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ABSTRACT
Background: Information on cardiovascular gene transcription is fragmented and

far behind the present requirements of the systems biology field. To create a

comprehensive source of data for cardiovascular gene regulation and to facilitate a

deeper understanding of genomic data, the CardioTF database was constructed. The

purpose of this database is to collate information on cardiovascular transcription

factors (TFs), position weight matrices (PWMs), and enhancer sequences discovered

using the ChIP-seq method.

Methods: The Naı̈ve-Bayes algorithm was used to classify literature and identify all

PubMed abstracts on cardiovascular development. The natural language learning

tool GNAT was then used to identify corresponding gene names embedded within

these abstracts. Local Perl scripts were used to integrate and dump data from

public databases into the MariaDB management system (MySQL). In-house R

scripts were written to analyze and visualize the results.

Results: Known cardiovascular TFs from humans and human homologs from fly,

Ciona, zebrafish, frog, chicken, and mouse were identified and deposited in the

database. PWMs from Jaspar, hPDI, and UniPROBE databases were deposited in the

database and can be retrieved using their corresponding TF names. Gene enhancer

regions from various sources of ChIP-seq data were deposited into the database and

were able to be visualized by graphical output. Besides biocuration, mouse homologs

of the 81 core cardiac TFs were selected using a Naı̈ve-Bayes approach and then by

intersecting four independent data sources: RNA profiling, expert annotation,

PubMed abstracts and phenotype.

Discussion: The CardioTF database can be used as a portal to construct

transcriptional network of cardiac development.

Availability and Implementation: Database URL: http://www.cardiosignal.org/

database/cardiotf.html.

Subjects Bioinformatics, Computational Biology, Cardiology, Computational Science

Keywords Database, Cardiac transcription factor, Position weight matrix, Cardiac enhancer

INTRODUCTION
Heart disease is a leading cause of morbidity and mortality in both infants and adults (van

der Linde et al., 2011; Celermajer et al., 2012). Insights into the cause of congenital

heart diseases (CHDs) have led to the identification of mutations in essential cardiac

transcription factors (TFs) (McCulley & Black, 2012). At the opposite end of the temporal
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spectrum, some cases of adult cardiac disease have been traced to variation in gene

regulatory sequences (Smith & Newton-Cheh, 2015). Thus, knowledge of TFs, their

downstream targets, and the regulatory genomic sequences involved in the heart

development will enhance our understanding of heart disease.

Although the vast amounts of data generated by high-throughput technologies are

archived in databases such as ArrayExpress or GEO of NCBI (Parkinson et al., 2011;

Barrett et al., 2013), they do not contain cohesive knowledge and lack expert annotation.

In addition, the field of cardiac development has experienced accelerated growth that

can be attributed to the use of various animal models. However, to our present

understanding, few efforts have been made to create a database which collects cardiac

transcriptional information across species, thereby limiting the benefits from an

evolutionary perspective to study heart development.

At present, two branching efforts have been made to archive and analyze the data. One

is to construct small scale databases, like BloodChIP or CistromeMap, which are dedicated

to collecting specific types of data (Chacon et al., 2014; Qin et al., 2012). The other

approach is to establish a number of consortia, like ENCODE, modENCODE, and

Epigenomics Roadmap, which are created to generate huge amounts of raw data and

archive them (Harrow et al., 2012; Celniker et al., 2009; Romanoski et al., 2015). In addition

to these projects, analysis and visualization software are valuable resources that lead to

deeper understanding of the data, and facilitate the generation of novel hypotheses.

Central databases, like Ensembl and UCSC also have search functions which allow

browsing of the results generated by the consortia mentioned above (Mangan et al., 2014;

Flicek et al., 2013). However, there are currently few databases committed exclusively to

cardiovascular development (Djordjevic et al., 2014). This prompted us to combine

information about TFs, position weight matrices (PWMs), and ChIP-seq results and

create a one-stop site for information on cardiovascular development, thus facilitating

systems biology studies in transcriptional network regulation (Blais & Dynlacht, 2005).

CardioTF was therefore constructed to capture all transcriptional information relating

to cardiovascular development. As a biocuration project, it documents TFs, PWM files

and enhancers across species, including fly, Ciona, fish, frog, chicken, mouse and human.

It also implements a search engine to query this information on the fly. In addition to

the data-mining effort, core cardiac TFs are identified using Naı̈ve-Bayes approach, which

can be used as a roadmap alongside with further annotation for enhancers to generate

gene regulatory network of heart development.

