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a b s t r a c t

Disease outbreaks, such as those of Severe Acute Respiratory Syndrome in 2003 and the 2009 pandemic

A(H1N1) influenza, have highlighted the potential for airborne transmission in indoor environments.

Respirable pathogen-carrying droplets provide a vector for the spatial spread of infection with droplet

transport determined by diffusive and convective processes. An epidemiological model describing the

spatial dynamics of disease transmission is presented. The effects of an ambient airflow, as an infection

control, are incorporated leading to a delay equation, with droplet density dependent on the infectious

density at a previous time. It is found that small droplets (� 0:4 mm) generate a negligible infectious

force due to the small viral load and the associated duration they require to transmit infection. In

contrast, larger droplets (� 4 mm) can lead to an infectious wave propagating through a fully

susceptible population or a secondary infection outbreak for a localized susceptible population. Droplet

diffusion is found to be an inefficient mode of droplet transport leading to minimal spatial spread of

infection. A threshold air velocity is derived, above which disease transmission is impaired even when

the basic reproduction number R0 exceeds unity.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The temporal dynamics of infectious disease transmission is
well documented (Anderson and May, 1991), however, the spatial
spread of infection and the mechanisms driving it are less well
understood. Spatial dynamics of respiratory diseases has received
much attention in recent years following the rapid global spread
of both Severe Acute Respiratory Syndrome (SARS) (Hufnagel
et al., 2004) and pandemic influenza (2009) A(H1N1) (Balcan
et al., 2004). Large-scale geographic models are typically imple-
mented by superimposing a transportation network on local
infection dynamics (Keeling and Rohani, 2002; Colizza et al.,
2006). Smaller scale models often implement reaction-diffusion
equations to describe random movements within populations
(Noble, 1974; Murray et al., 1986). Such models have been shown
to exhibit traveling-wave solutions whose existence depends on
the basic reproduction number R0 (Källén et al., 1985; Mendez,
1998). However, few models address the mode of disease trans-
mission that underlies the spatial dynamics.

For some respiratory infections, such as influenza, three modes of
transmission have been identified: airborne, droplet and contact
transmission (Weber and Stilianakis, 2008). All three modes result
from the generation of respiratory droplets by an infected person
ll rights reserved.

pa.eu (M. Robinson),

,

during an expiratory event (e.g. coughing, sneezing). Droplet and
contact transmission require relatively close contact between the
infected and susceptible individuals for efficient disease transmis-
sion. Therefore, spatial spread via these routes of transmission must
be driven by human movement. In contrast, the airborne spread of a
pathogen may be attributed to the movement of both people and
fine aerosol droplets suspended in the air and their associated
airborne residence time and pathogen load. Furthermore, the air-
borne route is the primary mode of transmission for other respira-
tory diseases, such as tuberculosis, and its contribution to the spatial
spread of infection is of paramount importance.

The relative importance of the three modes of transmission is
difficult to quantify; however, recent experience with SARS and
influenza outbreaks has highlighted the potential for airborne
transmission in indoor environments. Evidence of the airborne
transmission of respiratory infections has been documented in
hospital ward settings (Wong et al., 2010), housing complexes (Yu
et al., 2004) and on board commercial airliners (Moser et al., 1979).
In particular, the importance of indoor airflows has been established
(Li et al., 2007), with large air flow rates resulting in lower disease
transmission (Nielsen, 2009). However, the threshold air velocity
above which disease transmission is impaired is as yet unknown. A
comprehensive knowledge and understanding of the mechanisms
driving such transmission is vital for the implementation of ade-
quate infection controls in indoor public environments such as
schools, hospitals and long-term care facilities.

Airborne transmission is mediated by fine aerosol droplets
small enough to remain suspended in air for prolonged periods,
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and large enough to contain non-negligible pathogen load. The
standard epidemiological models operate on the assumption that
contact between susceptible and infected persons is necessary for
disease transmission (Keeling and Rohani, 2007). However, the
pathogen-carrying droplets emitted by an infected individual
during an expiratory event are the disease vector and the
standard models should be adjusted to reflect this. Such models
have been used to describe the spatial spread of fungal spores
over a vineyard (Burie et al., 2006) and to model disease spread
following the point release of an infectious agent (Reluga, 2004).

A zero-dimensional model for the temporal development of an
epidemic driven by expiratory droplets (in particular, respirable
droplets) was developed in Stilianakis and Drossinos (2010). The
model is built on the concept of an infectious cloud surrounding
each infected individual, an idea also considered in Eichenwald
et al. (1960). In this work we investigate the airborne spread of an
infection in a closed spatial environment within which the human
population is confined for a prolonged period of time. For
example, such outbreaks have been documented in public set-
tings including prisons (Awofeso et al., 2001; Gómez-Pintado
et al., 2010), boarding schools (Rose, 1980), long-term care
facilities (Dharan et al., 2009) and on board large cruise ships
(Miller et al., 2000; Ward et al., 2010). In the absence of
intervention measures, such outbreaks can persist for many
weeks. We extend the zero-dimensional model to include the
spatial dynamics of airborne-droplet transmission (also known as
aerosol transmission) and investigate how an ambient airflow can
influence disease spread. Accordingly, we neglect transmission by
droplet spray, a close-contact transmission mode that occurs via
direct deposition onto a susceptible’s mucous membranes, and by
(physical) contact transmission. Furthermore, we consider trans-
mission only by respirable expiratory droplets, droplets whose
post-evaporation diameter is less than 10 mm, neglecting trans-
mission by inspirable droplets, droplets whose post-evaporation
diameter is between 10 and 100 mm. We follow Nicas et al. (2005)
and take the droplet post-evaporation diameter to be half the pre-
evaporation diameter. Inspirable droplets contribute to disease
transmission by inhalation almost immediately after generation
(e.g., during the first breath) as they are considerably larger than
respirable droplets and they gravitationally settle very fast. As in
the case of droplet spray, transmission by inspirable droplets
occurs only at close contact.
2. A one-dimensional spatial model for airborne transmission

Consider a population of susceptible, infected and recovered
individuals. Let Sðx,tÞ be the density of susceptibles, Iðx,tÞ the
density of infected and Rðx,tÞ the density of recovered individuals,
with Nðx,tÞ ¼ Sþ IþR being the total population density and
nðt0Þ ¼

R
xNðx,t0Þ dx representing the total number of people in

the spatial domain at any time t0Z0. Henceforth, all densities
refer to spatial densities, unless otherwise noted, and airborne
droplets refer to respirable droplets. It is assumed that infected
individuals continuously generate a cloud of pathogen carrying
aerosol droplets and we let Dðx,tÞ be the (number) density of
active droplets, which we define as droplets that are both air-
borne and have a nonzero pathogen load.

