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Abstract

The interest in artificial intelligence (AI) has ballooned within radiology in the past few years primarily
due to notable successes of deep learning. With the advances brought by deep learning, Al has the poten-
tial to recognize and localize complex patterns from different radiological imaging modalities, many of
which even achieve comparable performance to human decision-making in recent applications. In this
chapter, we review several Al applications in radiology for different anatomies: chest, abdomen, pelvis, as
well as general lesion detection/identification that is not limited to specific anatomies. For each anatomy
site, we focus on introducing the tasks of detection, segmentation, and classification with an emphasis on
describing the technology development pathway with the aim of providing the reader with an understand-
ing of what Al can do in radiology and what still needs to be done for Al to better fit in radiology.
Combining with our own research experience of Al in medicine, we elaborate how Al can enrich knowl-
edge discovery, understanding, and decision-making in radiology, rather than replacing the radiologist.

Keywords: Radiology; artificial intelligence; deep learning; lesion; pulmonary; abdomen; pelvis; classifica-
tion; segmentation; detection; characterization

14.1 Introduction

Computers have revolutionized the field of diagnostic and quantitative imaging and are
imperative in radiology workflow nowadays. Early milestones of computer technology
include imaging acquisition inventions, such as computerized tomography (CT), nuclear
medicine, and magnetic resonance imaging (MRI), and the developments of digitized pic-
ture archiving and communication systems (PACSs). Significant advances in “intelligent”
image analysis have been achieved in recent years with the booming of artificial intelli-
gence (Al) technology due to the emergence of deep learning. In certain very specific and
limited applications, computers are now able to perform tasks that previously only physi-
cians could accomplish. For instance, a deep-learning empowered segmentation and classi-
fication system for optical coherence tomography achieves clinically applicable
performance, that is, comparable or exceeding the performance by professional experts, on
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a range of sight-threatening retinal diseases." With the appropriate integration of deep-
learning technologies paired with suitable medical imaging tasks, effective, and efficient
Al systems can be developed to help radiologists reduce workloads and increase accuracy
and consistency. It may eventually change the radiology workflow for some tasks. Hence,
a better understanding of the strengths and limitations of new technology is of great bene-
fit for radiologists. In this chapter, we review several important medical imaging tasks for
different anatomies, emphasizing applications that we have worked on in our own
research. Specifically, we overview and discuss the recent Al advances in thoracic, abdom-
inal, and pelvic applications as well as general lesion analysis, which is not limited to a
specific anatomy. Various imaging modalities are included, such as X-rays, CT, and MRIL
For each anatomy, we focus on introducing the tasks of detection, segmentation, and clas-
sification with Al-based methods and discuss their achievements and also what future
work remains to be done. Throughout, a common thread unifies the discussion, which
also undergirds our own work—clinically useful Al tools must be developed hand-in-
hand with radiologists toward a shared goal of empowering the radiology field.

14.2 Thoracic applications

14.2.1 Pulmonary analysis in chest X-ray

Chest X-rays (CXRs) are the most ordered radiological scan in the United States” used
to diagnose or screen for a variety of thoracic ailments. Given the challenges in reading
CXRs, for example, low sensitives,” there is great impetus for Al-based tools to help or
enhance interpretation. Work along this line, catalyzed by the release of the CXR14 data-
set,* has accelerated in recent years. In this subsection, we first overview the history of
large-scale CXR datasets for training Al systems. Then we outline some on-going efforts
and innovations aimed at pushing forward what is possible in Al-based analysis. Finally,
we discuss some challenges for future investigation.

Like all Al applications, a necessary, but not sufficient, condition for an effective Al sys-
tem for CXR analysis is an extensive and curated data source. Prior to the advent of deep
learning, there was a paucity of large-scale CXR datasets. The one exceEtion was the
Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial> whose CXR
screening arm includes roughly 200,000 manually annotated CXRs. Annotated disease pat-
terns include masses and nodules along with nononcological patterns, such as opacities
and pleural abnormalities. However, because the PLCO is a screening trial, disease preva-
lence is low. Moreover, PLCO CXRs are film radiographs that were later digitized, so they
may differ in appearance from digital radiographs.

While the PLCO remains invaluable, it was collected at enormous expense by executing a
multisite clinical trial. Clearly, alternative data collection strategies are needed. Fortunately,
the data housed in hospital PACSs offers a preexisting source of large-scale CXR data.
The CXR14 dataset’ was the first to exploit large-scale PACS CXRs. The authors collected
~110K CXRs by retrospectively mining the National Institutes of Health Clinical Center
PACS. Labels for each CXR were generated by automatically text mining the accompanying
radiological reports written during daily clinical workflows. Once released, the CXR14 data-
set quickly became a core dataset for Al training and kicked off a trend of additional groups
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releasing their own PACS-mined data, such as CheXper’c,6 MIMIC-CXR,” and PadChest.®
Fig. 14.1 depicts the numbers of released CXRs from each dataset.

Mining PACS is a highly promising source of data, but the aforementioned studies all
rely on natural language processing to extract labels. Apart from any errors in the text
mining, radiologist reports are written by considering many other factors outside of the
CXR appearance, for example, lab tests, prior scans, and patient history.” Thus mentioned
disease patterns may not actually be present in the image and disease patterns present in
the image may not actually be mentioned in the report, for example, an “unchanged”
assessment. This can cause serious issues’ and Al specialists must work hand-in-hand
with clinicians to most effectively use PACS-mined data. Despite these challenges, PACS-
mined data still represents the most promising source of large-scale data for CXR Al and,
deployed carefully, models trained on PACS-mined data can generalize well."
Furthermore, enhanced data collection efforts, such as more robust evaluation subsets®
and more ontological approaches to label extraction,” will continue to strengthen the value
of PACS-mined data.