MATERIALS AND METHODS
The project’s code and data for reproducible research
All the Perl scripts and R codes were uploaded to GitHub (https://github.com/zhenyisong/).

The raw data including Weinstein meeting abstracts (positive_test_data plus positive_

training_data), negative dataset (negative_test_data plus negative_training_data) (in zip

format), intermediary files, which contain cross-validation results aswell as other public data

were uploaded to the CardioTF database server (http://www.cardiosignal.org/download/

download.html). These raw data and source codes can be used to verify the findings.
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Comprehensive collection and annotation of cardiac TFs
Cardiac TFs were previously defined as regulators of cardiac gene expression, which

can impact the process of heart development, particularly the initiation and

maintenance of the myocardium (Zhen et al., 2007). In the CardioSignal database,

efforts were also made to collate the cardiac specific enhancers which drive gene

expression in cardiomyocytes. At that time, cardiac specific transcriptional factors were

defined as genes that regulated expression of genes in the myocardium. During

development, the heart consists of three layers: the myocardium, epicardium and

endocardium (Moorman & Christoffels, 2003; Fishman & Chien, 1997). Additionally, at

least four heart-specific cell lineages have been characterized, including cardiomyocytes,

endothelial cells, epicardial cells, and fibroblasts, the latter is derived mainly from

epicardial cells through the epithelial to mesenchymal transition (EMT) (Evans et al.,

2010; Moore-Morris et al., 2016). By definition, cardiac TFs themselves should be

involved in the steps of specification, determination, patterning, and differentiation

that will result in a heart fate. In our CardioTF database we collated, cardiac TFs which

are expressed in all layers of heart. The goal of the CardioSignal database was to use a

machine learning approach to find cardiac enhancers at the genome scale. In contrast,

the CardioTF database is constructed to study systems biology of transcription

regulation. The cross-talk between different layers will also be explored using this

platform. In the initial screen, we identified human TFs from previously published

annotations (Wingender, Schoeps & Dönitz, 2013), hence it was named Wingender’s

annotation set. This dataset is comprehensive in annotating human TFs. We used these

human TFs, excluding human-specific TFs, as a reference to search for their homologs

in other species, including fly, Ciona, zebrafish, chicken, frog and mouse (Hutson &

Kirby, 2007). Human-specific TFs are defined as genes which have no homologs in the

mouse genome. The NCBI HomoloGene database (NCBI Resource Coordinators, 2015)

was used as a reference to assess homologs between human and mouse/zebrafish.

Human homologs from other were retrieved from their central databases, namely,

FlyBase (Fly), BirdBase (Chicken), Aniseed (Ciona) and Xenbase (Frog) (Attrill

et al., 2016; Karpinka et al., 2015; Schmidt et al., 2008; Tassy et al., 2010). We also

documented the expression status for mouse TFs from four independent sources which

included annotation from the Cardiovascular Gene Ontology Annotation Initiative

(Khodiyar et al., 2011), Mouse Genome Database (MGI) genes with cardiovascular

phenotypes (Blake et al., 2014), PubMed abstract parsing results and RNA expression

profiling results.

TFs from PubMed abstract parsing
The Weinstein Cardiovascular Conference provides a platform for talks and posters on

all aspects of heart development and congenital heart disease. The Weinstein meeting

abstracts were extracted from the meeting abstract book from 2010 to 2013 by hand.

As the positive group, this data set included 954 abstracts. We assumed that Weinstein-

like abstracts deposited in PubMed are all from the cardiovascular community and

focus on cardiovascular development. Abstracts from the negative group were from
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non-heart related journals, which were manually selected from the PMC Open Access

Subset at NCBI. To choose the negative control journals, the following criteria were set.

First, well-known cardiovascular journals were excluded, such as “Circulation” and

“Circulation Research.” Second, journals without key words “heart” or “cardiac” or

“cardiovascular” in their title were selected. Third, journals which are dedicated to the

study of other organs or diseases, for example, “Neuron” or “Cancer” were selected.

Fourth, other journal which are unlikely to publish articles about cardiovascular

development and related topics, such as journals about plants or viruses, were selected.

