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Abstract: Type 2 Diabetes Mellitus (T2DM) is an etiologically diverse metabolic dysfunction
that, if untreated, leads to chronic hyperglycemia. Understanding the etiology of T2DM is critical,
as it represents one of the most formidable medical challenges of the twenty-first century. Traditio-
nally, insulin resistance has been recognized as the primary risk factor and a well-known conse-
quence  of  type  2  diabetes.  Emerging  evidence  suggests  that  branched-chain  amino  acids  (B-
CAAs), adipokines, and deficiencies in water-soluble vitamins, such as thiamine and pyridoxine,
play significant roles in the development of insulin resistance, a key feature of T2DM. These fac-
tors are interconnected through the AMP-activated protein kinase (AMPK) pathway, which regu-
lates various metabolic processes, including glucose transport, lipid synthesis, and inflammatory
responses. Dysregulation of AMPK is linked to insulin resistance and metabolic syndrome-related
illnesses. Understanding the interplay between BCAAs, adipokines, vitamins, and AMPK may of-
fer new therapeutic targets for the prevention and treatment of diabetes mellitus.
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1. INTRODUCTION
It  is  commonly  known  that  type  2  Diabetes  Mellitus

(T2DM) is a deranged metabolic condition with a variety of
etiologies that, in the absence of therapy, results in chronic
hyperglycemia. It also includes issues with the metabolism
of carbohydrates, fats, and proteins that are brought on by de-
ficiencies in insulin secretion, insulin action, or both [1].

The global incidence of diabetes is alarmingly increas-
ing, particularly in developing nations like India, owing to
an increase in overweight/obesity and unhealthy lifestyles.
T2DM is estimated to affect 77 million individuals in India
as  of  2019,  and  that  number  is  expected  to  rise  to  around
134 million by the year 2045. About 57% of these individu-
als are still undiagnosed [2].

Understanding  the  etiology  of  T2DM  is  crucial  for
public health because it  is unquestionably one of the most
difficult  health  issues  of  the  twenty-first  century.  The
biggest risk factor was thought to be insulin resistance for
T2DM and the well-known complications associated with it.
In the etiology of diabetes mellitus, amino acids are increas-
ingly recognized as a  distinct  class  of  potent  molecules.

* Address correspondence to this  author at  the Department of  Biochem-
istry, KVG Medical College and Hospital, Sullia 574327, India;
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Increased  fasting  levels  of  circulating  branched-chain
amino acids (BCAAs) have been linked to greater insulin re-
sistance, according to epidemiological studies [3]. BCAAs
play a crucial role in regulating glucose metabolism and pro-
tein synthesis. However, their potential impact on longevity
is still under investigation and requires further research for
conclusive evidence. Additionally, the relationship between
BCAAs and insulin resistance is complex and contradictory.
Studies have shown that elevated BCAA levels are linked to
insulin  resistance,  diabetes,  and  metabolic  complications
like diabetic retinopathy and nephropathy [4-6]. However, el-
evated levels of circulating BCAA may be a sign of increas-
ing insulin resistance and the result of reduced insulin action
[7].

Thiamine  and  pyridoxine,  key  water-soluble  vitamins,
are  involved  in  the  metabolism  of  BCAAs.  Thiamine  and
pyridoxine play crucial roles in glucose metabolism and in-
sulin function, impacting insulin resistance [8, 9]. Thiamine
deficiency can exacerbate diabetes complications by stimu-
lating insulin resistance [10]. On the other hand, pyridoxine,
or vitamin B6, affects lipid metabolism and adipogenesis, in-
fluencing  insulin  resistance  through  various  pathways  [9,
10].

Several studies have also shown that the levels of anti-in-
flammatory  molecules  like  adiponectin  are  lowered  in  in-
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sulin-resistant stages of type 2 diabetes, even if inflammato-
ry mediators or indicators such as IL-6, TNF-alpha, fibrino-
gen, high-sensitive CRP, and plasminogen activator inhibi-
tor-1 (PAI-1) have increased [11, 12]. The most significant
contributors  to  the  development  of  insulin  resistance  are
adiponectin, TNF-alpha, and IL-6, despite the fact that vari-
ous other adipokines have been implicated in the pathogene-
sis of T2DM [13]. This review attempts to correlate plasma
BCAA levels to adipokines, vitamins, and insulin resistance
in the etiology of diabetes mellitus.