The most straightforward application of CXR Al is predicting the scan- or study-wise
labels. This is essentially a multilabel classification problem, and many initial efforts
focused on this task.”'>" However, another key aim is to localize each disease pattern
being predicted. This enhances explainability and is a beneficial end in and of itself. The
key challenge is that CXR datasets typically only possess scan- or study-wise labels that
do not specify the disease pattern’s location. This means training an Al-based localizer
requires using weak-supervision techniques. For the most part, CXR localizers are all built
off class-activation map techniques'® which exploits the implicit localization properties
within convolutional neural networks (CNNs). Promising approaches include generating
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pseudolabels to supervise an Al-localizer'"'*'* and developing techniques that can work

well with only a small batch of localization labels.'” Another direction is to force the CNN
to use as many regions of the image as possible when making its prediction.'® Fig. 14.2
depicts some example localizations derived from these weakly supervised techniques.
Weakly supervised localization shows promise, but challenges remain to ensure the model
captures the entire extent of the disease pattern and does not focus on spurious regions.

Apart from localization, recent works have also focused on providing specialized or
enhanced analyses. Mirroring larger trends within deep learning, the use of generative
adversarial networks (GANs) to generate synthetic CXRs, has received attention. This
includes using realistic synthetic CXRs to simulate image/mask pairs in order to train Al
models to segment the lung field."””” GANs have also been used to transfer a model that
works well on adult patients to also perform well on pediatric data.”’ Finally, GANs have
also been successfully used to flag abnormal CXRs.'® Moving on from GAN-based analy-
sis, another interesting line of work is using a taxonomy of disease patterns to provide
both more meaningful predictions and enhanced performance.”” As these works suggest,
there is a rich set of research directions, beyond just localization, for Al applications in
CXR analysis.

The release of recent PACS-mined datasets has spurred an incredibly exciting burst of
research activity in CXR analysis. Already much progress has been made, but important
challenges remain. One key hurdle is developing Al techniques and models that can better
manage the noise and uncertainty that comes with text-mined labels. This could involve
integrating clinical domain knowledge to better model the meaning behind text-mined
phrases and words found in radiological reports. Relatedly, it would be extraordinarily

Effusion ] Nodule

Pneumothorax Cérdiomegaly Mass

FIGURE 14.2 When properly configured, CNNs can also provide localizations indicating the region of the
image that is contributing to the prediction. CNNs, Convolutional neural networks. Source: Credit: Tang Y, Wang
X, Harrison AP, Lu L, Xiao |, Summers RM. Attention-guided curriculum learning for weakly supervised classification and
localization of thoracic diseases on chest radiographs. In: Shi Y, Suk H-I, Liu M editors. Machine learning in medical
imaging, lecture notes in computer science. Cham: Springer International Publishing; 2018b. p. 249—58. Available
from: https:/[doi.org/10.1007/978-3-030-00919-9_29.
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beneficial for the AI community to have agreed upon and radiologist-driven ontologies or
taxonomies of disease patterns for an Al system to target. Such an ontology would also
help incorporate and model the interdependencies across disease patterns. In addition,
principled techniques should be developed to consider also prior CXR studies, lab results,
and patient history. This would better emulate current radiological practices in the clinic.
Along with these improved modeling capabilities, future work should also focus on creat-
ing larger and more accurate manually labeled evaluation sets, so that performance can be
better gauged.

14.2.2 Pulmonary analysis in computerized tomography

CT is the gold standard imaging modality for a broad range of high prevalence pulmo-
nary diseases, such as interstitial lung disease (ILD) and lung cancer.””** Benefiting from
its high spatial resolution in three dimensions (3D), CT allows more accurate disease diag-
nosis and quantification. To effectively detect and analyze pulmonary abnormalities from
the large amounts of 3D CT data, automated Al-based tools play a critical role and have
been studied for more than two decades.”” * In such Al-based systems, typically the first
step is to segment the anatomies of interest to facilitate the later steps of disease detection
and quantification. In this subsection, we first review the Al-based segmentation methods
for three pulmonary anatomies, that is, lung, lobe, and airway. Then we use ILD as a case
study for how Al systems can play a role in pulmonary analysis.

14.2.2.1 Lung, lobe, and airway segmentation

An often necessary first step for any computer-aided diagnosis or detection system is to
accurately delineate the organs of interest. Measuring organ volume or shape can offer its
own important biomarkers. In addition, accurate delineation is often a prerequisite for any
downstream disease analysis, so that the area of focus can be accurately determined.
Within pulmonary analysis, Al-based segmentation primarily focuses on three structures:
the lungs, lung lobes, and pulmonary airways. Below, we discuss each in turn.

For normal lungs the delineation is relatively straightforward, and classic techniques
such as region growing or anatomical shape models can operate well as long as their strict
assumptions on Hounsfield unit intensity and shape, respectively, are maintained.
However, the problem becomes much more challenging once pathological patterns are
present, such as consolidations, pleural effusions, or lung nodules, or if lung shapes do
not follow expected distributions. Prior to the dominance of deep learning, effective patho-
logical lung segmentation techniques relied on sophisticated, but handcrafted workflows,”
that can struggle to generalize without significant calibration efforts. To address this,
Harrison et al.”” proposed the first deep model for pathological lung segmentation, called
progressive holistically-nested networks (PHNNs), which classified each CT voxel individ-
ually in a bottom-up manner. Tested on 929 pathological CT studies, where disease pat-
terns associated with infections, chronic obstructive pulmonary disease (COPD) and/or
ILD were present, PHNN achieved an extremely high mean Dice score, or Serensen—Dice
coefficient score of 98.5%. After Harrison et al.,”” many subsequent works reported their
own deep segmentation approaches that followed similar strategies. While the PHNN
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results are impressive, the model can still struggle on scenarios it did not see enough of in
training, such as lung nodules or consolidations touching the lung border. Thus further
work is still required to harden CNN models, like PHNN, to such unseen variations. Jin
et al.”® proposed one such interesting strategy, using GANs to simulate lung nodules to
fine-tune the PHNN model so that it can successfully handle such cases (see Fig. 14.3).
The continued development of strategies along this vein will be necessary to address out-
lier cases as much as possible.