The zero-dimensional model, which constitutes the basis of
the one-spatial dimension model, is derived in Stilianakis and
Drossinos (2010). A general one-dimensional evolution equation
to model the spatial spread of disease due to the continuous
motion of people and droplets takes the form

@Ci

@t
¼�

@Qi

@x
þCiðx,tÞ,
for each species iA ½S,I,R,D�, where Ciðx,tÞ represents the density of
species i, the flux Qiðx,tÞ is the rate at which species i passes the
point x at time t and Ciðx,tÞ is a source term representing the
creation (or destruction) of species i. The density of susceptibles
will decrease through contact with pathogen-carrying (respirable
airborne) droplets and subsequent infection. The density of
infected people will increase accordingly. Furthermore, it will
decrease at the rate that individuals recover mi, where 1=mi is the
disease infectivity period. Thus

CS ¼�
bd

N
DS, CI ¼

bd

N
DS�miI, CR ¼ miI,

where bd is the transmission rate per droplet of diameter d. A
detailed derivation of the transmission terms is provided in
Stilianakis and Drossinos (2010). The dynamics of the airborne
droplets is determined by generation and annihilation processes.
The droplet density at any point is proportional to the density of
infected individuals and increases at the rate kd that pathogen-
loaded droplets are shed. Moreover, the active droplet density
will decrease as droplets are removed through gravitational
settling and inhalation (by the person who generated it or another
population member) and via pathogen inactivation. Thus

CD ¼ kdI�adD,

where ad is the droplet removal rate and 1=ad the droplet
infectivity period.

We assume that human movement can be modeled as a
diffusive process (Noble, 1974; Keeling and Rohani, 2007;
Murray, 2003) and the associated flux is given by Fick’s law as

Qj ¼�Dp
@Cj

@x
for j¼ S,I,R,

where the minus sign is interpreted as the tendency of people to
move from high density areas to low density areas and Dp is the
diffusivity of the human population. For real world situations,
movement of the general population might also be modeled by
including a convective term, whereby human motion would be
faster and in a specified direction. However, movement in such
facilities as prisons and long-term care facilities is more restricted
and sporadic and a diffusive flux better models such a scenario. In
addition, restricting movement to a diffusive process is more
convenient to investigate if droplets can drive the transmission
process.

The droplet flux QD depends on environmental characteristics.
Droplets are generated through expiratory events (e.g. coughing,
sneezing) with an initial velocity. Average expiration velocities
are 11.7 ms�1 and 3.9 ms�1 for coughing and speaking respec-
tively (Chao et al., 2009). For respirable droplets, the droplet
relaxation time, the time required to adjust the droplet velocity to
a new condition of forces, is of the order � 10�7

�10�4 s. There-
fore, the droplet velocity rapidly tends to the carrier-gas (air)
velocity. The exhaled air flow has been modeled as a continuous
turbulent round jet (Wang et al., 2005; Parienta et al., 2011). For a
steady-state turbulent jet, small droplets, which follow the
instantaneous fluid streamlines, may reach relatively large dis-
tances from the source (more than 8 m after 100 s). However, it
was argued in Zhu et al. (2006), where the air flow within a calm
room was calculated via a Computational Fluid Dynamics soft-
ware, that droplets smaller than 30 mm diameter would disperse
within the room without significant influence of gravity or inertia.
Accordingly, we consider that the initial velocity of the exhaled
respirable droplets is the underlying fluid velocity, namely either
the ambient air velocity or zero in its absence. For convenience,
we henceforth refer to the ambient airflow as the ventilation. This
airflow could be naturally induced (e.g. a draft through an open
window) or be the result of an artificial indoor ventilation system.
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It follows that, in an enclosed space with no ventilation, airborne
droplets will be transported by molecular diffusion alone and
QD ¼�Dd @D=@x, where Dd is the molecular droplet diffusivity.
Molecular (Brownian) diffusivity may be safely ignored for droplets
larger than 0:5 mm diameter. We retain it in the formal derivation of
the flux equations to allow the simulation of nanodroplets, to allow
for turbulent droplet diffusion in the presence of an external
turbulent flow, and to render the numerical solution of the parabolic
differential equations stable. In a ventilated environment airborne
droplets will also be convected by the ambient airflow. The appro-
priate flux is QD ¼ vD�Dd @D=@x, where Dd is the turbulent diffu-
sivity, and v the average, constant air ventilation velocity. The one-
dimensional droplet flux is an idealized approximation. In reality,
the air flow is unlikely to be at a constant unidirectional velocity,
and ventilation may simply mix droplet and air particles around
within the domain. A higher dimensional spatial model is required
to describe such complex flow characteristics. However, the one-
dimensional model can be a good approximation for environments
where air is predominantly in one direction, for example a draft of
air blowing through a room.