2.   BRANCHED-CHAIN   AMINO    ACIDS     AND
   INSULIN RESISTANCE

Branched-chain  amino  acids  (BCAAs)  are  also  recog-
nized as significant dietary signals and may contribute to the
etiology  of  type  2  diabetes  mellitus  and  insulin  resistance
[14]. The quantities of BCAAs, such as valine, leucine, and
isoleucine, change depending on the protein-rich meal that is
consumed [4]. An earlier study found that individuals with
significantly elevated levels of the amino acid valine had a
251%  increased  risk  of  developing  diabetes  compared  to
those with lower levels [15, 16].

The start and progression of type 2 diabetes can be pre-
dicted by BCAA plasma concentrations, according to sever-
al  prospective  studies  with  long-term  follow-up  [17,  18].
However, the majority of studies have concentrated on pa-
tients with obesity and/or poor glucose control; it is unclear
how amino acids would affect people with early-stage glu-
cose dysregulation.

BCAAs,  which  are  considered  key  nutritional  signals,
may have a role in the etiology of insulin resistance and type
2 diabetes mellitus [14].  Race, gender,  nutrition, and gene
variations are key factors that determine BCAA levels and
influence their  connection with insulin resistance [19].  As
per the study reported by earlier experts in these fields on
various ethnic groups, Asian individuals (Chinese or Japane-
se) appeared to be more prone to bigger Homeostatic Model
Assessment for Insulin Resistance (HOMA-IR) and higher
BCAA levels than theWestern population (Caucasians or Eu-
ropeans) [20]. In terms of gender differences, most research
has found that obese males have higher BCAA levels and a
stronger  positive  correlation  with  insulin  resistance  com-
pared to obese females. In summary, racial and gender differ-
ences can significantly impact BCAA levels and insulin re-
sistance  [21-25].  It  has  not  yet  been  determined  or  re-
searched how dietary habits affect BCAA levels and insulin
resistance.  The research findings have revealed that  a  diet
rich in BCAA content may have a slightly favorable impact
on peripheral  BCAA levels  [26].  This effect  is  most  com-
monly  explained  by  the  'insulinotropic'  characteristics  of
amino acids or the lower glycemic load of high-protein diets
[26].

BCAA has been proposed as a possible causal compo-
nent  in  the  insulin  resistance  (IR)  etiology  and  T2DM  by
contributing to mitochondrial overload with lipid substrates,
which leads to mitochondrial stress and decreased insulin ac-
tion [27, 28]. Fig. (1) illustrates the mechanism of induction
of insulin resistance due to excess accumulation of BCAA.
Glucose and lipid metabolism are primarily regulated by the
hormone insulin. Insulin that is released interacts with the in-
sulin receptor under physiologically normal circumstances,
encouraging the insulin receptor substrate (IRS)-1/2's tyro-
sine phosphorylation and controlling signals from the down-
stream cascade.  This  mechanism has been associated with
the kinases PI3K, 3-phosphoinositide-dependent protein ki-
nase (PDK), Akt, and S6K1. Serine phosphorylation of IRS
proteins is a key component of the feedback control of in-
sulin signalling. Tyrosine phosphorylation, ectopic glucose
transporter synthesis, and translocation are all prevented by
this process, which ultimately leads to IR [29]. Leucine, in
particular, has been shown in several studies to enhance in-
sulin  signal  transduction  [30,  31].  Leucine  enhanced  the
phosphorylation  of  Akt  and  mTOR  in  response  to  insulin
and increased IRS-1 tyrosine phosphorylation, inhibiting in-
sulin resistance induced by high-fat diet in insulin-target or-
gans  [32].  The  rise  in  GLUT4  levels,  glucose  absorption,
and insulin signal transduction could have been brought on
by energetic expenditure that was accompanied by protein
synthesis brought on by BCAAs or leucine [33-35].