Delineating the five lobes of the lung is another important task, particularly as infec-
tions are often limited to one or a few lobes. While lobe segmentation shares similarities
with lung segmentation, successful solutions must incorporate much more top-down
structural guidance. This is because lobe fissures are often incomplete, share the same
appearance with accessory fissures, and can be obscured when pathologies are present.
This challenges the bottom-up voxel-by-voxel strategies used in lung segmentation.”
Because airways do not cross lobar boundaries, one structural approach to segmentation is
to first segment the airways,””’ using the resulting airway trees as constraints or initiali-
zations. But airway segmentation is a challenging problem in its own right, which means
these approaches require complex and brittle multicomponent workflows to segment
lobes. Taking a different approach, George et al.”' reported the first deep solution to this
problem. The authors trained a bottom-up PHNN model to noisily segment lung fissures
and then used the random walker (RW) algorithm to impose top-down structural con-
straints. To keep it simple and generalizable the RW algorithm’s only assumption is that
there are five lobes. Their method achieves a 88.8% mean Dice score, or Serensen—Dice
coefficient score under the presence of highly challenging interstitial lung pathologies,
which outperformed a leading nondeep approach™ by 5%. Fig. 14.4 provides some quali-
tative examples demonstrating the power of combining bottom-up CNN predictions with
straightforward top-down constraints.

Airway segmentation is uniquely challenging due to its topological complexity. The extreme
thin airway wall separating the lumen and lung parenchyma adds further difficulty since its
resolution is even lower than that of the CT scanner at many middle or small airway branches.
This often causes large segmentation leakage into the adjacent lung parenchyma. Many

®)

FIGURE 14.3 Jin et al.’s*® simulated lung nodules. (A) A volume of interest centered at a lung nodule; (B) 2D axial
view of (A), (C) same as (B), but with central sphere region erased; (D—E) simulated lung nodule using a competitor
method and Jin et al’s”™ method, respectively. These simulated lung nodules were used to fine-tune and enhance
Harrison et al’s* lung segmentation model. Source: Credit: Jin D, Xu Z, Tang Y, Harrison AP, Mollura DJ. CT-realistic
lung nodule simulation from 3D conditional generative adversarial networks for robust lung segmentation. In: Medical
image computing and computer-assisted intervention — MICCAI 2018, Lecture notes in computer science. Cham:
Springer International Publishing; 2018. p. 732—40. Available from: https://doi.org/10.1007/978-3-030-00934-2_81.
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FIGURE 14.4 Lung lobe segmentation using George et al.’s” technique (P-HNN + RW). Here pulmonary toolkit
(PTK) denotes Doel et al.’s™ approach. Ground truth lobar boundaries are rendered in red. Despite its simplicity the
P-HNN + RW technique can provide reliable lobe segmentations in challenging scenarios: (A) PTK follows an errone-
ous boundary, (B) P-HNN + RW handles an incomplete fissure, (C) PTK over segments one lobe, (D) P-HNN + RW
does not get confounded by a fibrosis pattern that looks like a fissure, and (E) P-HNN + RW infers a reasonable lobar
boundary even though there is no visual fissure. Source: Credit: George K, Harrison AP, Jin D, Xu Z, Mollura DJ.
Pathological pulmonary lobe segmentation from CT images using progressive holistically-nested neural networks and random
walker. In: Cardoso MJ, Arbel T, Carneiro G, Syeda-Mahmood T, Tavares JMRS, Moradi M, et al. editors. Deep learning
in medical image analysis and multimodal learning for clinical decision support, lecture notes in computer sci-
ence. Cham: Springer International Publishing; 2017. p. 195—203. Available from: https://doi.org/10.1007/978-3-319-
67558-9_23.

automated methods have been developed to tackle this task including intensity-based™;
morphology-based™; graph-based”** and 2D learning-based.”*’ Among these, different var-
iations of region growing are often used. In contrast, 2D learning-based methods™”*’ can add
potential robustness. However, their inability to consider the entire 3D volume greatly limits
their learning capacities, since 3D information is crucial to detect small highly anisotropic tubu-
lar structures of airways. Another crucial limitation with learning-based approaches is that
they rely on labeled training data to train their algorithms. However, the labor costs to fully
annotate airways are much too high for large-scale datasets. To fill these gaps, Jin et al.*' pro-
posed the first 3D CNN-based method to fully leverage 3D airway tree features. A further
graph-based refinement step addresses local discontinuities of the coarse 3D CNN output,
which is then further refined by a curve skeletonization approach™ to remove the blob-like
segmentation leakages. It significantly improves over previous methods by extracting more
than 30 airway branches per patient while maintaining similar false positive rates as compared
to a prior art.”® Importantly, their training process does not require perfect airway labels, as the
3D CNN is trained using the incomplete labels generated by Xu et al.” that have high specific-
ity and moderate sensitivity. By learning from these incomplete labels, Jin et al.’s*' approach
can boost the sensitivity while maintaining high specificity. Fig. 14.5 provides some qualitative
examples demonstrating the power of the 3D CNN for airway tree segmentation. After Jin
et al.,*' several subsequent works reported their own deep segmentation approaches that fol-
lowed similar strategies.””** Given the impossibility of obtaining large-scale and manually
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FIGURE 14.5 Examples of 3D rendering of airway segmentations using Jin et al.’s’’ 3D CNN technique as
compared against a nonlearning-based prior work™ on the EXACT09 dataset. Overlap regions are colored in red.
Green and blue indicates additional extracted or missed branches, respectively, compared to the results from Xu
et al.*® Source: Credit: Jin D, Xu Z, Harrison AP, George K, Mollura DJ. 3D convolutional neural networks with graph
refinement for airway segmentation using incomplete data labels. In: International workshop on machine learning in
medical imaging. Cham: Springer; 2017 September. p. 141-9.

labeled airway datasets, continued work on approaches able to learn from weakly or incom-
pletely labeled data will be vital to continue pushing progress.