Assuming the diffusion coefficients of both people and dro-
plets are constant the model is

@S

@t
¼�bd

DS

N
þDp

@2S

@x2
, ð1Þ

@I

@t
¼ bd

DS

N
�miIþDp

@2I

@x2
, ð2Þ

@N

@t
¼Dp

@2N

@x2
, ð3Þ

@D

@t
¼ kdI�adD�v

@D

@x
þDd

@2D

@x2
, ð4Þ

and the density of recovered individuals is obtained from
R¼N�ðSþ IÞ. Eqs. (1)–(4) reduce to the model equations proposed
in Stilianakis and Drossinos (2010) for infectious disease trans-
mission by respirable droplets without contact transmission with
zero ventilation velocity and diffusion coefficients.

We consider the spread of a pathogen in the domain 0rxr l.
We assume that people are confined to the interval ½0,l� and
prescribe zero-flux conditions at the boundaries (the subscript x

denotes partial differentiation with respect to x)

Sxð0,tÞ ¼ Sxðl,tÞ ¼ 0, Ixð0,tÞ ¼ Ixðl,tÞ ¼ 0, Nxð0,tÞ ¼Nxðl,tÞ ¼ 0:

The boundary conditions for droplets would be expected to
depend on the type of ventilation present. We assume that
droplets are removed from the system when they reach the end
of the domain (physically this could be, for example, through a
wall vent or an open window). One option is then to place an
artificial boundary at the end of the domain x¼ l so that droplets
effectively travel through the boundary unhindered. This is
referred to as a transparent boundary condition. For convection-
diffusion problems such a condition would take the form
Wesseling (2000)

Dtðl,tÞþvDxðl,tÞ ¼ 0:

However, for a small diffusion coefficient, the boundaries are
sufficiently far from the region of interest that, for the timescales
of interest, droplets never reach them by diffusive processes
alone. Therefore, it is sufficient to assume that droplets can be
transported out of the domain by convection alone and we set the
diffusive flux at the boundaries to zero

Dxð0,tÞ ¼Dxðl,tÞ ¼ 0:

In our simulations we compared the use of the transparent and
diffusive boundary conditions and found that, as expected,
solutions were identical. Therefore, we present only those per-
formed with the zero diffusive flux condition.

The prescribed boundary conditions prevent the entrance or
exit of people. Therefore, people are free to move about the
domain but cannot leave it. Consequently, the total number of
people in the domain will be constant for all time

nðt0Þ ¼

Z l

0
Nðx,t0Þ dx¼ n0, 8 t0Z0:

Initial conditions must also be prescribed to distribute people
throughout the domain at t¼0. Since the total number of people
in the domain is constant for all time, n0 is determined from the
initial distribution

n0 ¼

Z l

0
Nðx,0Þ dx¼

Z l

0
½Sðx,0Þþ Iðx,0Þ� dx, ð5Þ

where we assume the initial number of recovered (immune)
people is identically zero, Rðx,0Þ ¼ 0. Initially, we assume that no
droplets are present and are generated for t40 by the infected
population. We consider two possibilities for the initial distribu-
tion of the human population. The total population can be
uniformly distributed throughout the domain (Noble, 1974),
which we henceforth refer to as a (spatially) homogeneous initial
condition. This corresponds to a constant initial total population
density

Nhomoðx,0Þ ¼
n0

l
:

In this scenario, N will be constant for all time, with Nðx,tÞ ¼ n0=l.
Alternatively, people can be randomly distributed throughout the
domain yielding a (spatially) heterogeneous initial condition. The
latter case presents an opportunity to investigate whether dro-
plets generated by infected individuals at one point in the domain
can infect susceptible individuals at other locations, i.e., whether
infection can occur without direct physical contact of a suscep-
tible with an infected individual.

2.1. Scaling and non-dimensionalization

We scale all population densities with the uniform density
n0=l. The droplet scale is chosen by balancing droplet generation
and removal processes such that, the number of droplets is
approximately proportional to the number of infected people
and the constant of proportionality is the ratio of the droplet
generation and removal rates. We scale x with the length of the
domain and choose the droplet removal time as the characteristic
time scale, since this represents the time the droplet is airborne
and capable of causing infection. Therefore, we scale

S,I,N�
n0

l
, D�

kd

ad

n0

l
, x� l, t�

1

ad
: ð6Þ

The dimensionless equations are

@S

@t
¼�lR0

DS

N
þZp

@2S

@x2
, ð7Þ

@I

@t
¼ lR0

DS

N
�lIþZp

@2I

@x2
, ð8Þ

@N

@t
¼ Zp

@2N

@x2
, ð9Þ

@D

@t
¼ I�D�n @D

@x
þZd

@2D

@x2
, ð10Þ

where

R0 ¼
bdkd

admi

, l¼
mi

ad
, n¼ v

adl
, Zd,p ¼

Dd,p

adl2
:
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The dimensionless parameters and the characteristic time scales
of the model are summarized in Table 1. The parameter R0 is the
basic reproduction number, which describes the spread of disease
through a completely susceptible population in the initial stages
of an outbreak. l is the ratio of the droplet removal time scale tr

to the disease infectivity time ti and represents the fraction of the
total disease infectivity period for which a droplet is capable of
causing infection. The dimensionless coefficient of the convection
term n¼ tr=tc represents the ratio of the droplet-removal time to
the convection time. Similarly, the dimensionless number
Zd ¼ tr=td represents the ratio of the removal time to the diffusion
time. Boundary and initial conditions in dimensionless form are
given by

Sxð0,tÞ ¼ Sxð1,tÞ ¼ 0, Sðx,0Þ ¼ S0ðxÞ,

Ixð0,tÞ ¼ Ixð1,tÞ ¼ 0, Iðx,0Þ ¼ I0ðxÞ,
Table 1
Characteristic time scales and derived dimensionless parameters.

Time scale (s) Dimensionless

parameter

ti ¼
1
mi

Disease infectivity

tt ¼
ad

bdkd
Disease transmission R0 �

bdkd

admi
¼

ti
tt

tr ¼
1
ad

Droplet removal (droplet

infectivity)
l¼ mi

ad
¼ tr

ti

tc ¼
l
v

Convective n¼ v
ad l ¼

tr
tc

td,p ¼
l2

Dd,p

Diffusion (droplet, person) Zd,p ¼
Dd,p

ad l2
¼ tr

td,p

Table 2
Parameter values.