Leucine, however, may interfere with insulin signal trans-
duction via additional processes. Leucine at high concentra-
tions inhibited AMPK activation while simultaneously boost-
ing mTOR/p70S6K signalling and causing IR in rat skeletal
muscle [36]. Leucine deprivation may also enhance hepatic
insulin sensitivity by successively activating the amino acid
sensor general control non-derepressible (GCN) 2 and reduc-
ing mTOR/p70S6K signaling [37].

Plasma levels of branched-chain amino acids (BCAAs)
valine, leucine, and isoleucine have been the focus of atten-
tion among amino acids, owing to their role in skeletal mus-
cle energy metabolism and the fact that leucine has been de-
monstrated  to  promote  protein  synthesis  in  vitro  [38].
BCAA levels in the blood have been proven to predict nutri-
tional status in hemodialysis patients [39].

Further research is needed to determine the precise mech-
anisms by which BCAAs regulate insulin sensitivity and glu-
cose metabolism under various conditions.

3. VITAMINS AND INSULIN RESISTANCE
Vitamins are necessary micronutrients that biological or-

ganisms must have in small amounts to maintain normal cel-
lular  metabolism.  Thiamine  and  pyridoxine  are  important
water-soluble  vitamins  involved  in  the  breakdown  of
BCAAs.  Fig.  (2)  represents  the  role  of  thiamine and pyri-
doxine in the BCAAs metabolism.
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Fig. (1). In this schematic diagram, the activation of the mTORC1 (mammalian target of rapamycin complex 1) in response to branched-
chain amino acids (BCAAs) and its impact on insulin resistance are depicted. Insulin receptor substrate 1 (IRS-1) is inhibited by mTORC1
and S6K1 after being activated by BCAAs at serine residues 307, 636/639, 1101, and 312. Affected Akt/protein kinase B activity through
negative feedback regulation reduces insulin responses and activates NF-KB, which causes the production of cytokines that promote inflam-
mation. S6K1phosphorylation induces mitochondrial dysfunction and induction of stress kinase, resulting in apoptosis of β-cell of the pan-
creas and insulin resistance. “The Figure was created using Servier Medical Art, licenced under a Creative Commons Attribution 3.0 unport-
ed licence (https://smart.servier.com (Accessed 17 April 2023))”. (A higher resolution / colour version of this figure is available in the elec-
tronic copy of the article).

Thiamine, also known as vitamin B1, was the first vita-
min to be discovered [40]. The decarboxylation of BCAAs
and alpha-keto acids serves as a catalyst for the production
of energy. Thiamine, in the form of thiamine pyrophosphate,
also serves as a coenzyme for transketolase reactions.

Despite a few human pilot studies demonstrating the ad-
vantages  of  thiamine  administration  in  managing  diabetic
nephropathy, its potential role in delaying the development
or progression of diabetic retinopathy has not yet been in-
vestigated [41-43]. Diabetes is thought to be a state of low
thiamine due to increased glucose metabolism [41]. The ear-
lier researchers concluded that plasma thiamine levels are de-
creased and their excretion increased in type 2 diabetes melli-
tus and also found positive dyslipidemia with thiamine defi-