14.2.2.2 Interstitial lung disease pattern recognition

ILD comprises more than 150 lung disorders affecting the lung parenchyma, which may
eventually lead to breathing dysfunction. For the diagnosis of an ILD, besides the patient’s
clinical history and physical examination, CT scan is often ordered to provide a visual assess-
ment of the lung tissues. This is a less risky procedure compared to biopsies. However, read-
ing and interpreting large amounts of 3D chest CT scans requires significant time, effort, and
experience from physicians. Yet, inter- and intra- observer agreement is frequently low
because of the subjectivity and difficulty in interpreting ILD patterns.””* Hence, many com-
puterized and Al-based systems have been developed to automatically identify these abnor-
mal patterns for increasing accuracy and consistency. Note that the new coronavirus 2019
(COVID-2019) causes severe pneumonia in certain patients. The corresponding CT scans
include quite a few patterns that match patterns found in ILD, such as ground glass opacity,
consolidation, reticulation, and crazy paving. Two COVID-2019 CT examples are shown in
Fig. 14.6. Al-based lung pattern classification methods can be categorized into conventional
image analysis and deep learning—based approaches, which are detailed in the following two
paragraphs. We end this subsection by discussing the limitation of the current works and
point out the possible directions for solving this important problem.

ILD comprises more than 150 lung disorders affecting the lung parenchyma, which
may eventually lead to breathing dysfunction. For the diagnosis of an ILD, besides the
patient’s clinical history and physical examination, CT scan is often ordered to provide a
visual assessment of the lung tissues. This is a less risky procedure compared to biopsies.
However, reading and interpreting large amounts of 3D chest CT scans requires signifi-
cant time, effort, and experience from physicians. Yet, inter- and intraobserver agreement
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FIGURE 14.6 Examples of CT findings in two coronavirus 2019 (COVID-19) patients. The transverse, sagittal,
and coronal views are shown for each case. The first row presents a patient with mild ground glass opacity in the
right lower lobe. The bottom row shows a patient with severe radiologic progression with bilateral patchy sha-
dowing. CT, Computerized tomography.

is frequently low because of the subjectivity and difficulty in interpreting ILD patterns.*>*°

Hence, many computerized and Al-based systems have been developed to automatically
identify these abnormal patterns for increasing accuracy and consistency. Note that the
new COVID-2019 causes severe pneumonia in certain patients. The corresponding CT
scans include quite a few patterns that match patterns found in ILD, such as ground glass
opacity, consolidation, reticulation, and crazy paving. Two COVID-2019 CT examples are
shown in Fig. 14.6. Al-based lung pattern classification methods can be categorized into
conventional image analysis and deep learning—based approaches, which are detailed in
the following two paragraphs. We end this subsection by discussing the limitation of the
current works and point out the possible directions for solving this important problem.

Early computerized lung pattern recognition works can trace back to the 1980s,
which used simple lung density analysis, such as mean or histogram percentile, to recog-
nize emphysematous subjects. Later on, using local image patches, learning-based classifi-
cation methods have been actively explored to identify various abnormal patterns, such as
emphysema, honeycombing, ground glass opacity, consolidation, reticulation, nodular, or
their combinations.”’ >’ Various features have been designed for characterizing the dis-
tinct properties of the abnormal lung patterns, for example, basic statistical texture
features, geometric features, features extracted by multiscale filter banks, and more com-
plex features such as near-affine-invariant texture, rotation-invariant Gabor-local binary
patterns, and the multicoordinate histogram of oriented gradients. Different classifiers

47,48
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have been examined for their performance such as Bayesian classifier, linear discriminant
classifier, and support vector machine with feature selections. These methods achieved
quite divergent results due to different evaluation metrics distinct datasets.

Recently, deep learning—based Al solutions have shown promise. Anthimopoulos
et al.”* designed a customized CNN to conduct patch-based lung-pattern classification and
gained markedly improved performance as compared to the non—deep-learning methods.
This suggests that features automatically learned in a CNN network are more effective
than previous handcrafted approaches. Gao et al.”>”° further confirmed this, by introduc-
ing holistic slice-based classification for ILD diseases, where the CNN directly predicts if
an axial slice contains any ILD disease patterns. This avoids needing to sample local image
patches from manual Regions of Interest (ROIs) and can be used to prescreen a large
amount of radiology data, which might be more clinically useful. Also of interest, Shin
et al.”” conducted a comprehensive evaluation of both patch- and holistic slice—based ILD
pattern classification using different CNN structures and transfer learning.

Although deep-learning methods have shown promising results in recognizing abnormal
patterns for ILD, current approaches face a bottleneck that there is no large-scale labeled data
for training and evaluation. Note that there are two public datasets relevant to the ILD pat-
terns: (1) the lung tissue research consortium (LTRC) contributed by the National Heart, Lung
and Blood Institute™”” and (2) the specialized ILD dataset developed by University Hospitals
of Geneva.” Although the LTRC includes more than 1000 (and counting) CT scans, from four
centers, with COPDs and fibrotic ILD patterns, no manually annotated regions of interest are
made available. In contrast, the ILD dataset contains manually annotated regions of 11 types
of lung patterns. But these are only partially annotated. Moreover, only 108 CT scans with
thick-slice spacing (10—15 mm) are made available, and they all originate from the same hos-
pital and the partial labeling. Another limitation comes from the fact that these CT scans are
from a single hospital and fail to cover sufficient variance of larger population with different
scanners, which is crucial for enhancing the generalizability of the AI recognition systems.
Thus limitations in labeled data is a major issue. There has been already published works
addressing this issue, for example, Gao et al.”’ have explored deep-learning label propagation
approaches to fully label the ILD dataset.”” Nonetheless, further work is needed. Potentially,
using techniques to mine unlabeled instances from multiple heterogeneous and incompletely
labeled datasets, as explored in lesion detection,”! might be a useful research direction.