Parameter

mi Infection recovery rate

c Contact rate

rp Pathogen concentration in the lun

B Breathing rate

Vcl Personal-cloud volume of an infe

pd Infection probability by an inhale

tct Characteristic breathing (contact)

bp Transmission rate per inhaled pat

v Air velocity

Dtur
d Turbulent diffusivity of droplet

Dp Diffusivity of people

mp Pathogen inactivation rate

l Domain length

Parameters dependent on droplet size

d Droplet diameter (post-evaporati

Vd Pre-evaporation (spherical) dropl

N0
p

Initial number of pathogens per d

qd Inhaled droplet deposition probab

bd Transmission rate per inhaled dro

kd Droplet production rate

yd Gravitational settling rate

ad Droplet removal rate

Dd Molecular diffusivity of droplet
Nxð0,tÞ ¼Nxð1,tÞ ¼ 0, Nðx,0Þ ¼ S0ðxÞþ I0ðxÞ,

Dxð0,tÞ ¼Dxð1,tÞ ¼ 0, Dðx,0Þ ¼ 0,

where the functions S0ðxÞ and I0ðxÞ are prescribed initial popula-
tion-density distributions. The dimensionless form of the initial
population density, Eq. (5), isZ 1

0
Nðx,0Þ dx¼

Z 1

0
½Sðx,0Þþ Iðx,0Þ� dx¼ 1:

For the homogeneous case, with constant initial population
density Nhomoðx,0Þ ¼ 1, this implies

Sðx,0Þþ Iðx,0Þ ¼ 1:
3. Model parameters for an influenza outbreak

We apply the one-dimensional model to numerically study the
spatial and temporal dynamics of a model for an influenza
epidemic. Most of the required parameters are taken from
Stilianakis and Drossinos (2010); the parameters specific to the
spatial dynamics and droplet size are discussed in the following,
and parameter values used in the numerical simulations are
summarized in Table 2.

The effect of droplet size on disease spread is investigated by
choosing two characteristic respirable-droplet sizes of post-eva-
porative diameters d1 ¼ 4 mm and d2 ¼ 0:4 mm. As mentioned
earlier, the post-evaporative diameter is taken to be half the
emitted pre-evaporative diameter. Droplet generation rates kd are
Value

0.2 per day

13 per day

g fluid 3.71�106 pathogens cm�3

24 m3 per day

cted person 8 m3

d pathogen 0.052

time 20 min

hogen 0.028 per day

0.2 m s�1

10�3 m2 s�1

10�5 m2 s�1

8.64 per day

2000 m

on) d1 ¼ 4 mm

d2 ¼ 0:4 mm

et volume Vd1
¼ 2:68� 10�10 cm3

Vd2
¼ 2:68� 10�13 cm3

roplet Npðd1Þ ¼ 9:95� 10�4

Npðd2Þ ¼ 9:95� 10�7

ility qd1
¼ 0:88

qd2
¼ 0:2

plet bd1
¼ 2:45� 10�5 per day

bd2
¼ 5:57� 10�9 per day

kd1
¼ 4:1� 105 per day

kd2
¼ 6:14� 105 per day

yd1
¼ 28:80 per day

yd2
¼ 0:39 per day

ad1
¼ 37:44 per day

ad2
¼ 9:03 per day

Dd1
¼ 6:2� 10�12 m2 s�1

Dd2
¼ 8:34� 10�11 m2 s�1
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based on the number of pathogen loaded droplets emitted during
a cough. Generations rates per cough are taken as kd1

¼ 160 day�1

(Nicas et al., 2005) and kd2
¼ 240 day�1 (Morawska et al., 2009),

the latter based on a cough volume of 400 cm3. The daily
generation rates are obtained by considering a 200-fold increase
for a sneeze (Nicas et al., 2005), and a total of 11 sneezes and 360
coughs per day (Atkinson and Wein, 2008).

In the model presented here, the infectious agent is not the
droplet but the pathogens it carries. Therefore, the transmission
rate per droplet bd will depend the transmission rate per patho-
gen, bd ¼ bpqdN0

p , where qd is the probability of deposition in the
human respiratory tract and N0

pðdÞ is the number of pathogens in a
droplet of diameter d. In turn, the transmission rate per pathogen
bp is determined from the contact rate cd of a susceptible with a
droplet and the probability pd that such a contact will result in
successful transmission bp ¼ cdpd. In order to derive the contact
rate with a droplet we assume that each infected person is
surrounded by a droplet cloud with volume Vcl. It is further
assumed that a susceptible individual comes in contact with a
droplet through breathing during an encounter with this droplet
cloud. If the average breathing rate is B and tct is a characteristic
time of breathing during the encounter then the contact rate cd

can be expressed as cd ¼ cðB=VclÞtct , where c is the average
number of total contacts a susceptible individual has per unit
time. The transmission rate per droplet is thus

bd ¼ c
B

Vcl
tctpdqdN0

p ,

and the number of pathogens per droplet can be determined by
N0

p ¼ Vdrp, where Vd is the volume of the (spherical) pre-evapora-
tive droplet and rp is the pathogen concentration of the lung fluid.
Using the parameters of Table 2, the transmission rate per
pathogen is calculated as 0.028 per day and the transmission rate
per droplet thus evaluates to bd1

¼ 2:45� 10�5 per day and
bd2
¼ 5:57� 10�9 per day.
The droplet removal rate is determined by three distinct

processes: gravitational settling of the droplet, inactivation of
the pathogen load (which effectively removes the droplet) and
the inhalation of the droplet by population members. Following
Stilianakis and Drossinos (2010) the removal rate can be
expressed as

ad ¼ ydþmpþð1þctctÞ
B

Vcl
qd, ð11Þ

where yd is the gravitational settling rate of the droplet and mp is
the inactivation rate of airborne pathogens. Gravitational settling
rates are size dependent and we take yd1