ciency [44, 45]. A study supported the link between blood
thiamine  levels  and  T2DM patients  with  early-stage  renal
failure  [46].  Pyridoxine  serves  as  a  cofactor  in  the  initial
step of the degradation of BCAAs by branched-chain amino-
transferase. One of the studies concluded that rats given a di-
et enriched with branched-chain amino acids while suffering
from vitamin B6 deficiency had a high incidence of fat depo-
sition in their liver [47]. Pyridoxine has also been demons-
trated  to  lessen  insulin  resistance  in  some  trials  [48-50].
Leucine and vitamin B6 work together synergistically to di-
minish adipocyte lipid storage while increasing insulin sensi-
tivity, muscular fat oxidation, and oxidative and inflammato-
ry stress [50]. Pyridoxine has also been demonstrated in sev-
eral trials to lower fasting blood sugar levels [48, 51].
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Fig. (2). Diagrammatic representation of the degradation of branched-chain amino acids. Branched-chain aminotransferase enzyme (BCAT)
catalyses the first step in the breakdown of BCAA and needs PLP to function as a cofactor. Thiamine pyrophosphate (TPP), a coenzyme, is
required for the E1 component of the branched chain alpha-keto acid dehydrogenase complex (BCKDH) in the subsequent step. Through a
sequence of enzyme reactions, metabolites of BCAAs come together to generate the final product and enter into the Tricarboxylic acid cycle.
Lack of pyridoxine and thiamine causes an increase in hazardous branched-chain amino acid metabolites as well as BCAA, which can cause
mitochondrial malfunction and beta-cell death. The multi-step reaction is indicated by the dotted line. “The Figure was created using Servier
Medical Art, licenced under a Creative Commons Attribution 3.0 unported licence (https://smart.servier.com (Accessed on 17 April 2023)”.
(A higher resolution / colour version of this figure is available in the electronic copy of the article).

4. ADIPOKINES AND INSULIN RESISTANCE
Adipose tissue is currently regarded as a highly special-

ized tissue that performs a vital endocrine function by pro-
ducing and secreting a variety of bioactive chemicals such
as adiponectin, leptin, resistin, and cytokines such as tumor
necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) [11,
12]. Insulin governs anti-lipolytic processes and has a wide
range of impacts on metabolic processes in adipocytes, there-
fore, worsening of cell sensitivity to this hormone or impair-
ment  of  the  insulin  pathway  may  alter  adipose  tissue
metabolism. Insulin resistance is connected to increased TN-
F-α expression, and IL-6 plays a key role in lipid buildup in
the myocardium [13].

Fig. (3) explains the role of both anti-inflammatory and
pro-inflammatory cytokines in the etiology of insulin resis-
tance. Hyperadiposity, metabolic syndrome, and T2DM are
known to affect adipokines such as leptin and adiponectin.
While both adipokines are produced by adipose tissue, obese
people  have  higher  amounts  of  leptin  and  lower  levels  of
adiponectin [52, 53]. Adipocyte differentiation is aided by
leptin  and  adiponectin  concentration  [54-56].  In  addition,
the correlation between the ratio of leptin to adiponectin and
systemic inflammation, as well as its ability to forecast in-
sulin resistance among non-diabetic individuals, highlights
the involvement of adipose tissue malfunction in the devel-
opment of insulin resistance [57, 58].
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Fig. (3). Flow chart illustrating the involvement of adipokines in the progression of insulin resistance that includes tumor necrosis factor-al-
pha (TNF-α) and Interleukin 6 (IL-6). (A higher resolution / colour version of this figure is available in the electronic copy of the article).

Numerous studies have investigated alterations in the lev-
els of these adipocytokines in individuals with confirmed di-
abetes or those undergoing antidiabetic drug therapy. How-
ever, there is a dearth of research on how genetic predisposi-
tion  affects  plasma levels  and  the  possible  contribution  to
the onset and progression of insulin resistance and diabetes
in individuals. TNF-α and IL-6, adipocyte-derived inflamma-
tory adipokines, were found to be associated with insulin re-
sistance,  whereas  adiponectin,  an  anti-inflammatory
adipokine,  was  not  associated  [59].

4.1.  Connecting  The  Dots  of  BCAA,  Vitamins,
Adipokines and Insulin Resistance

The  interconnection  of  BCAAs,  vitamins,  adipokines,
and insulin resistance is mediated by the AMP-activated pro-
tein kinase (AMPK). Initially identified as an enzyme capa-
ble of enhancing cellular ATP production (such as fatty acid
oxidation) and reducing ATP consumption for biochemical
processes (such as fatty acid, triglyceride and protein synthe-

