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Simple Summary: Discovery of predictive and prognostic radiomic features in cancer is currently
of great interest to the radiologic and oncologic community. Tumor phenotypic and prognostic
information can be obtained by extracting features on tumor segmentations, and it is typically
imaging analysts, physician trainees, and attending physicians who provide these labeled datasets
for analysis. The potential impact of level and type of specialty training on interobserver variability in
manual segmentation of NSCLC was examined. Although there was some variability in segmentation
between readers, the subsequently extracted radiomic features were overall well correlated. High
fidelity radiomic feature extraction relies on accurate feature extraction from imaging that produce
robust prognostic and predictive radiomic NSCLC biomarkers. This study concludes that this goal
can be obtained using segmenters of different levels of training and clinical experience.

Abstract: This study tackles interobserver variability with respect to specialty training in manual
segmentation of non-small cell lung cancer (NSCLC). Four readers included for segmentation are:
a data scientist (BY), a medical student (LS), a radiology trainee (MH), and a specialty-trained
radiologist (SK) for a total of 293 patients from two publicly available databases. Sørensen–Dice (SD)
coefficients and low rank Pearson correlation coefficients (CC) of 429 radiomics were calculated to
assess interobserver variability. Cox proportional hazard (CPH) models and Kaplan-Meier (KM)
curves of overall survival (OS) prediction for each dataset were also generated. SD and CC for
segmentations demonstrated high similarities, yielding, SD: 0.79 and CC: 0.92 (BY-SK), SD: 0.81 and
CC: 0.83 (LS-SK), and SD: 0.84 and CC: 0.91 (MH-SK) in average for both databases, respectively.
OS through the maximal CPH model for the two datasets yielded c-statistics of 0.7 (95% CI) and
0.69 (95% CI), while adding radiomic and clinical variables (sex, stage/morphological status, and
histology) together. KM curves also showed significant discrimination between high- and low-risk
patients (p-value < 0.005). This supports that readers’ level of training and clinical experience may
not significantly influence the ability to extract accurate radiomic features for NSCLC on CT. This
potentially allows flexibility in the training required to produce robust prognostic imaging biomarkers
for potential clinical translation.
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1. Introduction

Lung cancer is the leading cause of cancer-related death in the United States [1].
Non-small cell lung cancer (NSCLC) represents the majority of primary lung cancers and
carries a poor prognosis and low overall survival [2]. Computed tomography (CT) is a
routinely used diagnostic imaging tool in clinical management in oncology due to the
ability of CT to noninvasively provide anatomic information for detection, staging, and
therapy response assessment. Over the past decade it has become evident that quantitative
features are embedded in conventional medical imaging data, not appreciable to the human
eye [3]. These radiomics features are a reflection of tissue architecture, heterogeneity, and
pericellular environment and can be harnessed to construct tissue signatures that correlate
with clinically relevant biomarkers, including tumor histologic subtype, mutational status,
degree of infiltration with tumor infiltrating lymphocytes, as well as therapeutic endpoints
such as overall survival [4–9]. These imaging “phenotypes” provide valuable data that
may enhance personalization of medical care in oncology [10].

It is well known that repeatability and reproducibility of radiomic features on CT are
sensitive to various image details such as image acquisition settings, processing, reconstruc-
tion algorithm, and specific software used for radiomic feature extraction [5,7,9,11–17]. Fur-
thermore, certain radiomic features are more sensitive to these variations than others, with
first order features, specifically entropy, consistently reported as being very stable while
other texture features, such as coarseness and contrast, being the least reproducible [18].

Discovery of predictive and prognostic radiomic features in cancer is currently of great
interest to the radiologic community; however, there is no reliable fully automated means
of segmenting lung cancer. Tumor delineation and contouring are often performed by sci-
entists with a range of training in anatomical imaging including imaging analysts, students,
physician trainees, and attending physicians using either manual or semi-automated tech-
niques. In addition to being time consuming, 3-dimensional manual and semi-automated
contouring are subject to interobserver variability. This variability has been shown to
be particularly challenging with segmented lesions when associated with ground glass
components and postobstructive atelectasis [4]. In order to generate high fidelity phe-
notypic radiomic signatures, tumor segmentations must be reproducible across different
readers [17]. Performing quality segmentations is an important task. Although the ability
to anticipate tumor histology, mutational status, and therapeutic consequences are all ulti-
mate goals of radiomics, interobserver variability between readers should be thoroughly
investigated before subsequent feature analysis is tested, given that these segmentations
form the basis of the analyses.

To our knowledge, no study has examined how both the level and type of specialty
training in manual or semi-automated segmentations affects the subsequent extraction of
radiomic features. Thus, our purpose in this study is to examine how the level of specialty
training impacts interobserver variability in manual segmentation and radiomic feature
extraction of NSCLC on CT.