¼ 28:8 per day and
yd2
¼ 0:39 per day (Drossinos and Housiadas, 2006). This implies

that, in the absence of other removal processes, a droplet with
diameter d1 ¼ 4 mm will settle under gravity in a tranquil envir-
onment in approximately 50 min. Decreasing the droplet dia-
meter by an order of magnitude results in the droplet remaining
airborne for approximately 2.56 days. The pathogen inactivation
rate mp, assumed to be independent of size, is taken to be 8.64 per
day (Hemmes et al., 1960) and a droplet is effectively removed
through pathogen inactivation in under 3 h. Therefore, pathogen
inactivation is a crucial process for the removal of smaller
droplets that could, theoretically, take days to settle under gravity
alone. Taking both gravitational settling and pathogen inactiva-
tion processes into account, droplets remain airborne and infec-
tious for 38.5 min (d1) and 2.66 h (d2). The inclusion of removal
through inhalation, the last term on the right-hand-side of Eq.
(11), has negligible influence on these times (removal times of
35 min or 2.46 h for d¼ d1 or d¼ d2 respectively) and we
approximate the droplet removal rate by ad ¼ ydþmp.
Droplet diffusivity will depend on the presence or absence of
ventilation. In an unventilated environment, with v� 0 m s�1, the
molecular diffusivity of droplets is calculated as Dd1

¼ 6:2�
10�12 m2 s�1 and Dd2

¼ 8:34� 10�11 m2 s�1 (Drossinos and
Housiadas, 2006). For an air-conditioned environment with stan-
dard wall-mounted air-conditioners a typical airflow velocity is
v¼0.2 m s�1 (Zhu et al., 2006) and we take this to be constant
throughout the entire domain. Under such conditions the flow
will invariably be turbulent and the droplet diffusivity will be
several orders of magnitude larger. We estimate the turbulent
diffusivity of both droplet classes to be Dtur

d ¼ 10�3 m2 s�1.
Human diffusivity, motion, can be crudely estimated from

Dp � x2=t, where x is a characteristic distance traveled in a time t.
For the spatial spread of a disease through a geographically open
population typical distances traveled per hour are in the range
18–42 m (Noble, 1974; Bertuzzo et al., 2010; Lou and Zhao, 2011).
We expect that movement would be more restricted in a closed
environment, for example a prison or long-term care facility, and
we estimate that people diffuse approximately 10 m per hour
yielding Dp � 10�5 m2 s�1. Intuitively, we estimate the spatial size
of such environments to be of the order 103 m and fix our domain
length at l¼2000 m.
4. Droplet dynamics

4.1. Characteristic time scales

The time scale of disease transmission tt ¼ ad=bdkd is deter-
mined from droplet properties and is thus dependent on droplet
size. We estimate ttðd1Þ � 3:72 days and ttðd2Þ � 2640 days.
Clearly, the time required by the smaller droplet to transmit
disease will result in minimal disease transmission for the
duration of the infectivity period (approximately 5 days for
influenza).

Droplet dynamics are greatly influenced by their (post-eva-
porative) diameter as this determines the residence time in air of
an individual droplet, its infectivity properties and its pathogen
load. The dynamics are described by three different timescales
(Table 1), two of which, tr (droplet removal time scale) and td

(droplet diffusion time scale), are dependent on droplet size. The
convective timescale tc represents the time it takes for the
ambient airflow to carry the droplet the entire length of the
domain. If l is of the order of 101

�103 m then typical convection
times are tc ¼Oð102

�104
Þ s and, clearly, convection is a fast

process relative to the disease dynamics with tc 5tt . Intuitively,
this implies that lower ventilation velocities, which increase the
convection time tc , result in greater disease transmission. The
droplet-removal (droplet infectivity) time scale is the inverse of
the size-dependent droplet removal rate ad with
trðd1Þ � 38:46 min and trðd2Þ � 2:66 h. Thus, since trðd1Þotrðd2Þ

we have that nd1
ond2

and convection effects, for a constant air-
ventilation velocity, are stronger for smaller droplets since they
remain airborne longer and can be carried further from their point
of origin. Furthermore, n is inversely proportional to the length l

and convection will thus exert greater influence on droplet
dynamics over shorter domains as droplets will be rapidly
transported the entire length of the domain.

The droplet diffusion time scales depend on the presence or
absence of an ambient airflow. For an unventilated environment,
typical Brownian diffusion time scales will be tdðd1Þ � 109

�1013

days and tdðd2Þ � 108
�1012 days for l� 101

�103 m. In a venti-
lated environment, we estimate the time scale of turbulent
diffusion to be ttur

d � 1�104 days. Thus, for the short term spread
of infection, since droplets are only airborne for Oð1 hÞ and tr 5td,
diffusion is an insufficient mechanism to transport droplets
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throughout the domain with the largest influence occurring at
very short lengths and with non-zero airflow. However, over such
lengths contact and droplet transmission are more likely to drive
disease transmission.

From the preceding discussion on droplet timescales it is
evident that, in a ventilated environment, droplets are rapidly
transported out of the domain and disease transmission is
comparatively too slow to result in substantial infection. For
larger domains convection times can be significantly increased
and the transmission of infection will become more efficient (e.g.
tc � 3:5 days for l¼60,000 m). We estimate R0 ¼ 1:34 and
l¼ 0:005 for d1 ¼ 4 mm and R0 ¼ 0:0019 and l¼ 0:022 for
d2 ¼ 0:4 mm. The lower value of R0 for d¼ d2 is the result of the
small viral load of the droplet which determines the magnitude of
the transmission rate per droplet bd, Table 2. Thus, the larger
generation rates associated with smaller droplets do not result in
greater transmission.