Journals in the negative group contained research from across kingdoms and topics

obviously in other fields, such as “Sleep_Disord” or “Toxicology.” All journal names in

the negative group were saved in a file and uploaded onto the cardioTF server

(negative_set.journal.txt). The negative group includes 57,080 abstracts. We split the

data (positive and negative groups) into a training (80%) and test (20%) set. The Naı̈ve-

Bayes module from The Comprehensive Perl Archive Network (CPAN) was used with

a local Perl script to classify Weinstein-like abstracts. We used the training set and

adopted the 5 � 2 cross-validation proposed by Dietterich (1998) to train and validate

the data. The parameter (the cutoff to decide whether an abstract is a true Weinstein-like

abstract) was selected based on average predictive performance which resulted in a

classification accuracy (ACC) of 0.99. A wrapper function was implemented to parse the

abstracts and calculate the word frequencies. This function called two Perl modules

(Lingua::EN::Splitter and Lingua::EN::StopWords) to extract words and perform text

analysis. The word frequency alone was forwarded to the algorithm. The withheld test

set using the optimized parameter was then used to assess the algorithm’s final

performance. All publication abstracts from 2008 to 2013 were downloaded to the local

environment and analyzed by the algorithm. We targeted journals which had at least

six publications classified as Weinstein-like abstracts in the six-year period (annual

publication rate is � 1). Then all abstracts from the targeted journal were downloaded.

This process was repeated for all journals that met the criteria. The selected abstracts

were then processed by GNAT (Hakenberg et al., 2008) using its default script (test100.

sh) to recognize the mouse gene name. The PMID was recorded when the gene

name matched the name in the curated mouse TF set.

RNA expression profiling data procession
Affymetrix data (GSE1479) were processed by R using the MAS5 algorithm which

provides a present call for each gene (see the script ExtractAffy.R at Github) Gene

expression status was defined as “on” if the gene was expressed in any microarray at

selected developmental stages and had a present call. RNA-seq data were re-analyzed using

the recommended protocol (all raw data identifiers can be retrieved from Table S2)

(Trapnell et al., 2012). Briefly, pre-processing software (FastQC) was used to estimate

the read length of raw data. If read length is above 50 bp, Bowtie2 was used. Otherwise,

Bowtie was used. Mm10 and hg19 are the genome builds used by UCSC. Index and

annotation files for Bowtie2/Bowtie were downloaded from Illumina iGenomes

project. Genome sequences from UCSC are repeat-masked with lower-case characters.
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Any gene with an FPKM value greater than one was defined as expressed and this

threshold was empirically set although justifiable.

Depositing PWM files
The gene symbol was used as the unique identifier to link the original database ID to

our local database primary key. A local Perl script was written to change the format

to the TRANSFAC style, which was used by our in-house CardioSignalScan program

(Zhen et al., 2007). PWM files were collected from Jaspar, UniPROBE and hPDI

databases (Mathelier et al., 2014; Hume et al., 2015; Xie et al., 2010). Users can retrieve

their annotations by directing them to the respective database. All the PWMs from

those three sources for each TF were deposited in the database. We currently do not

use the program implemented by the Zhang lab (Schones, Sumazin & Zhang, 2005)

to check the similarity of PWMs and reduce the redundancy in the collection of

PWM files.

Orthologs of TFs from model systems
NCBI has its own gene orthologs that were identified using unpublished algorithm

(Altenhoff & Dessimoz, 2009). TFs from mouse, human and zebrafish are annotated by

NCBI Homologene (NCBI Resource Coordinators, 2015). Frog, chicken and Ciona TF

homolog annotations were downloaded from their central databases including Xenbase,

BirdBase and ANISEED. Fly TFs, which have counterparts in the human proteome, were

annotated by the Inparanoid system (Sonnhammer & Östlund, 2015). Each TF collected in

the database was assigned one treeID on the basis of its human counterpart. The treeID is

equivalent to a TF family by the recommendation of TFClass (Wingender, Schoeps &

Dönitz, 2013).

Enhancer curation: TF-ChIP and Histone-ChIP data processing
Raw ChIP-seq data were recruited based upon two criteria: first, whether the source of

tissue or cells is from heart or heart progenitor derived cells; second, the DNA-binding

protein for the ChIP assay should be pan-enhancer markers or heart lineage specific TFs.