2. Materials and Methods

The proposed approach presents a comparative assessment of interobserver variability
in segmenting NSCLC tumors on chest CTs and its effect on subsequent extraction of
radiomic features and survival analysis (see Figure 1 for study schema).
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Figure 1. Workflow of the approach. The NSCLC tumor is segmented from the original CT images 
by four segmenters (n = 4) with different backgrounds, yielding radiomics features and tumor 
masks as inputs. Next, PCA categorizes features based on their maximum variance in radiomics. 
For every group, three principal components of feature sets are selected and used for correlative 
analysis and prediction of survival. 

2.1. Patient Population and Study Data 
This was a single-center study with segmentations performed at our institution be-

tween July 2018 and December 2019. The CT images included in this study had slice thick-
nesses between 1 and 5 mm, and both contrast and non-contrast enhanced studies were 
included. No pre-processing methods of the CT images were employed. Two publicly 
available datasets containing CT images from patients with NSCLC were analyzed. The 
NSCLC- Radiomics-Genomics-Lung3 (also known as Harvard) dataset (Table 1) [11,19,20] 
contains pre-treatment CT images from 89 patients with NSCLC and the NSCLC-Radi-
ogenomics (also known as Stanford) dataset [20–22] contains pre-treatment CT images 
from 211 patients with NSCLC and both are publicly available from the National Institutes 
of Health (NIH) mentioned in The Cancer Imaging Archive (TCIA) [20–23]. Patients with-
out available imaging in the online dataset were excluded. 

Table 1. Clinical and demographic data including gender, type of NSCLC, and stage of cancer for 
collected patients in NSCLC-Radiomics-Genomics (Harvard) lung dataset is presented. 

NSCLC-Radiomics-Genomics 

Gender 
Male 
Female 

61 (68.5%) 
28 (31.5%) 

Clinical combined stage curated  

Stage I 
Stage II 
Stage III 
Unknown 

39 (43.8%) 
25 (28.1%) 
12 (13.5%) 
11(12.4%) 

Non-small cell lung cancer 
(NSCLC) 

Adenocarcinoma, 
Squamous cell carcinoma 
Other or unknown 

42 (47.2%) 
33 (37.1%) 
12 (13.5%) 

Event Recurrence or death 46 (51.7%) 

2.2. Radiomic Feature Extraction and Statistical Analysis 
Radiomic features can be divided into categories, for example: first-order features, 

which include tissue density, shape features (i.e., volume and surface area) and texture 
features, describing spatial patterns of voxel intensities [5,7,9,11–17]. The proposed 

Figure 1. Workflow of the approach. The NSCLC tumor is segmented from the original CT images by four segmenters
(n = 4) with different backgrounds, yielding radiomics features and tumor masks as inputs. Next, PCA categorizes features
based on their maximum variance in radiomics. For every group, three principal components of feature sets are selected
and used for correlative analysis and prediction of survival.

2.1. Patient Population and Study Data

This was a single-center study with segmentations performed at our institution be-
tween July 2018 and December 2019. The CT images included in this study had slice thick-
nesses between 1 and 5 mm, and both contrast and non-contrast enhanced studies were
included. No pre-processing methods of the CT images were employed. Two publicly avail-
able datasets containing CT images from patients with NSCLC were analyzed. The NSCLC-
Radiomics-Genomics-Lung3 (also known as Harvard) dataset (Table 1) [11,19,20] contains
pre-treatment CT images from 89 patients with NSCLC and the NSCLC-Radiogenomics
(also known as Stanford) dataset [20–22] contains pre-treatment CT images from 211 pa-
tients with NSCLC and both are publicly available from the National Institutes of Health
(NIH) mentioned in The Cancer Imaging Archive (TCIA) [20–23]. Patients without available
imaging in the online dataset were excluded.

Table 1. Clinical and demographic data including gender, type of NSCLC, and stage of cancer for
collected patients in NSCLC-Radiomics-Genomics (Harvard) lung dataset is presented.

NSCLC-Radiomics-Genomics

Gender Male
Female

61 (68.5%)
28 (31.5%)

Clinical combined stage curated

Stage I
Stage II
Stage III
Unknown

39 (43.8%)
25 (28.1%)
12 (13.5%)
11(12.4%)

Non-small cell lung cancer (NSCLC)
Adenocarcinoma,
Squamous cell carcinoma
Other or unknown

42 (47.2%)
33 (37.1%)
12 (13.5%)

Event Recurrence or death 46 (51.7%)
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2.2. Radiomic Feature Extraction and Statistical Analysis

Radiomic features can be divided into categories, for example: first-order features,
which include tissue density, shape features (i.e., volume and surface area) and tex-
ture features, describing spatial patterns of voxel intensities [5,7,9,11–17]. The proposed
approach employs 429 radiomics features in nine categories: first-order statistics (FO)
(18 features), shape-based expression (SB) (13 features), gray level co-occurrence matrix
(GLCM) (23 features), gray level dependence matrix (GLDM) (14 features), gray level run
length matrix (GLRLM) (16 features), gray level size zone matrix (GLSZM) (16 features),
neighboring gray tone difference matrix (NGTDM) (5 features), Laplacian of Gaussian
(LOG) (180 features), and three-layer filtering wavelet (144 features) features (Supplemen-
tary Materials Table S10).

