc,

Emeas = (Pproc + Pmeas)Tmeas,

ETx = (Pproc + PTx)TTx,

ERx = (Pproc + PRx)TRx,

EIdle = PIdleTIdle

(4)

According to Equations (3) and (4), the average of power consumption of the proposed
system is equal to 13.48 mW. If we use a 2000 mAH battery, the system autonomy is up to
one month. We notice that approximately 50% of the power consumption is caused by the
processor chip during the active mode. Optimising the processor power consumption could
enhance the system autonomy. Thus, more attention should be given to the micro-controller
platform, especially the use of the sleep mode as well as the operating frequency.

8. Conclusions

In this paper, we proposed LoRaChainCare an IoT Architecture based on Blockchain
technology for secure and authorized health data sharing, including patients vital signs and
medical reports, by leveraging qualitative technologies. Blockchain, Edge/Fog computing
and LoRaWAN were resorted to cope with the QoS requirements of HCS, comprising pri-
marily low cost, security, scalability and reliable performance. Our proposed system allows
health practitioner to monitor patients, ensuring health and medical safety are protected.
The private-permissioned blockchain storage using decentralized file sharing system based
on IPFS preserves security and solves Blockchain cost and scalability problem to share and
store large data. Furthermore, our proposed HCS integrates Edge and Fog layers between
IoT and Cloud layers. An Arduino Uno baord acts as an edge device and communicates
with the Fog device through a LoRa communication protocol which preserves reliable
performance. As a proof of concept, we implemented a full LoRaChainCare prototype.
The implemented system integrates environmental and health sensors connected to Ar-
duino Uno board that uses an ATmega328P microcontroller is embedded and equiped
with LoRa shield. Also, a web-user application is developed to allow medical staff to
explore Blockchain services or to upload high-storage report into IPFS. We integrate the
IPFS storage along with Ethereum to store large data that would be cost heavy if stored
on Blockchain.
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The evaluation conducted in terms of cost analysis, runtime analysis and power
consumption were performed using real IoT measurements. The cost analysis results
have demonstrated a low gas cost for the overall Euthereum related services. The actual
performance measurements show the efficiency of LoRaChainCare by ensuring a low
runtime and power consumption required to send a sensor reading from the edge layer to
the Blockchain. Powered by a 200 mAH battery, we estimate our system autonomy is up to
one month.

Future research needs to be applied to optimize LoRaChainCare autonomy by opt-
mizing microcontroller power consumption. Besides, for security and privacy concerns,
integrating machine learning algorithms would be effective to add some HCS system
prioritisation strategies. As with a vast, artificial intelligence and machine learning would
be revolutionary tools to empower HCS with much more security and efficiency.
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