In the latter case, the core heart TFs were proposed in our screening procedure. Enhancer

regions were defined by ChIP-seq signals. We assume that pan-enhancer markers, like

H3K4me1 or H3K27ac (Shen et al., 2012), or lineage specific markers, like GATA4 or

MEF2C (He et al., 2011) will delineate true enhancer regions, although these collections

will produce some false positive records. Peak calling was performed using the

recommended pipeline (Bailey et al., 2013). In brief, sequencing reads were aligned to

the mm10/hg19 reference genome using Bowtie/Bowtie2. Mm10/hg19 represents the

genome build assigned by UCSC. Index files for mm10/hg19 were downloaded from the

iGenome project. MACS1.4.2 was used to process all the ChIP-seq data. The default cutoff

for the p-value was 1e-05. This default value was used in all ChIP-seq analysis. This

protocol was adapted from published literature (Feng et al., 2012).

Bowtie call

bowtie -m 2 -S -q -p 8
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Peak calling was performed using the MACS peak calling algorithm.

MACS call linux command

macs14 -t ERR231646.bam -c ERR231653.bam -g mm -n sham_Anti_H3k9ac.

ATorque job script was written to submit the job to the supercomputer. After that, the

format transformation was performed:

samtools view -bS -o tbx20_positive.bam positive_tbx20.sam

When possible, the control files were merged:

samtools merge out.bam in_1.bam in_2.bam in_3.bam.

After MASC analysis was completed, the annotatePeaks.pl was run in HOMER

(Heinz et al., 2010) to parse the bed file from the MACS output. Then the parsed

results were dumped into the MySQL table. Public identifiers for the raw data can be

retrieved from Table S2 and ChIP-seq experimental information has been recorded in

the MySQL table “ChIPExpAssay.”

Recognition of transcription factor binding sites (TFBSs)
in enhancer
CardioSignalScan was previously implemented to identify transcription factor binding

sites (Zhen et al., 2007). However, this local program (see cardiophylo.pl in GitHub) is

brute-force solution which consumes computational time with linear complexity (O(mn)).

In the Big O notation, m is the column length of the matrix and n is the length of the input

DNA string. Therefore, it is unrealistic to scan sequences longer than 3,000 bp with

this local program. This prompted us to choose MOODS (Korhonen et al., 2009) instead,

which reduces the computational time proportionally to PWMs length (O(m)). A

wrapper module was written to calculate the threshold that gauges the match. The cutoff

was empirically defined to be 0.75 (range from 0–1 and 1 is most conserved score).

threshold ¼ min log scoreþ max log score�min log scoreð Þ � cutoff

This step avoids using p-values to assess the significance of TFBS.

Gene ontology analysis
DAVID analysis (version 6.7) was performed using the 81 TFs as the input gene list, official

gene symbols as the identifiers and the entire mouse gene set as the background. The

functional annotation clusters generated by DAVID were identified by TFs (Fig. S2). The

classification stringency was set to the default (medium).

RESULTS
The database schema
Our database uses the MariaDB, a drop-in replacement for MySQL, as the database

management system (DBMS). To address how information will be stored and how the
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elements will be related to one another, we used the unified modeling language (UML)

to describe the high-level database model (Ullman & Widom, 2008). UML was originally

developed as a graphical notation for describing software designs in an object-oriented

style. It has been extended, and modified and is now a popular notation for describing

database designs. Here, we used UML instead of an entity/relationship diagram to

design the relational database schema following modeling principles, such as faithfulness,

avoiding redundancy, and simplicity counts (Ullman & Widom, 2008) (Fig. 1). Where

possible, we used a composition distinguished by a line between two classes that ends in a

solid diamond at one end. The diamond implies that the label at the end must be 1:1.

For example, there is a composition from CardioTFmatrix to CardioTFCenter, which

means that every matrix annotation row (PWM related information) belongs to exactly

one row in CardioTFCenter (one type of TF may have more PWM records in a

CardioTFmatrix table). A 1:1 label at the CardioTFCenter end is implied by a solid

black diamond.

Web interface and search engine
CardioTF is a Perl website implemented using only Perl language to dynamically

display the graphical output while querying the database in the backend (Fig. 2).

To aid cardiovascular biologists, a search engine was created to allow users to:

(1) identify homology information for the queried TF across six species and link to

the corresponding central databases outside CardioTF; (2) identify PWM file union

of three public databases regarding the queried TF; and (3) identify the enhancer

regions revealed by ChIP-seq data of the queried gene. Thus, the database is able

to perform the key functions required to construct a transcriptional network of

heart development.