4.2. Droplet delay equation

For a ventilated environment we can neglect droplet diffusion
and Eq. (10) becomes a first order equation. We consider the
solution for the particular initial condition Dðx,0Þ ¼ 0. The char-
acteristic curves satisfy

dt

dx
¼

1

n
,

which yields

t¼
ðx�xnÞ

n , ð12Þ

for any x¼ xn at t¼0. Along each characteristic curve D will satisfy

dD

dx
þ

1

n
D¼

1

n
I x,

x�xn

n

� �
,

This first order linear equation can be easily solved for D(x) to
obtain

DðxÞ ¼
e�x=n

n

Z x

0
ex=nI x,

x�xn

n

� �
dx�

Z xn

0
ex=nI x,

x�xn

n

� �
dx

� �
:

The parameter xn can be eliminated using Eq. (12) yielding

Dðx,tÞ ¼
1

n

Z x

x�nt
e�ðx�xÞ=nI x,t�

x�x
n

� �
dx:

This solution is only valid far from the boundaries, for ntoxo1,
however, it provides an intuitive idea of the droplet dynamics.
The role of droplets in disease transmission is thus to introduce a
delay into the classic SIR system. Disease transmission at time t

depends on the density of infected individuals at a previous time
t�ððx�xÞ=nÞ. The integral also describes how the convection of
droplets influences the spatial spread of the disease. It describes
the force of infection that individuals at position x exert on those
at x and as 9x�x9-1 the droplet density vanishes and no
infection will occur. Thus, the transmission risk decays with
distance from the source of infection. A corresponding equation
can be derived for the diffusion-only scenario showing similar
behavior and its derivation is outlined in Appendix A.

4.3. Stability of a homogeneous population density

We derive stability criteria for the homogeneous case where
the total population density is uniformly distributed throughout
the domain and N¼1. For the basic disease-free state
ðS,I,DÞ ¼ ð1;0,0Þ, the evolution of small perturbations ðŜ, Î ,D̂Þ are
governed by the linearized equations

Ŝt ¼�lR0D̂þZpŜxx,
Î t ¼ lR0D̂�lÎþZpÎxx,

D̂t ¼ Î�D̂�nD̂xþZdD̂xx:

We consider perturbations proportional to eikxþot , where o and k

are the frequency and wavenumber, respectively. On substitution
into the linearized system we obtain a quadratic equation for o

o2þoðinkþMþLÞ�lR0þMLþ inkM¼ 0,

where, for convenience, we define

M¼ lþZpk2, L¼ 1þZdk2:

This has solution

oðkÞ ¼�i
nk

2
�
ðMþLÞ

2
17

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

4lR0�4ML�n2k2

ðMþLÞ2
þ2i

nkðL�MÞ

ðLþMÞ2

s2
4

3
5:
ð13Þ

The disease-free state will be unstable when the real part
RfoðkÞg40 and disturbances with wavenumber k will grow.
Defining the square root in Eq. (13) as pþ iq, with p40 and both
p and q real, we can write

Rfog ¼� ðMþLÞ

2
ð17pÞ,

where for instability we require p41. Now, equating real and
imaginary parts yields

p2�q2 ¼ 1þ
4lR0�4ML�n2k2

ðMþLÞ2
, q¼

nkðL�MÞ

pðLþMÞ2
:

Solving for q in terms of p we obtain

FðpÞ ¼ p2�
n2k2
ðL�MÞ2

p2ðLþMÞ4
¼
ðMþLÞ2þ4lR0�4ML�n2k2

ðMþLÞ2
:

Since F(p) is a monotonic increasing function of p the condition
for instability can be expressed as FðpÞ4Fð1Þ which yields

R04
ML

l
1þ

n2k2

ðMþLÞ2

" #
: ð14Þ

We calculate Zp ¼ 5:77� 10�9 and Zd ¼ 3:57� 10�15 and, since
Zd5Zp51, we can approximate Eq. (14) by

R041þn2 k2

ðlþ1Þ2
:

Clearly, R041 is a necessary condition for instability and it
follows that the infection will always die out for d¼ d2, regardless
of whether ventilation is present or not, since R0 ¼ 0:001951. In
an unventilated environment, n¼ 0, the larger airborne droplets
will be transported by diffusion alone and the uniform state is
unstable at all wavenumbers when R041 and the infection will
spread. In a ventilated environment, n40, disturbances with a
wavenumber satisfying

ko
ðlþ1Þ

n
ffiffiffiffiffiffiffiffiffiffiffiffi
R0�1

p
¼ kcrit ð15Þ

will be unstable. This result shows that the basic homogeneous
disease-free state is stable to short wavelength perturbations
(k-1) and only becomes unstable at long wavelengths (k-0).
The stability diagram is sketched in Fig. 1. Clearly, R0 must exceed
unity for the onset of instability and, for fixed R041, the critical
wavenumber decreases with increasing n, which physically cor-
responds to increasing the ventilation velocity and thereby redu-
cing the time it takes for droplets to traverse the domain.
Therefore, increasing n has a stabilizing effect, by reducing the
number of unstable modes that will be amplified.
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For a velocity of v¼0.2 m s�1, the critical wavenumber is
kcrit ¼ 2:54 and perturbations with wavelength satisfying
L4Lcrit ¼ 2p=k� 2:47 will be amplified. Significantly, all permis-
sible wavelengths (Lo1) for our domain xAð0;1Þ are stable and
therefore an arbitrary perturbation to the disease-free state will
decay. Reducing the ventilation velocity decreases Lcrit and unstable
modes become permissible within the domain and any arbitrary
perturbation will grow in time. The analysis indicates that, for a
fixed size domain, increasing the ventilation velocity can mitigate
the effects of a respiratory disease.
5. Numerical Results

We examined the spatial dynamics of the model for droplet
size d1 ¼ 4 mm considering both homogeneous and heterogeneous
initial population-density distributions. The system (7)–(10) was
solved using a fully implicit finite difference scheme implemented
in Matlabs.
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Fig. 1. Stability diagram for a homogeneously distributed population.
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S0ðxÞ ¼ 1�I0ðxÞ with wavenumber k¼50. (a) Density of infected individuals. (b) Density
5.1. An unventilated environment