14.3 Abdominal applications

Al systems have played a critical role for various cancer diagnostics in the abdomen,
such as pancreatic ductal adenocarcinoma (PDAC), hepatocellular carcinoma, colorectal
adenocarcinomas, etc. For instance, early computer-aided detection systems had been
developed for polyps® and hepatic lesions.”” In this section, we take pancreatic cancer as
an example to show the importance of Al-based systems in cancer detection, segmentation,
and the tumor growth prediction.
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14.3.1 Pancreatic cancer analysis in computerized tomography and magnetic
resonance imaging

Pancreatic cancer mainly includes two types: PDAC (85% of cases) and pancreatic neu-
roendocrine tumor (PanNET, less than 5% cases). PDAC is a major cause of cancer-related
death in Western countries and is anticipated to emerge as the second leading cause of
cancer-related death in the United States by 2030.”* The prognosis of patients with PDAC
is extremely poor, marked by a dismal 9% survival rate at 5 years. Medical imaging, for
example, CT, is now routinely performed for depiction, quantification, staging, resectabil-
ity evaluation, vascular invasion, and metastasis diagnosis of pancreatic cancers.

Automated analysis of pancreas images is a challenging task compared to other organs in
CT, such as the heart, liver, and kidney, as the pancreas has a variable shape, size, and loca-
tion in the abdomen. Pancreatic tumors are even more challenging to identify: they are quite
variable in their shape, size, location, and have complex enhanced patterns, such as hypo-,
iso-, or even hyperenhancement in different CT phases; moreover, the heterogeneity of pan-
creas regions (i.e., pancreas tissue, duct, veins, and arteries) and the ill-defined tumor bound-
ary make pancreatic tumor segmentation highly difficult even for radiologists. Recent
advances in machine learning and especially deep learning have led to substantial improve-
ments in automated pancreas cancer analysis and have enabled the prediction and prognosis
studies, such as tumor growth prediction and patient survival prediction. In this section, we
cover the representative works of the pancreas and pancreatic tumor segmentation/detection,
as well as the prediction and prognosis of pancreatic cancer.

14.3.1.1 Pancreas segmentation in computerized tomography and magnetic
resonance imaging

Segmentation of the pancreas from 3D scans can provide quantitative features, such as the
volume and shape statistics. Before deep learning, conventional methods report only 46.6%—
69.1% dice score in the automatic pancreas segmentation. The performance has been signifi-
cantly improved after adopting the deep-learning techniques.”” *® Starting from 2D image
patch-based CNN® to multiscale coarse-to-fine 3D fully convolutional network,” the Dice
score is improved from 71.8% to 86.9% for healthy pancreas segmentation (example shown in
Fig. 14.7), and computational time is reduced from 3 hours to 3 minutes. For abnormal pan-
creas segmentation, researchers recently achieve a comparably high Dice score of 86.7%"" by
the fusion of the arterial and venous enhanced CT phases in a hyperparing 3D UNet frame-
work, achieving a similar level as the interobserver variability between radiologists.

A) S ®)

FIGURE 14.7 Example of pancreas segmentation results (green) (A) comparing with the ground-truth annotation
(red) (B).” Source: Credit: Roth HR, Lu L, Lay N, Harrison AP, Farag A, Sohn A. et al. Spatial aggregation of holistically-
nested convolutional neural networks for automated pancreas localization and segmentation. Med Image Anal
2018,45:94—107.
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FIGURE 14.8 (A) Example of PanNET segmentation.69 Red: algorithm segmentation; Green: ground truth. (B)
ROC curve of pancreatic ductal adenocarcinoma screening.”® PanNET, Pancreatic neuroendocrine tumor; ROC,
Receiver operating characteristic. Source: Credit: Zhu Z, Xia Y, Xie L, Fishman EK, Yuille AL. Multi-scale coarse-to-fine
segmentation for screening pancreatic ductal adenocarcinoma. In: International conference on medical image computing
and computer-assisted intervention. Cham: Springer; 2019, October. p. 3—12; Guo Z, Zhang L, Lu L, Bagheri M,
Summers RM, Sonka M. et al. Deep LOGISMOS: deep learning graph-based 3D segmentation of pancreatic tumors on CT
scans. In: 2018 IEEE 15th international symposium on biomedical imaging (ISBI 2018). IEEE; 2018, April. p. 1230-3.

14.3.1.2 Pancreatic tumor segmentation and detection in computerized tomography
and magnetic resonance imaging

Precise tumor detection and segmentation are key elements in cancer imaging. For
PDAC a multiscale coarse-to-fine 3D CNN method can automatically segment the tumors
from venous phase CT with a Dice score of 57.3%.°° With the identified suspicious regions
of PDAC the pancreatic cancer screening/detection can be achieved. As such Zhu et al.”
reports a sensitivity of 94.1% and a specificity of 98.5% for PDAC screening (Fig. 14.8B).
To enhance the PDAC segmentation performance a hyperpairing framework” with the
same network backbone as® is designed, which fuses venous and arterial phases at layer
level. A much higher Dice score of 63.9% is reported. For PanNET a semiautomated
method which combines UNet and 3D graph-based segmentation can segment tumor
from arterial phase CT images with a Dice score of 83.2%°” (Fig. 14.8A). This approach
requires a manual click roughly at the tumor centroid for initialization. More generally,
researchers attempt to segment the universal pancreatic tumors, that is, with a mix of
PDAC and PanNET. Using the venous phase CT images, a cascade UNet approach pro-
duces a Dice score of 0.52 in a fully automated way.®” Using dynamic contrast-enhanced
MRI images, a patch-based semi-automated classification approach identifies tumor voxels
in the pancreatic head region achieving a Dice score of 0.73, comparable to the interob-
server variability.”'