Cardiovascular TFs in the database
Wingender’s annotation set (Wingender, Schoeps & Dönitz, 2013) was used as a

benchmark to recruit TFs across species. The frozen version of this dataset contains

1,564 human TFs. Among them, only 1,513 TFs have corresponding Entrez gene

records. Human-specific TFs, defined as those with no orthologs in the mouse genome,

were discarded because no model system could be used to verify their function

in vivo. This step excluded a further 313 human TFs which have no counterpart in

mouse from the homolog annotation. Therefore, 1,200 mouse TFs were collected.

Other established animal models for cardiovascular development include fly, Ciona,

zebrafish, frog, and chicken. TFs from these species were collected if they were

homologs to the above mouse TFs. The distribution of TFs from different species is

shown in Fig. 3. The expression status of mouse TFs was verified by four independent

resources, namely RNA-seq data re-analysis (Shen et al., 2012), phenotype annotations

from the MGI database (Blake et al., 2014), expert recommendation from the UK

Cardiovascular Gene Annotation Initiative (Khodiyar et al., 2011), and PubMed

relevance from classification of Weinstein-like abstracts (see the subsequent section

and Table S1).
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Weinstein TFs from PubMed analysis
We identified the journals that favored Weinstein-style papers, which were likely contain

information on genes involved in cardiovascular development. As expected, after using a

Naı̈ve-Bayes method, the journals we identified were among the 30 journals most relevant

to developmental biology. Two of the journals (Circ. Res. and J. Mol. Cell. Cardiol.)

Figure 1 Unified modeling language diagram for the Cardio-TF database design. The six boxes

represent the six major classes, namely CardioTFmatrix, CardioTFCenter, CardioTree, CardioGen-

eNames, CardioEnhancer, and ChIPExpAssay. These classes are analogous to entity/relationship sets.

Each class has two sections, one for the class name and one for the attributes. The attribute of each class

is associated with the type used in MariaDB. The “#” in front of an attribute indicates that it’s visibility is

“protected,” thereby making it a primary key. These classes faithfully represent the real world.
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obviously publish research specifically in the area of heart system. (Table S1:

CardioJournalDistribution). If normalized and ranked by publication rate, the above

conclusion still holds true although two different heart journals (Eur. J. Echocardiogr,

Heart Rhythm) are in the top 30 list (Table S1: CardioJournalDistribution_norm) in this

case. We then used GNAT, a tool that recognizes gene names in the literature, to recover

all TFs mentioned in Weinstein-style abstracts because we assumed that these TFs are

studied by researchers in the cardiovascular community (Figs. 4 and S1; Table S1).

PWM files collected in database
Public databases for PWM files include UniPROBE, Jaspar, and hPDI, and they

provide PWM files for TFs. Jaspar PWM files are curated from the published literatures

whereas the other two databases generate PWM files from experiments. Our database

integrates these three sources, and the TF PWMcan be queried on the basis of the TF name.

Figure 2 The search engine and the web interface of the database. (A) The search engine was

implemented to perform three functions: querying TFs, their PWMs and gene enhancers (B) Web

graphical output of Gata4 enhancers in mouse. Black lines indicate the enhancer regions found by the

ChIP-seq scanning program. These regions are from the same specie, but might be from different

experiments. A user can check the experiment inforamtion by clicking the E0000XXX link which

represents the primary key (ID) for this enhancer region, thus allowing the user to save it and retrieve the

information later. (C) Query results for the GATA4 TF across species. TFs are listed and indexed

according to their database identifiers.
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Search results directly link to the original database through the PWM raw

database key. The CardioTFmatrix class contains 904 records, and these PWM files

can be recognized by our local CardioSignalScan program to search for the motifs in

genomic regions.

Core cardiovascular TFs
The 1,200 mouse TFs were included in the cardiac TF dataset as the entry point to initiate

deep annotation. To define a core set of cardiac TFs, we intersected four independent

sources of cardiovascular TF collections. Inclusion of the resulting 81 TFs is supported by

their expression status, phenotype annotation, expert recommendation and PubMed

relevance (Table S1). We also performed DAVID functional analysis, and found that these

TFs are particularly enriched in cardiac muscle differentiation (Fig. S2). 10–20% of these

Figure 3 TF distribution across species in the database. (A) Phylogenetic tree showing the main

animal models commonly used in heart development research and their evolutionary relationship. The

divergence times in millions of years ago (Mya) are shown on the basis of multigene and multiprotein

studies. Branch lengths are not proportional to time (B) Distribution of TFs across six species. All TFs

have homologs in humans. The unit of Y-axis is TF number.