In an unventilated environment, with n¼ 0, the spatial spread
of disease will solely depend on the diffusion of people or
droplets. Droplet diffusion is a slow process, for example a 4 mm
droplet will diffuse approximately 5.7 mm while airborne. In the
same time a person could diffuse over 7 m. Therefore, the spatial
spread of disease will be driven by the diffusion of people as
droplets are essentially stationary relative to the human popula-
tion. Mathematically, this observation follows immediately from
the inequality Zd5Zp. We first consider the disease spread when
a localized infected density is introduced to a uniformly distrib-
uted susceptible population. We find that, for small times
(t� 5� 3 h), droplet density rapidly increases until Dðx,tÞ � Iðx,tÞ
and subsequently droplets and infected dynamics are indistin-
guishable. This occurs once droplet generation and removal
processes are essentially balanced. This indicates that there is
no separation between droplets and infected individuals and close
contact is required for efficient transmission. At larger times the
localized infectious peak is observed to grow in amplitude,
Fig. 2(a). An outbreak in a closed population could be expected
to persist for many weeks. However, times in excess of
t¼ 2000� 53 days are unrealistic for an influenza epidemic. At
such times the model predicts the formation of two infectious
traveling pulses, propagating in opposite directions. Accordingly,
the density of susceptibles evolves into a wave front slowly
infiltrating the completely susceptible population ahead of the
front, Fig. 2(b). There are several reasons why this behavior is
observed. Firstly, the idealized case of a homogeneous population,
where the infected population is surrounded by a constant source
of susceptibles is uncharacteristic of a true human population
distribution. In the absence of susceptible individuals the density
of infected individuals would rapidly decay, Fig. 3. Secondly, once
an outbreak is identified within the closed population, interven-
tions such as isolation, quarantine or treatment would be
imposed to limit the impact of the outbreak. Diffusion models
used to describe the larger scale geographic spread of disease
display such traveling wave behavior, with transportation net-
works simulated using larger diffusion coefficients and timescales
of the order of years being considered (Noble, 1974; Murray et al.,
1986).

Disease spread resulting from a heterogeneous initial distribution,
where localized densities of infected and susceptible individuals are
0.3 0.4 0.5 0.6 0.7
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ople, with droplet diameter d1 ¼ 4 mm. Initial conditions are I0ðxÞ ¼ 0:01e�k2
ðx�0:5Þ2 ,

of susceptible individuals. All variables are dimensionless and scaled following (6).
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placed in different regions of the domain, is considered in Fig. 3. As
before, the droplet density rapidly approaches the density of infected
individuals and the two densities are thereafter indistinguishable
from each other. We find that, even with very close contact between
the two groups, diffusion is too slow a process to effectively transmit
infection. In the absence of a susceptible population, and since Zp51,
the density of infectious individuals at any point x¼ x0 will decay via
IðtÞ ¼ I0ðx0Þe

�lt-0 as t-1. The lifetime of the infected population is
thus 1=l which (dimensionally) corresponds to the disease infectivity
time scale ti of 5 days. The infected population recovers before
diffusion has time to effectively transmit the infection, ti5tp. To
conclude, in the absence of an ambient airflow, diffusion is an
inefficient mechanism for the spatial spread of disease which will,
presumably, be driven by contact and droplet transmission during
close contact events.
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Fig. 3. Model dynamics of influenza transmission driven by the diffusion of

people, with droplet diameter d1 ¼ 4 mm. The graph shows the densities of

susceptible (solid line) and infected (dashed line) individuals with initial condition

I0ðxÞ ¼ ð25=
ffiffiffiffi
p
p
Þe�k2

ðx�0:4Þ2 , S0ðxÞ ¼ ð25=
ffiffiffiffi
p
p
Þe�k2

ðx�0:5Þ2 and wavenumber k¼50. All

variables are dimensionless and scaled following (6).
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following (6).
5.2. A ventilated environment

In a ventilated environment, with n40, the infection dynamics
are determined by the droplet size, the ambient air velocity and
the length of the spatial domain. For a fixed droplet size
and domain length, the wavenumbers that satisfy Eq. (15) are
determined solely by the ventilation velocity v. As discussed in
Section 4.3, when v¼0.2 m s�1, all permissible wavenumbers are
stable. The evolution of an arbitrary perturbation under such
conditions is shown in Fig. 4. Droplets generated by the infectious
population are rapidly transported out of the domain causing
minimal infection as they travel through the susceptible popula-
tion, since the convective timescale is much less than that
required for transmission tc 5tt , and the infectious curve decays.

If we rewrite (15), we find that the basic-state will be stable to
an arbitrary perturbation provided the ventilation velocity satis-
fies

v4
adlðlþ1Þ

2p
ffiffiffiffiffiffiffiffiffiffiffiffi
R0�1

p
¼ vcrit:

For parameter values listed in Table 2 we find that
vcrit ¼ 0:08 m s�1 and ventilation velocities of this magnitude
and above are sufficient to prevent the spatial spread by the
airborne route for a uniformly distributed population. However,
we emphasize that this is an approximate value obtained for the
relatively small diffusion of people and neglecting the possibility
of contact and/or droplet transmission. In addition, the true air
velocity will depend on the distance from the ventilation source,
with larger velocities closer to the source. The unstable evolution
of an arbitrary perturbation when v¼0.01 m s�1 is shown in
Fig. 5. An infectious pulse can be seen to propagate through the
susceptible population in the direction of positive air flow.
Droplet and infected densities are qualitatively similar and only
slightly out of phase with each other, with droplets propagating
ahead of the infectious pulse. Dynamically this implies that, for
small air velocities, the dynamics of droplets and infectious
individuals are closely coupled and only separate from each other
at sufficiently high velocities.