Four readers with different levels of training performed manual segmentations on
Neuroimaging Informatics Technology Initiative (NIFTI) format images and included a
data scientist (BY) with no formal medical experience, a medical student (LS), a radiology
trainee (MH) with 5 years of clinical radiology experience, and a specialty-trained thoracic
radiologist (SK) with 18 years of experience. The data scientist (BY) used the snake feature
of ITkSnap region growing tool, while he manually selected the region of tumors in the CT
images, adjusted the contrast, set initial bubbles, controlled them to grow to a substantial
size, and manually with a brush tool cleaned the areas that were not in the boundaries or
exceeded them. The reader with the most experience (SK) was defined as the reference
standard (RS) used for benchmarking. Prior to performing segmentations, each reader
performed a NSCLC tumor segmentation in a training set of 10 cases from a different source
(institution PACS system) supervised by the specialty-trained radiologist (SK) and received
feedback on segmentation methods. After completing the training set, each observer
completed segmentations of tumors for the complete data set of CT exams. The tumors
were labeled in 3D on standard lung windows using ITkSnap (version 3.6.0) [24] by each
reader. Segmentations were only performed once per patient per reader, taking breaks
between segmentations at the discretion of the reader. A total of 429 radiomic features were
extracted within the tumor volume of each image using the Pyradiomics library (v2.2.0) and
analyzed using low-rank representations of radiomics using principal component analysis
and selecting the first principal component (PC) corresponding to the maximum variance
in the radiomics. The radiomic analyses were carried out in Python programing language
(3.6.8), while the survival analyses were conducted in R programming software (4.0.1).
Correlation between the extracted features and agreement between 3D segmentations
were analyzed using a Pearson correlation coefficient and Sørenson-Dice coefficient [25],
respectively. Dice coefficient measures variabilities of the segmented regions, and low-
rank correlation shows its corresponding effect on radiomics by calculating correlation for
direction of the maximum variances. In other words, correlation among three first PCs
represent the correlation of the entire radiomics (all 429 radiomics). Appendix A provides
additional information regarding principal component analysis (PCA). The proposed
approach involves using machine learning to reduce the radiomic dimensionality and
predict survival using PCA and Cox regression models, which increases the importance of
applying unsupervised and supervised models’ integration.

Cox regression modeling was performed for each dataset, incorporating radiomic
phenotypes, and clinical and demographic data (i.e., sex, stage status, and histology).
Kaplan-Meier curves of overall survival were generated for each dataset to determine if
contributing radiomic signatures were able to stratify high- and low-risk patients.

3. Results
3.1. Patient Population

A total of 89 patients were in the NSCLC- Radiomics-Genomics-Lung3 dataset, 3 of
whom did not have available data and were excluded from the study. There were 42 patients
with adenocarcinoma, 32 patients with squamous cell carcinoma, and 12 patients with
another type of NSCLC. Thirty-nine patients had stage I disease, 26 patients had stage II
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disease, 10 patients had stage III disease, and 11 patients had an unknown stage. Of the
NSCLC-Radiogenomics data in the NIH-TCIA dataset, 4 patients were excluded from the
study for a total of 207 patients included. Of the included tumors in the Harvard dataset,
all were solid, and of the included tumors in the Stanford dataset, 134 were solid, 68 were
subsolid, and 5 were unknown.

The total number of patients included in the study is described in Figure 2. Clinical
information and demographics of patients are provided in Tables 1 and 2.

Cancers 2021, 13, 5985 5 of 18 
 

 

dataset, all were solid, and of the included tumors in the Stanford dataset, 134 were solid, 
68 were subsolid, and 5 were unknown. 

The total number of patients included in the study is described in Figure 2. Clinical 
information and demographics of patients are provided in Tables 1 and 2. 

 
Figure 2. Number of patients included in study. Two publicly available datasets were analyzed in 
the study, the NSCLC-Radiomics-Genomics-Lung3 (Harvard) dataset and the NSCLC-Radioge-
nomics (Stanford dataset). Eighty-nine patients and 211 patients are part of the Harvard and Stan-
ford datasets, respectively. A total of 3 patients were excluded from the Harvard dataset and 4 pa-
tients were excluded from the Stanford dataset due to lack of available data. Tumor types consisted 
of adenocarcinoma (Adeno), squamous cell carcinoma (SCC), and other types of NSCLC. A total of 
293 patients were segmented as part of the study. 

Table 2. Clinical and demographic data including age, race, type of NSCLC, EGFR, and KRAS re-
ceptor status, and smoking status for collected patients NSCLC-Radiogenomics (Stanford) is pre-
sented. 