14.3.1.3 Prediction and prognosis with pancreatic cancer imaging

The prediction of patient-specific progression of pancreatic tumors at an earlier stage,
such as PanNETs, will assist physicians in making decisions of the treatment plans. Such a
prediction problem has long been tackled using principles of mathematical modeling. A few
pieces of recent work’>”” using deep-learning approaches can handle more complex
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FIGURE 14.9 Example of deep-learning prediction of PanNET growth at different later time points.”
PanNET, Pancreatic neuroendocrine tumor. Source: Credit: Zhang L, Lu L, Wang X, Zhu RM, Bagheri M, Summers
RM et al. Spatio-temporal convolutional LSTMs for tumor growth prediction by learning 4D longitudinal patient data. In:
IEEE transactions on medical imaging; 2019.

distributions from a larger patient population and provide more precise pixel-level predic-
tion results. As demonstrated in Zhang et al.”” the two-stream CNN model achieves an
average volume prediction error of 6.6% compared to a 13.9% error of a state-of-the-art
mathematical modeling method using the same PanNET longitudinal dataset. The most
recent work further enables the prediction of cell density and CT intensity,”” and at the arbi-
trary future time point (shown in Fig. 14.9). There are also great interests in developing
effective imaging-based biomarkers to stratify the patients with PDAC™* and predict gene
mutation status from CT imaging,”” etc. Radiomics is still the mainstream approach in this
direction. Making these biomarkers to reach the clinical practices, a highly automatic model
and standardized radiomic features are desirable, as they can improve the objectiveness and
enable the multicenter validation on large-scale patient cohorts.

14.3.2 Al in other abdominal imaging

Multiorgan segmentation in CT and MRI has attracted lots of research interest.
Researchers have built several datasets with voxel-level annotations of the major
abdominal organs and vessels.”””*”” The recent deep-learning approaches (either 2D or
3D based) have already achieved high accuracies for some larger organs, for example,
Dice score of 98%, 97%, and 98% for liver, spleen, and kidney in CT images.””*" Small
object segmentation is still challenging: Dice score of the duodenum is only 75% and
that of the esophagus is only 76%. Segmentation of other abdominal tumors is also
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important. Investigators build several public datasets with annotations of abdominal
tumors (e.g., liver, kidney, and colon)®’, providing an opportunity for the whole com-
munity to develop the algorithms and helping to accelerate the development in this
field.

14.4 Pelvic applications

While bone fracture detection is not the only Al application in the pelvic region, it is
one of the most important and promising. Hip and pelvic fractures are among the most
frequent fracture types worldwide.®” Due to its low-cost, high-efficiency, and wide avail-
ability, pelvic X-ray imaging is the standard imaging tool for diagnosing pelvic and hip
fractures. However, anatomical complexities and perspective projection distortions in the
X-ray image contribute to a high rate of diagnostic errors® that may delay treatment and
increase patient care cost, morbidity, and mortality.”* As such, an effective Al system for
both pelvic and hip fractures is of high clinical interest, with the aim of reducing diagnos-
tic errors and improving patient outcomes. In this section, we will cover recent advances
in Al-based fracture detection in pelvic X-rays.

The medical reports in PACSs and/or radiology information systems (RISs) provide natu-
ral sources of image labels for training a deep-learning-based Al system. These labels typically
indicate positive finding of abnormalities (e.g., fracture) in the image, without specifying the
exact location. The convenience of obtaining massive image-level labeled data from PACSs
and/or RISs without manual annotation has driven the development of weakly supervised
learning for the AI models in X-ray images, especially CXR applications.4’22’85’86 In this formu-
lation an image-level classification CNN is trained, and localizations of the detected abnormal-
ities are provided via attention methods, for example, class activation mapping'” or gradient-
weighted class activation mapping.*”

Hip fractures are the most common type of fracture visible in pelvic X-rays. Due to their
high incidence, hip fractures are also the most well studied fracture type by the Al systems
in pelvic X-rays. Cheng et al.*” pretrained a popular CNN model on 25,505 limb radiographs
and fine-tuned it on 3605 pelvic X-rays with hip fracture labels. The trained model reports an
area under curve (AUC) of 0.980. Gale et al.*” collected a training set of 45,492 pelvic X-rays
with hip fractures labeled using a combination of orthopedics unit records and radiology
reports. Training their Al model using manually extracted hip ROlIs, they reported an
impressive AUC of 0.994 on hip fracture identification, which matches radiologist-level per-
formance. Their findings suggest that due to the localized nature of fractures and the com-
plexity of the surrounding anatomical regions in the pelvis, concentrating on an ROI around
the target anatomy (.e., hip) is an effective strategy for detecting fractures. The effectiveness
of employing ROI for hip fracture detection has also been demonstrated by Jiménez-Sanchez
et al,,”” who reported significant improvements in F1 scores using a ROI-base approach com-
pared to a global approach. Jiménez-Sanchez et al.” further demonstrated that a curriculum
learning scheme that starts from learning “easy” subtypes of hip fractures and gradually
moves toward “hard” subtypes leads to a better performance with fewer training data.

Beside hip fractures, detecting the more complex pelvic fractures (fractures in three pelvic
bones: the ilium, ischium, and pubis) is also of utmost importance, due to the potential critical
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TABLE 14.1 Results of the Computer-aided detection system’® and physicians performances on fracture
detection in a reader study.

Hip fracture Pelvic fracture

Accuracy (%) Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)

Emergency 88.1 98.3 93.7 81.3 95.5
Surgeon 85.5 93.1 92.8 82.9 93.2
Orthedpics 93.2 100 95.3 90.5 99.0
Radiology 93.0 99.0 96.5 87.0 99.5
Physician average 88.2 96.2 93.8 84.2 95.3
Wang et al.”® 90.7 96.0 98.0 84.0 96.0

Credit: Wang Y, Lu L, Cheng CT, Jin D, Harrison AP, Xiao ], et al. Weakly supervised universal fracture detection in pelvic X-rays. In:
International conference on medical image computing and computer-assisted intervention. Cham: Springer; 2019d, October.
p. 459—67.