sis), AMPK is activated by changes in the AMP/ATP ratio,
resulting in an increase in cellular ATP concentration [60].
AMPK  plays  a  regulatory  role  in  numerous  physiological
processes  such  as  cellular  growth  and  proliferation,  mito-
chondrial function and biogenesis, and insulin resistance- re-
lated factors,  including inflammation,  oxidative and endo-
plasmic reticulum stress, and autophagy, in addition to glu-
cose  transport,  lipid  and  protein  synthesis,  and  fuel
metabolism [61]. In humans, AMPK dysregulation plays a
key  role  in  the  pathophysiology  of  insulin  resistance  and
metabolic syndrome-related illnesses. This cross-sectional in-
vestigation will strongly demonstrate that AMPK dysregula-
tion and IR are linked. Finally, it appears that the discovery
of effective and specific AMPK activators is on the horizon
[61]. If this is the case, we may be able to assess the thera-
peutic  efficacy of  AMPK activation in  the  prevention and
treatment of diabetes mellitus in the near future. Fig. (4) il-
lustrates  the  possible  mechanism  that  involves  BCAAs,
adipokines, vitamins, and AMPK in the pathogenesis of in-
sulin resistance.
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Fig. (4). The Flow chart elucidates the possible mechanisms of insulin resistance involving BCAAs, adipokines, vitamins, and AMPK. (A
higher resolution / colour version of this figure is available in the electronic copy of the article).

Branched-chain amino acids, notably leucine, have been
shown to promote mTOR signaling, protein synthesis, and
insulin resistance [62]. BCAAs have been reported to inhibit
AMPK activation while enhancing mTOR/p70S6K signal-
ing and protein synthesis in recent studies [63]. Moreover,
when  human  adipocytes  are  stimulated  by  inflammatory
and/or metabolic stimuli, AMPK regulates adipokine expres-
sion  and  secretion  profiles  [64].  Insulin  resistance  is  trig-
gered by an imbalance in the adipokine profile [63]. In addi-
tion,  the  activity  of  AMPK  is  regulated  by  adipokines,
which can impede the pro-inflammatory and pro-prolifera-
tive  actions  of  adipokines  such  as  TNF-α,  IL-6,  IL-8,  and
leptin while enhancing the anti-inflammatory and anti-prolif-
erative effects  of  adipokines such as adiponectin and IL1-
RA in insulin-resistant  tissues  [63].  Adiponectin  enhances
fatty acid oxidation (AMP kinase activation), resulting in a
drop in plasma FFA levels but an increase in glucose con-
sumption [65].

Indeed, Liu et al. demonstrated that adiponectin restored
the  altered  BCAA metabolism caused  by  high-fat  diets  in

mice,  while  Lian  et  al.  discovered  that  deficits  in
adiponectin signaling were linked to a reduction in BCAA
catabolism enzyme activity [66, 67]. The earlier researchers
discovered  a  positive  relationship  between  plasma  BCAA
and leptin levels, as well as an inverse relationship between
BCAA  and  adiponectin,  including  high  molecular  weight
(HMW) adiponectin levels [68].

In  experimental  animals,  adipokines  such  as  TNF-α,
IL-6, Retinal binding protein-4 RBP4), IL-18, lipocalin 2, as
well  as  BCAA  levels  are  linked  to  insulin  resistance,  al-
though  there  is  little  evidence  in  humans  [69-73].  Some
studies report that there is a positive association between vi-
tamins and the development of insulin resistance [46-50].

BCAAs, in particular, may affect some adipocytes, con-
trolling the adipokines that promote insulin resistance. More-
over, due to the absence of a definitive correlation, the poten-
tial  link between BCAA levels  and adipokines may be at-
tributable to residual confounding. The deficiency of vita-
mins like thiamine and pyridoxine may result in increased
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plasma  BCAA  levels  and,  initiate  the  activation  of
mTOR/P70S6k and induce the development of insulin resis-
tance.

5. DISCUSSION
The  incidence  of  insulin  resistance,  T2DM,  and

metabolic  syndrome is  escalating at  alarming rates  world-
wide. It is generally known that chronic nutritional overabun-
dance  causes  insulin  resistance.  The  development  of  dia-
betes  mellitus  is  considerably  influenced  by  insulin  resis-
tance, which stems from abnormalities in insulin-mediated
glucose uptake and/or glucose release in peripheral tissues,
liver, and muscles.