Finally, we consider the spatial transmission of infection
resulting from a heterogeneous initial population distribution,
where infected and susceptible populations are placed at separate
locations in the domain, Fig. 6. For small times, t� 10� 6 h, the
infected population generate droplets which are subsequently
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transported in the direction of positive air flow. A secondary curve
for infectious individuals forms when droplets encounter the
susceptible population, t¼ 100� 2:5 days. At later times these
secondary cases produce droplets of their own and a secondary
peak in the droplet curve can be observed, t¼ 500� 13 days. The
amplitude of the secondary curve for infectious individuals is
obviously influenced by the initial distance between the infec-
tious and susceptible populations. At large times, t¼ 1000� 26
days, it is clear that the amplitudes of both curves for infectious
individuals decay. This behavior results from the decay of the
initial infectious population through recovery and the subsequent
reduction in droplets being convected towards the susceptible
region. This demonstrates that it is possible for infection to occur
in the absence of an infected population and purely as the result
of the airborne non-diffusive transport of aerosol droplets.
6. Discussion

In this work we developed a model for the spatial spread of an
airborne infection driven by pathogen-carrying droplets. Two
droplet diameter values, d1 ¼ 4 mm and d2 ¼ 0:4 mm, were con-
sidered that are representative of experimentally determined
droplet size distributions. Droplet dynamics are governed by
generation and removal processes, the latter being dominated
by gravitational settling and pathogen inactivation. Inactivation is
a particularly crucial removal process for smaller droplets that
could remain airborne for days. Smaller droplets are found to be a
weak disease vector. Their relatively large generation rates do not
result in greater transmission due to the small viral load and the
associated duration required to transmit infection. Transmission
is, thus, dominated by the larger droplets.

A delay equation was derived for the droplet density as a
function of the infected population density. The role of droplets in
disease transmission is to introduce a delay into the system, with
disease transmission at a given time dependent on the number of
infected individuals present at a previous time. The equation also
highlights how droplet-driven transmission decays with distance
from the source of infection.

The relative importance of diffusive and convective processes
in the spatial spread of infection was investigated. Two initial
population distributions were considered: spatially homogeneous
or heterogeneous. In both cases droplet diffusion is shown to be a
slow process with disease spread, in an unventilated environ-
ment, driven by human movement. This result follows from the
observation that the time require for droplets to diffuse is
significantly greater than that for humans, tp5td. In the homo-
geneous scenario and for long time scales, the model displays the
classic infectious wave propagating through a susceptible popula-
tion, following an initial transient state until a balance is achieved
between droplet generation and removal processes. In contrast,
human diffusion is an insufficient mechanism to transmit disease
in the heterogeneous scenario, with the infected population
recovering before encountering susceptible individuals, ti5td.
However, the inclusion of ventilation effects and the subsequent
transport of droplets from the source of infection can result in a
secondary outbreak if susceptible individuals are encountered.
This signifies that infection is possible without direct contact
between susceptible and infected individuals. Furthermore, it was
shown that increasing the velocity above a critical value can
impair disease transmission in a homogeneously distributed
population as droplets will be rapidly transported out of the
domain causing minimal infection since the time required for
transmission is large relative to the convective time scale tc 5tt .

The use of ventilation to prevent disease transmission is well-
accepted by both society and science. However, little work has
been done on implementing control strategies based on this
knowledge. Identifying optimum air velocities for indoor envir-
onments could mitigate transmission and reduce the disease
burden in health-care facilities, schools and other densely popu-
lated locations. The model presented here indicates that, in a fixed
size environment, the distribution of sick/healthy individuals and
the ambient air velocity are the primary factors to consider when
analyzing such an intervention.
Appendix A. Solution of the droplet equation with diffusion

In the absence of ventilation effects the droplet equation (10)
takes the form

@D

@t
¼�Dþ IþZd

@2D

@x2
, ðA:1Þ

and for convenience, we consider the solution on an infinite
domain as droplet diffusion is a sufficiently slow process that
boundaries do not interfere with the solutions, Figs. 2 and 3. We
let Dðx,0Þ ¼fðxÞ denote the initial droplet density and assume a
solution of the form

Dðx,tÞ ¼HðtÞGðx,tÞ,

which yields

@G

@t
þ

Gðx,tÞ

HðtÞ

dH

dt
¼�Gðx,tÞþ

Iðx,tÞ

HðtÞ
þZd

@2G

@x2
with HðtÞa0:

We choose H(t) to satisfy

dH

dt
¼�H, ) HðtÞ ¼ e�t ,

and the function Gðx,tÞ then satisfies the inhomogeneous diffusion
equation

@G

@t
¼ f ðx,tÞþZd

@2G

@x2
,

where f ðx,tÞ ¼ Iðx,tÞ=HðtÞ and with initial condition Gðx,0Þ ¼fðxÞ.
Following Kevorkian (2000), the solution for Gðx,tÞ will be of the
form

Gðx,tÞ ¼ uðx,tÞþvðx,tÞ,

where u and v are the solutions of the simplified diffusion
equations

ut ¼ Zduxxþ f ðx; tÞ, vt ¼ Zdvxx,

uðx,0Þ ¼ 0, vðx,0Þ ¼fðxÞ:

These equations can easily be solved to obtain

uðx,tÞ ¼

Z t

0

Z 1
�1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pZdðt�t0Þ

p exp �
ðx�x0Þ2

4Zdðt�t0Þ

 !
f ðx0,t0Þ dx0 dt0,

vðx,tÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4pZdt
p Z 1

�1

exp �
ðx�x0Þ2

4Zdt

 !
fðx0Þ dx0,

and the solution of (A.1) is then

Dðx,tÞ ¼ e�t

Z t

0

Z 1
�1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pZdðt�t0Þ

p exp �
ðx�x0Þ2

4Zdðt�t0Þ

 !
Iðx0,t0Þ

Hðt0Þ
dx0dt0

þe�t 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
4pZdt

p Z 1
�1

exp �
ðx�x0Þ2

4Zdt

 !
fðx0Þ dx0:
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