complications associated with pelvic fractures. The makeup of pelvic fractures is much more
complex, as there are a large variety types with very different visual patterns at various loca-
tions. The overlap of pelvic bones with the lower abdomen anatomies further confounds
image patterns. In addition, unlike hip fractures, which occur at the femoral neck/head, pelvic
fractures can occur anywhere on the large pelvis, which precludes the use of anatomical ROIs
to concentrate on local fracture patterns. To address the previously mentioned challenges in
universal fracture detection in pelvic X-rays, Wang et al.”” proposed a global-to-local two-
stage gradient-weighted class activation mapping approach and reported radiologist-level per-
formance. In the first stage a CNN is trained using a multiinstance learning formulation to
generate proposals of potential fracture sites. ROIs of the generated proposals are collected
and used to train the second stage local fracture identification network. During inference the
two-stage models are chained together to provide a complete solution. This two-stage solution
has the ability to concentrate on local fracture patterns despite the large field of view of pelvic
X-rays. This method reports a high AUC of 0.975 on detecting both hip and pelvic fractures.
A reader study involving 23 physicians from 4 departments (i.e., surgical, orthopedics, emer-
gency, and radiology) on 150 pelvic X-rays demonstrates that the method outperforms emer-
gency physicians and surgeons. Table 14.1 depicts the performances of physicians as well as
the model on diagnosing hip and pelvic fractures. The model is also shown to be able to
detect ambiguous fracture sites that are missed by physicians in the reader study. Fig. 14.10
shows a few examples of frequently missed fracture sites and their corresponding model
detection results.

In summary the recent advances in the Al system for pelvic X-ray fracture detection has
shown a trend of shifting from detecting a single fracture type toward universal fracture
detection, which is often required to be deployed in real-world clinical scenarios such as
emergency rooms or trauma centers. We also observe a paradigm shift from global classi-
fier to local fracture pattern identification, represented by Gale et al.”” and Wang et al.,”
which significantly improves fracture-detection performance to reach radiologist-level.
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FIGURE 14.10 Examples of frequently missed fracture sites and their corresponding model detection results.”®

14.5 Universal lesion analysis

When reading medical images, such as CT scans, radiologists generally search across the
entire image to find lesions, characterize and measure them, and then describe them in the
radiological report. This routine process is tedious and time-consuming. More importantly,
human readers may miss some critical abnormal findings. This spurs research on automated
lesion analysis algorithms (detection, classification, and segmentation) to decrease reading
time and improve accuracy. However, most existing works focus on lesions of specific types
and organs, such as lung nodules,”’ breast lesions, > and liver lesions.” Yet, in clinical sce-
narios, a CT scan may contain multiple types of lesions in different organs. For instance,
metastasis can spread from a primary site to regional lymph nodes and other body parts or
organs. Designing a model for each organ/lesion type is inefficient and less scalable. In
addition, given the wide range of lesion types, a group of single-type models will still miss
some infrequent types. To help radiologists find and characterize all of them, a universal
lesion analysis (ULA) algorithm is ideal. While Al algorithms for specific lesions will always
be valuable, ULA addresses an important part of radiologists” daily workflows and needs.
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Mediastinum  FIGURE 14.11 Exemplar lesions in the DeepLesion
dataset.”*” Source: Credit: Yan K, Wang X, Lu L,
Summers RM. DeepLesion: automated mining of large-scale
lesion annotations and universal lesion detection with deep
learning. ] Med Imaging 2018a;5:1. Available from:
https://doi.org/10.1117/1.]JMI1.5.3.036501 95; Yan K, Wang
X, Lu L, Zhang L, Harrison A, Bagheri M, et al. Deep
lesion graphs in the wild: relationship learning and organi-
zation of significant radiology image findings in a diverse
large-scale lesion database. In: CVPR; 2018b.

In this section, we first introduce the large-scale DeepLesion dataset’ serving the purpose
of ULA for the CT modality. Then we describe representative works for specific lesion anal-
ysis tasks, including lesion detection, classification, quantification, and retrieval, and mining.

14.5.1 DeepLesion dataset

To achieve ULA the first step is to collect a large-scale and diverse lesion dataset with
comprehensive labels. Conventional data collection efforts would recruit experienced radi-
ologists to manually annotate all lesions in 3D scans, which is extremely costly to acquire.
Taking a different approach, the DeepLesion dataset’*”” was collected from the PACS of
the NIH Clinical Center by mining the response evaluation criteria in solid tumors
(RECIST)” marks already annotated by radiologists during their daily work. DeepLesion
contains 32,735 lesions annotated on 32,120 axial CT slices from 10,594 studies of 4427
patients. A visualization of lesions in the dataset can be found in Fig. 14.11. This dataset
greatly boosted research on ULA.'"7?#09>%7~19% [t can also be readily updated or extended
as it was mined automatically with minimal manual effort. Nonetheless, as with PACS-
mined data in other domains, for example, CXR datasets, there are limitations. One impor-
tant limitation is that the data are incompletely labeled, as radiologists do not typically
mark all found lesions with RECIST marks. As outlined below, active research is currently
underway to address this.

14.5.2 Lesion detection and classification

Universal lesion detection (ULD) is one of the most important tasks in ULA. It aims at
finding a variety of lesions in the whole body and thus is more challenging than tradi-
tional single-type lesion detection because of the large appearance variation in different
lesions types and the sometimes subtle distinction between lesions and nonlesions. CNN-
based object detection frameworks such as the Faster Region based CNN'" and Mask
Region based CNN'" are often adopted for ULD. Its performance has been improved by
through various enhancements in the analysis. For instance, 3D context information in
neighboring slices is important for detection, as lesions may be less distinguishable in just
one 2D axial slice. Yan et al.”*'> and Wang et al.”” exploited 3D information with multi-
slice image inputs and a 2.5D network by fusing features of multiple slices. On the other
hand, Zlocha et al.,'® Wang et al.,””® and Li et al.'” used attention mechanisms to
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FIGURE 14.12 Examples of the lesion detection, tagging, and segmentation results of MULAN.'” For detec-
tion, boxes in green and red are predicted TPs and FPs, respectively. The number above each box is the confi-
dence score. For tagging, tags in black and blue are predicted TPs and FNs, respectively. For segmentation the
green lines are ground-truth RECIST measurements; the orange contours and lines show predicted masks and
RECIST measurements, respectively. FN, False negative; FP, false positive; MULAN, multitask universal lesion
analysis network; RECIST, response evaluation criteria in solid tumors; TP, true positive. Source: Reproduced from
and Credit Yan K, Tang Y, Peng Y, Sandfort V, Bagheri M, Lu Z, et al. MULAN: multitask universal lesion analysis net-
work for joint lesion detection, tagging, and segmentation. In: MICCAI; 2019b. p. 194—202. Available from: https://doi.org,
10.1007/978-3-030-32226-7_22.

emphasize important regions and features within the deep CNN. Wang et al.”’ went even

further and proposed a domain attention module to learn from DeepLesion and 10 other
object detection datasets simultaneously. ULDor™ used a trained detector to mine hard
negative proposals and then retrained the model. Finally, the multitask ULA network
(MULAN)'” jointly learned lesion detection, segmentation, and tagging, and used a score
refinement layer to improve detection with tagging. It achieved the current state-of-the-art
accuracy on DeepLesion, that is, 83.7% recall at one false positive per key slice. Fig. 14.12
illustrates exemplar results of MULAN.