Zhen (2016), PeerJ, DOI 10.7717/peerj.2339 10/18

http://dx.doi.org/10.7717/peerj.2339/supp-2
http://dx.doi.org/10.7717/peerj.2339/supp-5
http://dx.doi.org/10.7717/peerj.2339
https://peerj.com/


TFs which are enriched in the Annotation Cluster 7 including Gata4, Gata6, Smad7,

Nkx2-5, Tbx2, Tbx5, Foxc1, Foxp1, Prox1, Rara, Rarb, Rxra, Rxrb, Zfpm2. These 14 TFs,

are annotated in the DAVID as being involved in cardiac muscle formation. As we know,

the heart system includes the endocardium which is a specialized layer derived from

endothelial cells. Cluster 8 from our DAVID analysis includes genes expressed in

endothelial cells such as Smad5, Smad7, Meis1, Nkx2-5, Tbx20, Epas1, Foxc1, Foxo1,

Hey1, Hand2, Hif1a, Mef2c, Prrx1, Prox1, Srf, Nr2f2, Tcf21, Vezf1, Zfpm2. Is this set

of genes the minimum requirement for cardiac development? Indeed, these four sources

of supporting evidence indicate that these TFs genes play a key role in heart development.

We wanted to determine if these TFs display specific expression patterns in heart

development. A heatmap was generated using seven RNA-seq data sets, including samples

from embryonic cells, mesoderm cells, cardiac progenitors, nascent cardiomyocytes and

adult heart tissue. This heatmap did not reveal any specific patterns (Fig. S3). In adult

tissues, these TFs did not exhibit enriched expression in the adult heart. In the case of TFs

Figure 4 Machine learning protocol used to select TFs described in Weinstein-like papers. (A) The

pipeline used to select TF gene symbols from Weinstein PubMed abstracts. First, a Naı̈ve-Bayes module

was used to select Weinstein-like papers from PubMed abstracts. Second, GNAT, a software that

recognizes gene symbols, was used to identify all TF names from these Weinstein-like papers. (B) ROC

curve and prediction performance judged by sensitivity, precision and F1 score.
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which are never expressed at any stage of heart development, no specific expression

pattern was revealed by the boxplot assay (Figs. S4 and S5).

Cardiovascular enhancers collected in this database version
Few enhancers have already been verified by traditional biological experiments, for

example, by using transgenic expression of isolated DNA fragments in vivo to analyze

temporal-spatial patterns. Therefore, the ChIP-seq method provides a high-throughput

approach to delineate enhancer regions at the genome scale. A standard protocol was used

to identify genome-wide locations of transcription/chromatin factor binding sites or

histone modification sites from ChIP-seq data (Fig. S6). The present database houses

511,893 enhancer records, covering different stages of heart development. Searching for a

single enhancer also provides a user interface to scan the TFBSs. The binding matrices

provided in the list come from the core cardiac TFs. The flat text output file contains the

matrix key for the TFs in the database and sorts these hits in the increasing order.

DISCUSSION
We identified 5,442 TFs from six species, and integrated 904 PWM files from three

PWM databases. We also collected 511,893 peak fragments for further analysis. The

on-the-fly search tool was implemented to match the core cardiac TFBSs in the specified

enhancer sequence. Our database provides a framework where users can query homology

information for various TFs across species and PWM information corresponding to

TFs and enhancers from high-throughput ChIP-seq data. The curation for cardiac

enhancers and TFs facilitate future efforts to construct transcription network.

The database now contains the six species which are model organisms for studying

heart development (Fig. 3A). Ciona is an ideal model used to study the early specification

step in the Mesp-lineage. Zebrafish is well suited to perform imaging analysis and for

performing quantitative study. The chicken is well suited for lineage tracing ex vivo.

The mouse provides a well-studied mammalian model and is most similar to humans.

The fly is a valuable model for testing new concepts and is easy to study at the genomic

level. New models may be added in the future if they have unique advantage over the

other models.

Previously, we constructed the CardioSignal database which collates cardiac factors

driving genes expressed in a tissue-specific or quantitative manner. Most enhancers

archived in the database are expressed specifically in the myocardium. CardioTF is a

complementary database that accumulates cardiac TFs expressed in the epicardium,

endocardium and myocardium. This information including PWMs can be used not only

to find the features of enhancers in a machine learning approach (such the left-right

patterning of the heart) but also to reconstruct regulatory network in systems biology.