NSCLC-Radiogenomics 
Age Median (±IQR) 69 (43,87) 

Gender 
Male 
Female 

133 (64.2%) 
74 (35.8%) 

Race 

Caucasian 
Asian 
Hispanic/Latino 
African-American 
Native Hawaiian/Pacific Is-
lander 
Unknown 

120 (57.4%) 
24 (11.8%) 

5 (2.4%) 
6 (2.9%) 
3 (1.5%) 
48(23.2) 

Smoking Status 
Non-smoking  
Smoking 
Former smoking 

47 (22.7%) 
34 (16.4%) 
126 (60.9%) 

EGFR-Mutation Status 
Wildtype 
Mutant 
Unknown 

128 (61.8%) 
42 (20.2%) 
37 (17.8%) 

KRAS Mutation Status 
Wildtype 
Mutant 
Unknown 

130 (62.8%) 
38 (18.3%) 
39 (18.8%) 

Histology 

Adenocarcinoma 
Squamous cell carcinoma 
NSCLC NOS (not otherwise 
specified) 

170 (82.1%) 
32 (15.5%) 

5 (2.4%) 

Figure 2. Number of patients included in study. Two publicly available datasets were analyzed in the study, the NSCLC-
Radiomics-Genomics-Lung3 (Harvard) dataset and the NSCLC-Radiogenomics (Stanford dataset). Eighty-nine patients
and 211 patients are part of the Harvard and Stanford datasets, respectively. A total of 3 patients were excluded from
the Harvard dataset and 4 patients were excluded from the Stanford dataset due to lack of available data. Tumor types
consisted of adenocarcinoma (Adeno), squamous cell carcinoma (SCC), and other types of NSCLC. A total of 293 patients
were segmented as part of the study.

Table 2. Clinical and demographic data including age, race, type of NSCLC, EGFR, and KRAS
receptor status, and smoking status for collected patients NSCLC-Radiogenomics (Stanford) is
presented.

NSCLC-Radiogenomics

Age Median (±IQR) 69 (43,87)

Gender Male
Female

133 (64.2%)
74 (35.8%)

Race

Caucasian
Asian
Hispanic/Latino
African-American
Native Hawaiian/Pacific
Islander
Unknown

120 (57.4%)
24 (11.8%)

5 (2.4%)
6 (2.9%)
3 (1.5%)
48(23.2)
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Table 2. Cont.

NSCLC-Radiogenomics

Smoking Status
Non-smoking
Smoking
Former smoking

47 (22.7%)
34 (16.4%)

126 (60.9%)

EGFR-Mutation Status
Wildtype
Mutant
Unknown

128 (61.8%)
42 (20.2%)
37 (17.8%)

KRAS Mutation Status
Wildtype
Mutant
Unknown

130 (62.8%)
38 (18.3%)
39 (18.8%)

Histology

Adenocarcinoma
Squamous cell carcinoma
NSCLC NOS (not otherwise
specified)

170 (82.1%)
32 (15.5%)
5 (2.4%)

Solid-Subsolid
(Morphology)

Solid
Subsolid
Unknown

134 (64.7%)
68 (32.8%)
5 (2.4%)

Event Recurrence or death 41(21.1%)

3.2. Analysis of Interobserver Variability on Radiomic Feature Extraction

From the 429 radiomic features initially extracted from the tumors on CT images, the
feature-level was reduced to 3 radiomic signatures (three first PCs) for all the segmenters
(Figure 1). The correlation coefficient among the low rank radiomic signatures showed
significant correlation among the segmenters with a correlation of greater than 0.7 for all
the cases (Table 3).

Table 3. Similarity of the radiomic signatures using multiple scoring methods among different segmenters are presented.

NSCLC Dataset
Similarity among Segmenters

Segmenters
ID

Correlation
Score Dice Score Precision(%) Recall (%) Boundary

Distance
Volume

Difference

LUNG3

NSCLC-Radiomics-Genomics

Harvard Dataset

BY 0.92 0.89 (±0.25) 81.8 (±21.8) 86.1 (±24.5) 1.2 (±2.7) 1.1 (±0.5)

LS 0.94 0.82 (±0.14) 81.2 (±2.7) 69.6 (±24.5) 6.5 (±26.4) 2.3 (±21.1)

MH 0.95 0.84 (±0.20) 72.3 (±22.4) 88.7 (±18.9) 4.2 (±15.1) 0.6 (±1.9)

NSCLC-Radiogenomics
Stanford Dataset

BY 0.93 0.69 (±0.28) 77.8 (±25.1) 87.3 (±25.2) 2.92 (±10.7) 0.3 (±0.8)

LS 0.72 0.80 (±0.27) 84.2 (±31.5) 47.8 (±29.9) 16.6 (±52.6) 0.3 (±1.2)

MH 0.87 0.83 (±0.23) 80 (±24.3) 77.1 (±24.7) 6.2 (±26.1) 1.4 (±16.9)

Corr coefficients using the first principal component between BY-SK (RS), LS-SK
(RS), and MH-SK (RS) were 0.92, 0.94, and 0.95 (all having p-value < 0.005) for NSCLC-
Radiomics-Genomics, and were 0.93, 0.72, and 0.87 (all having p-value < 0.005) for NSCLC-
Radiogenomics, respectively, all indicating a strong correlation. The comparison of three
significant radiomic descriptors corresponding with each group of segmentations showed
88.9% and 92.7% correlation of radiomics of each set with RS. Principal component analysis
of the first three principal components demonstrates that, in some cases, there is a large
standard deviation (STD), but the medians of the principal component analyses for the
extracted features are similar and still have good correlation (Figure 3).
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Figure 3. Two visual comparisons of low-rank radiomics representation with their boxplots relation for labels provided by
BY, LS, MH, and SK for two different NSCLC Radiogenomics datasets.