Essential amino acids, including leucine, isoleucine, and
valine, which are classified as BCAAs, impact metabolism
either directly or indirectly [74-76]. They are found in quite
substantial levels in dietary proteins, accounting for 15-20%
of protein intake. The elevated levels of metabolic byprod-
ucts of BCAAs and mitochondrial oxidation of glucose and
lipids, both of which generate mitochondrial stress [77].

Water  soluble  vitamins,  such  as  thiamine  and  pyri-
doxine, act as cofactors in BCAA catabolism; deficiency of
these vitamins leads to elevation in plasma BCAA levels.

Metabolic dysfunction of BCAAs and sustained activa-
tion  of  mTORC1  may  underlie  the  association  between
BCAAs  and  the  risk  of  metabolic  disorders,  including  in-
sulin resistance and T2DM, regardless of body mass index
(BMI). This suggests that BCAAs may serve as an early pre-
dictor of these conditions [74]. The expression of branched-
chain amino acid catabolism genes in visceral adipose tissue
is  linked  to  insulin  sensitivity.  When  obese  people  with
metabolic syndrome are compared to obese people without
metabolic syndrome, this gene expression is found to be low-
er [74]. Reduced metabolism of BCAA, which is influenced
by adipose tissue [74, 78], may contribute to the association
between hyper adiposity and insulin resistance.

AMPK is an enzyme that senses energy levels and plays
a  role  in  nutrition  sensing  and  insulin  sensitivity.  It  is  a
heterotrimeric protein that signals to increase ATP-generat-
ing processes and decrease ATP-consuming processes dur-
ing periods of low energy.

A  decrease  in  AMPK  activity  and  phosphorylation  of
AMPK Thr172 seems to be an initial and fundamental step
towards insulin resistance induced by excessive dietary in-
take. According to Viollet et al., AMPK activity can be re-
duced by a variety of hormones and inflammatory cytokines
in addition to nutrition [78].  Furthermore,  because AMPK
downregulation is a typical occurrence in response to all of
these nutritional stimuli, its stimulation is an obvious thera-
peutic target. Diet, exercise, and insulin-sensitizing pharma-
ceutical  treatments  like  metformin,  all  of  which  activate
AMPK, are being used to treat T2DM and the metabolic syn-
drome [18]. While these treatments are beneficial, they are
frequently insufficient to control patients' blood glucose lev-
els on their own, necessitating the development of more pow-
erful drugs.

Decreased AMPK activation is  caused by mechanisms
that raise plasma BCAA levels, vitamin insufficiency, and
an increase in pro-inflammatory cytokines. The detection of
markers  that  indicate  the  transition  from  physiological  to
pathological  insulin  resistance,  which  is  associated  with
other detrimental processes like inflammation and oxidative
stress,  could be useful in identifying potential  targets.  En-
hancing our understanding of AMPK regulation and the fac-
tors that contribute to its downregulation could lead to the
discovery  of  novel  chemical  AMPK activators,  as  well  as
other molecules in the pathway that could be targeted in con-
junction with AMPK activators to enhance insulin resistance
alleviation.

CONCLUSION
In conclusion, elevated levels of BCAAs, pro-inflamma-

tory adipokines, and deficiencies in vitamins can significant-
ly impact cellular metabolism by disrupting mitochondrial
function and promoting inflammatory responses. These dis-
ruptions contribute to the development of insulin resistance,
further exacerbating metabolic disorders. Further research is
essential to determine whether abnormal concentrations of
BCAAs, vitamin deficiencies, and adipokines could serve as
reliable biomarkers or therapeutic targets for the clinical di-
agnosis and treatment of diabetes mellitus. Additionally, it is
crucial  to  explore  whether  these factors  collectively influ-
ence energy metabolism and inflammation through other sig-
naling pathways, which may reveal new avenues for inter-
vention.
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