We defined a core set of TFs using four independent sources, namely, RNA profiling,

expert curation, PubMed abstract parsing and phenotype annotation to support their

roles in cardiovascular development. In RNA-seq analysis, after pre-processing and post-

processing of the adult heart data, the count table contained 48,995 genes. After filtering

genes with FPKM > 1, there were 20,863 genes remaining. Roughly half of these annotated
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genes were abandoned because their gene expression level was too low. To analyze

PubMed abstracts, a Naı̈ve-Bayes approach was used to classify Weinstein-style abstracts

and then pick out the TFs embedded in those abstracts. Most journals containing the key

words “heart” or “cardiac” or “cardiovascular” focus on heart pathology or physiology

instead of development biology. For example, journals such as “Cardiovascular

research,” “Circulation,” and “Circulation research,” accept papers related to the adult

cardiovascular system. Most papers published in these journals take a more translational

approach which is oriented to bench-side work. Our analysis identified two heart related

journals (which is obvious from their name) suggesting that the algorithm was successful

in finding the wording pattern present in Weinstein abstracts. The results indicate that

most developmental biology manuscripts relating to cardiovascular system are sent to

specialized journals that focus on development. Top-tier cardiovascular journals are more

likely to publish papers describing the adult cardiovascular system. Our text analysis,

whether normalized by publication number or not, had a tendency of identifying journals

favored by heart developmental biologists and journals that specialized in developmental

biology (Table S1).

Traditional definitions of heart specific TFs can often be ambiguous and should

not include TFs that only regulate cardiac muscle. In the present definition, heart

specific TFs must be detected to be expressed in heart tissue which includes the

endocardium and epicardium layers. Both DAVID Annotation Clusters 7 and 8 contain

TFs involved in heart muscle or vascular formation. The DAVID analysis result did not

reveal any other clusters with genes involved in kidney, liver or the formation of other

organs. Even the expression of GATA4 and MEF2C, which are de facto cardiac TFs, is

not restricted to cardiomyocytes. These TFs are expressed in cardiac progenitors at a

certain stage of development. The present approach is empirical and proposes a

method which uses four independent data sources to identify true cardiac TFs based

on their expression, phenotype, community opinion and PubMed abstracts. These

81 core TFs could be used further to support simulation study to infer the significance

in future.

In general, the set of core cardiac TFs identified by these sources provide a roadmap for

systems biology to construct a transcriptional network of heart development. Current

approaches by the Sperling group or the Pu group only report three to four TFs based on

ChIP-seq data (He et al., 2011; Schlesinger et al., 2011). Similar approaches by other

genome biologists who tried to find cardiac enhancers on a genome scale have been

reviewed elsewhere (Wamstad et al., 2012; Wamstad et al., 2014). However, the

information generated from these studies is well below our knowledge of these core

cardiovascular TFs, which have multiple sources supporting their role in cardiovascular

development.

We archived 1,200 mouse TFs and wanted to determine at what stage of heart

development they were expressed. Our preliminary analysis indicates that approximately

200 TFs have no evidence of their expression pattern, phenotype, expert recommendation,

and PubMed abstracts. Whether these TF genes are expressed or play roles in heart

disease requires further analysis.
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The database still lacks cell lineage-based expression profiling data, which will quantify

the expression level of various TFs and thus construct a 4-D dynamic expression pattern

in vivo. This information could be combined with cell lineage-based ChIP-seq data to

create a super-resolution of enhancer tomography.

CONCLUSIONS
Modern translational medicine rests upon the progressive study of pathways and

principles from model organisms such as yeast, fly, fish, and mice to clinical studies in

humans. Therefore, we recruited TFs from six model organisms which are established

models for research on cardiovascular development. The identification and collation of

these well-annotated homologs from different organisms will enable investigators to

better address the complexities of transcriptional network on heart development

(Wamstad et al., 2014).

We hope that in the near future, single-cell sequencing data may provide

comprehensive gene expression information with detailed temporal-spatial resolution,

thereby providing insight into the transcription networks that contribute to heart

development or heart diseases. CardioTF database try to collate these cis and trans

information and take the initial steps in the construction of a comprehensive

transcriptional network.
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