The Dice coefficients for the 3D masks for Harvard NSCLC-Radiomics-Genomics
and Stanford NSCLC-Radiogenomics for each segmenter (Table 3) was 0.894 (STD: ±0.25)
−0.71 (STD: ±0.28) for the image scientist (BY)—Reference Standard (SK), 0.82 (STD:
±0.14) −0.80 (STD: ±0.27) between the medical student (LS)—Reference Standard (SK),
and 0.839 (STD:±0.20)−0.83 (STD:±0.23) between the radiology trainee (MH)—Reference
Standard (SK), respectively. Although the SD coefficients indicate a moderately high
spatial agreement of the segmentations, there was some variability between segmentations
for BY-SK (RS), LS-SK(RS), and MH-SK (RS) (Figure 4). Precision of the analyses for all
segmenters for both NSCLC datasets showed relatively similar precision in segmenting the
tumors, where BY-SK(RS) in Harvard and LS-SK(RS) in Stanford datasets have the highest
precision yielded to 81.8% (±21.8%) and 84.2% (±31.5%), respectively. MH-SK(RS) and
BY-SK(RS) showed the highest recall with 88.7% (±18.9%) and 87.3% (±25.2%), respectively.
This pattern showed consistency with the minimum volume difference for MH-SK(RS),
0.6(±1.9), in Harvard dataset, and BY-SK(RS), 0.3(±0.8), and LS-SK(RS), 0.3(±1.2), shared
minimum volume difference in Stanford (See Table 3). We conducted in-depth correlation
analysis for individual radiomics and showed the results based on radiomics’ categories
(Supplementary Materials Table S8). Moreover, we presented some radiomics that showed
lesser stability among the segmenters in this study (Supplementary Materials Table S9).
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Figure 4. 3D tumor volume. 3D tumor volumes for four segmentation cases and two different NSCLC Radiogenomics datasets.

Cox regression modeling of overall survival for the NSCLC-Radiomics-Genomics-
Lung3 (Harvard) and NSCLC-Radiogenomics (Stanford) datasets yielded a c-statistic of
0.64 (95% CI) and 0.6 (95% CI), respectively, for the model including only the clinical (sex,
smoking status, and histology) and demographic covariates, which increased when adding
radiomic signatures, having of c-statistic of 0.7 (95% CI) and 0.69 (95% CI), respectively.
Adding clinical and demographic data to this model yielded an increase in c-statistic,
although with slightly increased variability: 0.05–0.02 and 0.01–0.02 for NSCLC-Radiomics-
Genomics-Lung3 and NSCLC-Radiogenomic datasets, respectively (Table 4).
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Table 4. Overall survival, Cox regression. Using the low-rank representation of the radiomic signatures survival prediction
is measured for each segmenter.

Prediction Survival

NSCLC Datasets Modeling
Covariates

BY LS MH SK-RS

c-Statistic
(95% CI)

p Versus
Null 1

c-Statistic
(95% CI)

p Versus
Null 1

c-Statistic
(95% CI)

p Versus
Null 1

c-Statistic
(95% CI)

p Versus
Null 1

LUNG3
NSCLC-

Radiomics-
Genomics

Harvard Dataset

clinical and
demographic 2 0.64 0.2

Three PC radiomic
signatures 0.6 0.5 0.62 0.08 0.59 0.2 0.65 0.03

Radiomic
signatures, clinical
and demographic

0.65 0.3 0.68 0.04 0.66 0.2 0.7 0.03

NSCLC-
Radiogenomics

Stanford Dataset

clinical and
demographic 3 0.6 0.007

Three PC radiomic
signatures 0.65 0.001 0.64 0.04 0.67 0.003 0.65 0.003

Radiomic
signatures, clinical
and demographic

0.71 <0.005 0.68 0.003 0.71 <0.005 0.69 <0.005

CI: confidence interval. 1 p-value by likelihood ratio test versus the hypothesis that the model is no better than the null model. 2 Clinical
and demographic covariates for LUNG3-NSCLC-Radiomics-Genomics Harvard Dataset: sex, stage status, and histology. 3 Clinical and
demographic covariates for NSCLC-Radiogenomics Stanford Dataset: sex, morphological status, and histology.