Automatic lesion classification can assist diagnostic decision-making and structured
report generation. Existing algorithms usually focus on certain body parts and attempt to
distinguish between a limited set of labels.”’ ~** In contrast, Yan et al. and Peng et al."""'""
learned from the DeepLesion dataset to predict 171 comprehensive labels for a variety of
lesions to describe their body part, type, and attributes. They first designed a natural lan-
guage processing algorithm to extract relevant semantic labels from the radiology reports
associated with the lesion images and then proposed a lesion annotation network
(LesaNet) for multilabel classification, leveraging hierarchical, and mutually exclusive rela-
tions between the labels to improve the label prediction accuracy. LesaNet’s average classi-
fication AUC of the 171 labels is 0.934.

14.5.3 Lesion segmentation and quantification

Lesion segmentation and measurement results are useful for clinicians to evaluate
lesion sizes and treatment responses. In DeepLesion, lesions were annotated with two
RECIST diameters including one long axis and the orthogonal short axis.”*”® However,

III. Clinical applications


https://doi.org/10.1007/978-3-030-32226-7_22
https://doi.org/10.1007/978-3-030-32226-7_22

14.5 Universal lesion analysis 283

FIGURE 14.13 Example of automatic lesion segmentation with weakly supervised slice-propagated segmenta-
tion method.” We show an axial CT slice that contains a lesion measured by a RECIST mark in (A). The
highlighted lesion and the RECIST mark is shown in (B) using green color. The red box is the region of interest
that is conducted from the RECIST mark and used for initializing automatic segmentation. (C) and (D) show the
result of automatic segmentation and manually delineated ground-truth segmentation, respectively. CT,
Computerized tomography; RECIST, response evaluation criteria in solid tumors. Source: Credit: Cai |, Tang Y, Lu
L, Harrison AP, Yan K, Xiao ], et al. Accurate weakly-supervised deep lesion segmentation using large-scale clinical annota-
tions: slice-propagated 3D mask generation from 2D RECIST. In: MICCAI; 2018b.

RECIST marks are subjective and can be prone to inconsistency among different observers,
especially when selecting the corresponding axial slices at different time-points where
RECIST diameters are measured. To alleviate this problem, Tang et al.'' designed a cas-
caded CNN to automatically predict the endpoints of the RECIST diameters, yielding reli-
able and reproducible lesion measurement results with an average error of ~3 pixels.

Compared with RECIST diameters, volumetric lesion measurement can be a better met-
ric for holistic and accurate quantitative assessment of lesion growth rates, avoiding the
subjective selection of axial slice for RECIST measurement. Unfortunately, obtaining full
volumetric lesion measurements with manual segmentations is labor-intensive and time-
consuming. For this reason, RECIST is treated as the default, but imperfect, clinical surro-
gate of measuring lesion progression. To facilitate automatic segmentation of lesion
volumes, Cai et al.”’ presented a weakly supervised slice-propagated segmentation
method with DeepLesion to learn from the RECIST annotations and predict 3D lesion
masks. They reported a patient-wise mean Dice score of 91.5% for lesion segmentation
measured on the key slices (the axial slice containing the RECIST mark). Fig. 14.13 shows
an example of automatic lesion segmentation on the RECIST-marked CT slice. With slice-
wise propagation, Cai et al.’s”” method can produce volumetric segmentations, achieving
76.4% Dice scores across the entire lesion.

14.5.4 Lesion retrieval and mining

The goal of lesion retrieval is to find similar lesions from a database to help the user
understand the query lesion. DeepLesion also provides a valuable platform to explore the
similarity relationship among a variety of lesions. For instance, Yan et al.” trained a triplet
network to learn quantitative lesion embeddings that reflected lesion “similarity.”
Similarity was defined hierarchically based on the lesion type, anatomical location, and
size. The embeddings can also be used to build a lesion graph for intra-patient lesion
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matching.”” The lesion labels mined from radiological reports can also be adopted to learn
embeddings to encode more fine-grained semantic information.'”’

In terms of lesion mining, one limitation of DeepLesion is that not all lesions in the
dataset were annotated. Cai et al.'” exploited a small fully labeled subset of volumes and
used it to intelligently mine annotations from the remainder of images in DeepLesion.
They showed that lesion detectors trained on the harvested lesions and hard negatives can
significantly outperform the same variants only trained on the original annotations, boost-
ing average precision by 7%—10%.

Despite the progress of ULA in recent years, there is still room for improvement, for
example, the detection accuracy for lesions in confusing or rare body parts”™ is still insuffi-
cient for practical use. One interesting research direction is to combine existing single-type
lesion datasets with DeepLesion and leverage their synergy to further improve detection
accuracy.

14.6 Conclusion

Significant advances in Al technology may greatly impact and eventually alter radiol-
ogy workflows. In this chapter, several important medical imaging tasks in different anato-
mies are reviewed. Specifically, we overview Al applications in thoracic, abdominal, and
pelvic regions as well as general lesion analysis. Different tasks, such as detection, segmen-
tation, and classification, are discussed to highlight their strengths and limitations. These
should provide radiologists with a better understanding of current Al technology and its
potential going forward in improving efficiency, accuracy, and consistency of various radi-
ology procedures.
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