Additional Cox regression analysis data are presented in the supplemental materials.
Kaplan-Meier curves of survival prediction for each dataset showed significant discrimi-
nation between high- and low-risk patients using extracted radiomic signatures (p < 0.01)
and are presented in Figure 5. Median risk score was used as a distinguishing criterion for
signifying high- and low-risk groups. The hazard ratio for each covariate in the maximal
model is fully reported in the Supplementary Materials Table S11.
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4. Discussion

CT imaging is the workhorse of oncology staging and treatment response assessment.
However, we now know that conventional imaging has imbedded “radiomic” features that
are not appreciable by the eye but contain information on tumor heterogeneity that are
reflections of the underlying tumor structure and can be harnessed to generate prognostic
and predictive biomarkers. In addition, the morphologic qualitative descriptors used in
conventional reporting of radiologic assessments of tumors on CT, such as “spiculated”,
“heterogeneous”, and “necrotic”, while clinically useful, are subject to inter and intraob-
server variability [10] due to their subjective nature; radiomic signatures may allow for
more quantitative and precise measure of tumor description, potentially enhancing the
clinical value of these interpretations.

In addition to providing a more quantitative approach to conventional morphologic
descriptors, radiomics offers the potential to reveal aspects of tumor phenotype not dis-
cernable by the human eye, providing another layer of valuable information that can
be extracted from conventional imaging for clinical management. Several studies have
described the significance of these additional imaging features and radiomics in cancer
imaging [26–37] and have hypothesized that tumor genetic and cellular characteristics and
phenotypes can be represented with medical imaging [38–40]. For example, studies by
Ganeshan et al. [41–43] reported an association of extracted NSCLC CT tumor features with
patient survival, tumor stage, metabolism, angiogenesis, and hypoxia. The importance of
imaging in treatment planning and outcomes was demonstrated by El Naqa et al. [44] for
head and neck and cervical cancers, and Vaidya et al. [45] for lung cancer. Huang et al. [4]
concluded that EGFR mutation status can be determined using quantitative imaging from
extracted tumor phenotypes in NSCLC. Similarly, Bardia et al. [46] found that combining
radiomic phenotypes, clinical variables, and circulating tumor DNA (ctDNA), enhanced
prediction of EGFR-targeted therapy outcomes for NSCLC.

However, while the use of extracted radiomic features from conventional imaging
poses exciting possibilities for precision medicine, there are challenges to clinical translation
that must be overcome before the use of these novel techniques can become a reality in
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routine practice. There is variability introduced in the acquisition of imaging, for example
the use of different imaging protocols, reconstruction algorithms, and scanner types. In
addition, variability is introduced through choice of imaging processing techniques, such
as choice of segmentation and feature extraction software, and degree of skill of the
reader performing 3D segmentation. Variability is a particular concern with manual
segmentations [47], and several studies have reported significant inter-clinician variation
in contouring of tumors in radiation treatment planning, including head and neck, lung,
prostate, and esophageal cancers [48–52]. In this study, we did find some variability
between segmentations performed by the data scientist (BY), the medical student (LS), the
radiology trainee (MH), and the most experienced reader, reference standard (SK). However,
the SD coefficients suggest an overall moderate to high degree of spatial agreement of the
segmentations and good overlap of tumor segmentations between readers.

Interobserver variability between readers in this study may have been introduced
by several factors. One factor is differentiating between the boundaries of tumor and
adjacent post-obstructive atelectasis [53,54] or pneumonia, a known problem with tumor
delineation. In non-contrast CT examinations, it may also be difficult to delineate tumor
and adjacent vascular structures that course in and adjacent to lung cancer, especially if the
tumor abuts the hilum or mediastinum. Some lung cancers also demonstrated both a solid
and a ground glass component, which can introduce variability in the choice of where to
draw the boundary around faint ground glass components. Huang et al. [4] discovered
that trained radiologists tended to focus on the solid component of a tumor as opposed
to the ground glass component, whereas junior radiologists tended to include more of
the ground glass component in their segmentations. The inclusion of more ground glass
component would increase overall tumor volume and impact the spectrum of radiomic
features extracted, thus a risk factor for variation. Window width and level settings
on CT may also influence segmentations and gross tumor volumes [54–57]. ITkSnap
software allows the reader to choose the window width and level settings in addition to
an automatic window width/level selection. While some of our readers manually and
arbitrarily adjusted the window width/level based on preference and ability to differentiate
tumor from adjacent structures, other readers chose the automated window width/level
setting chosen by the software.

Radiomic features used in this study follow imaging features defined by the Imaging
Biomarker Standardization Initiative (IBSI). However, differences in CT exam parame-
ters may also introduce segmentation variability between readers. This is particularly
true with certain texture features such as coarseness and contrast, which tend to be the
least reproducible. First order features, particularly entropy, are found to be the most
reproducible [18]. Leijenaar et al. [58] found that radiomic features with high test-retest
repeatability suffered less from interobserver differences. A few studies have confirmed
that tube current (mAs) or tube voltage (kVp) had no influence on feature reproducibil-
ity [59,60]. Varying slice thicknesses of CT scans can also introduce variability in the
extracted features, with 1–2.5 mm being the recommended slice thickness when contouring
tumors [17,61]. Our study used a publicly available online dataset with slice thickness
varying from 1–5 mm (Supplemental Tables S1 and S2). We conducted in-depth analyses
on the effect of CT parameters on the outcome of the selected features using the proposed
approach and their final survival outcomes (Supplement Tables S3, S4, S5, S6 and S7).
Our supplemental analyses testing the potential effects of CT parameters indicated that
there was an overall similarity among segmentations between readers when considering
contrast-enhancement, CT kernel, and slice thickness.

The degree of medical specialty training has been a concern for the introduction
of variability in segmentations of tumors. Logue et al. [62] reported that radiologists
tended to contour smaller gross tumor volumes compared to radiation oncologists in
the segmentation of bladder cancers and concluded that a more correct anatomic gross
tumor volume was provided by radiologists likely due to clinical practice differences, since
radiation oncologists typically select more inclusive volumes around tumors in practice so
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as not to underestimate tumor extent radiation treatment planning [63]. Similar results were
observed in NSCLC by Giraud et al. [64], who noted major discordances between radiation
oncologists’ and radiologists’ tumor delineations, radiologists tending to delineate smaller
volumes. In this same study, junior physicians included as readers tended to delineate
smaller and more homogeneous volumes compared to senior physicians regardless of their
specialty. Van de Steene et al. [63] looked at specialty dependence between junior and senior
radiation oncologists, one pulmonologist, and one radiologist, on contouring lung cancer
gross tumor volumes and noticed that the radiologist ended up with the smallest tumor
volume. They also noted good agreement between the senior radiation oncologist and
radiologist. Haga et al. [65] concluded that NSCLC tumor volumes should be contoured
by a specialist, such as a radiation oncologist, in order to decrease tumor delineation
uncertainty and overestimation of prognostic power in radiomic feature analysis. In
this study we compared tumor segmentations between level of training (i.e., medical
student, radiology trainee, and radiology attending), and specialty type (i.e., data scientist).
Interestingly, the 3D masks in the Harvard Dataset for BY-SK (RS) had an overall higher
correlation compared to the masks for MH-SK (RS) and LS-SK(RS) in the segmentation
analysis. However, the 3D masks in the Stanford dataset for MH-SK (RS) had an overall
higher correlation compared to the masks for BY-SK (RS) and LS-SK (RS). The Pearson
correlation coefficients, comparing three significant radiomic phenotypes for PCA, were
all relatively equal amongst segmenters in the Harvard dataset, although the correlation
coefficients were slightly more variable in the Stanford dataset. Overall, these differences
are small and can probably be overlooked given overall high correlation of segmentations
amongst all segmenters in the principal component analysis. It should be noted, however,
that all readers in this study participated in a training set of cases supervised by the
reference standard (SK) to ensure a standard approach to contouring.

Our study had several limitations. The CT scans in the dataset had varying slice thick-
nesses, ranging from 1–5 mm, which is known to introduce some variability as described
above. Additionally, while all the readers used ITKSnap software for segmentation, there
was some variability in methods of tumor contouring, such as choice of purely manual
or semi-automated tools and the exact window and level used to perform the contouring.
However, while there was interobserver variability in contouring, the extracted radiomic
features of both the medical student, radiology trainee, and data scientist were overall
well correlated with the experienced reader (RS). Another limitation is that the readers
were all trained by the expert reader; however, the number of training cases was small and
consisted of feedback of the segmentations. Additionally, the training cases were from a
different source than the databases that were used for analysis. Despite the limitations,
overall correlation of extracted features between readers supports the inclusion of readers
of various levels of training in performing segmentations for NSCLC.

Future research would include testing interobserver variability based on level and type
of experience against other publicly and readily available datasets and testing intraobserver
variability. Other future directions should include determining how factors such as slice
thickness, pixel spacing, window width/level, contrast enhancement, and pre- and post-
processing of CT imaging affect interobserver variability between readers of different
experience.

5. Conclusions

Although there is some variability in tumor contouring for imaging segmentations
between readers, the extracted radiomic features were overall well correlated in observers.
Therefore, level of training and clinical experience of the reader may not have a substantial
impact on extracted radiomic features of NSCLC on CT, noting that all readers did have
a supervised training set prior to contouring cases. Having more readers to perform
tumor segmentations may accelerate the development of radiomic signatures in NSCLC
that can provide added value to cancer management and precision medicine. This study
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shows that a greater degree of inclusion of personnel is allowable to perform these tumor
segmentations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13235985/s1, Table S1. The CT parameters for Stanford NSCLC Radiogenomics dataset,
Table S2. The CT parameters for Harvard NSCLC Radiomics-Genomics dataset, Table S3. Similarity
of the radiomic signatures using Pearson correlation among different segmenters are presented for
different stratifications based on CT, Table S4. Overall survival, Cox regression. Using the low-rank
representation of the radiomic signatures survival prediction is measured for each segmenter while
there is Contrast-Enhancement (CE), Table S5. Overall survival, Cox regression. Using the low-rank
representation of the radiomic signatures survival prediction is measured for each segmenter while
there is Non-Contrast-Enhanced (UN), Table S6. Overall survival, Cox regression. Using the low-rank
representation of the radiomic signatures survival prediction is measured for each segmenter for
higher convolutional kernel (CKh), Table S7. Overall survival, Cox regression. Using the low-rank
representation of the radiomic signatures survival prediction is measured for each segmenter for
slice thickness between 2 mm and 4 mm, Table S8. Itraclass correlation coefficient based on radiomics
categories and with the respect of different group means. For each segmenter, mean and standard
deviation of correlation coefficient is calculated for every radiomics’ category, Table S9. Radiomic
features with lesser stability with the respect to different segmenters. Means and standard deviations
of these radiomics are presented. Table S10. More detailed information about the Radiomic features
used in this study. Table S11. The hazard ratio for each covariate in the maximal cox proportional
hazard model.
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Appendix A

Considering that XOb1 = {x1, x2, x3, . . . , xn} is the result of radiomic features ex-
tracted from the first segmenter, where x1, x1 ∈ Rp, is a zero-mean (z-scored) vector

(Z-score of a vector x1 defined by x1 = x1−µ
σ , where µ is mean of x1, µ = 1

n

n
∑

i=1
xi, and σ is

standard deviation of x1), with the size of our radiomic features (p = 429) and n was 86 and
207 for the Harvard and Stanford NSCLC Radiogenomic datasets, respectively. There were
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four segmenters, hence there exists a set of different observers {XOb1, XOb2, XOb3, XOb4}.
The problem is to reduce the collinearity among the features in each XOb. For that, we
propose using low-rank representation of each vector in the direction of maximum variance,
using eigen decomposition method presented in the following section.

Appendix A.1. Low-Rank Representation of Radiomics

Principal component analysis (PCA) [66,67] is used for many applications such as
dimension reduction, noise elimination, and classification, amongst others. The PCA can
be performed by using a covariance matrix calculation with singular value decomposition
(SVD) [68]. The decomposition matrix is performed for the input matrix (heat matrix)
X which is p × n , where n is the vectorized thermal image in every sequence and p
corresponds to the number of observations, and decomposes to:

X = UΣVT (A1)

where k > p and Σ is a diagonal matrix with a dimension of p × p and either zero or
positive elements. It is considered as the singular value of matrix X and U is the p× n
matrix denotes as eigenvector or basis matrix of X. The data are arranged column-wise
based on the observation variation. Spatial variations are mapped in the row direction
(input data located in columns and rows show the observations). The PCA is a linear
transformation method, which applies a decomposition of the input zero-mean data matrix
into the basis U and coefficient matrix Σ. The basis matrix carries the orthonormal property
that also maximizes the variance of projected data which leads to the principal components
(PCs) of the input matrix.

Selecting the k = 3 to reduce dimensionality from 429 to 2 for each segmenter we would
use Equation (A1), to convert XOb to UOb, where UOb ∈ R3×n, and {UOb1, UOb2, UOb3, UOb4}.
The resulting comparison of the radiomic signatures is thus facilitated by this dimensional-
ity reduction. The three initial PCs used to measure the correlation of radiomics by each
segmenter corresponding to their Dice-scores, while survival analysis uses only the initial
PCs. PCA selects the initial predominant eigenvectors, known as bases of analysis, and
provides the highest variance among the radiomics. In other words, PCA finds the best
signatures exist in the radiomics, we compared the best representative of radiomics for
each segmenter with our reference to find overall correlation of radiomics.

Appendix A.2. Low-Rank Correlation of Interobserver’s Radiomics

PCA between the four reader segmentations was performed on the extracted features
with a Pearson correlation coefficient (corr) using the first principal components. A high
degree of correlation between the extracted features was defined between ±0.50 to ±1, a
moderate degree of correlation was defined between ±0.30 to ±0.49 and a low degree of
correlation was defined as <±0.29. The Pearson correlation coefficient (PCC), or the bivari-
ate correlation, [69] allows measurement of the linear correlation between two variables or
vectors, X and Y. PCC calculates covariance of two variables divided by standard divisions
of both variables, involving the product moment. The Pearson’s correlation coefficient, rxy,
is measured using the following formula:

Corr(x, y) =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(A2)

where n is the sample size, xi, yi corresponds to the individual sample points with i, and

x = 1
n

n
∑

i=1
xi and analogously for y.

Interobserver variability in the 3D segmentations between the readers and Reference
Standard was performed also using a Sørenson-Dice (SD) coefficient to evaluate spatial
agreement of the segmentations. High spatial agreement was defined as a SD between
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0.7–1.0, moderate was defined by a SD between 0.5–0.7, and low spatial agreement was
defined as a SD < 0.5. the results of Dice also indicate high spatial agreement among the
segmenters by having SD > 0.7. The Sørensen–Dice coefficient (DSC) [25,70] is calculated
by the following formula:

DSCxy =
2|X ∩Y|
|X|+ |Y| (A3)

By use of these two methods of measuring the similarity, two coefficients are produced
to gauge the pair-wised similarity between each two segmenters. Using Equations (A2) and
(A3), we calculate Corri,j

(
UObi, UObj

)
, and DSCi,j

(
UObi, UObj

)
where i 6= j, respectively.

The results of these two measures indicate the variability among the low-rank radiomic
signatures. Table 3 shows the results of such correlation among the segmenters.
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