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Abstract
Background: This paper describes a microarray study including data quality control, data analysis
and the analysis of the mechanism of toxicity (MOT) induced by 1-methyl-4-phenylpyridinium
(MPP+) in a rat adrenal pheochromocytoma cell line (PC12 cells) using bioinformatics tools. MPP+

depletes dopamine content and elicits cell death in PC12 cells. However, the mechanism of MPP+-
induced neurotoxicity is still unclear.

Results: In this study, Agilent rat oligo 22K microarrays were used to examine alterations in gene
expression of PC12 cells after 500 µM MPP+ treatment. Relative gene expression of control and
treated cells represented by spot intensities on the array chips was analyzed using bioinformatics
tools. Raw data from each array were input into the NCTR ArrayTrack database, and normalized
using a Lowess normalization method. Data quality was monitored in ArrayTrack. The means of
the averaged log ratio of the paired samples were used to identify the fold changes of gene
expression in PC12 cells after MPP+ treatment. Our data showed that 106 genes and ESTs
(Expressed Sequence Tags) were changed 2-fold and above with MPP+ treatment; among these, 75
genes had gene symbols and 59 genes had known functions according to the Agilent gene Refguide
and ArrayTrack-linked gene library. The mechanism of MPP+-induced toxicity in PC12 cells was
analyzed based on their genes functions, biological process, pathways and previous published
literatures.

Conclusion: Multiple pathways were suggested to be involved in the mechanism of MPP+-induced
toxicity, including oxidative stress, DNA and protein damage, cell cycling arrest, and apoptosis.

Introduction
DNA microarrays have been increasingly applied as a tool
for the simultaneous monitoring of relative expression
levels of thousands of genes for samples under various
conditions, e.g., normal versus disease, and control versus

drug or toxicant treatment [1-3], and offer a promising
means to better understand how cells react to environ-
mental perturbations. Their popularity, in part, is reflected
by the number of microarray-related publications indexed
in PubMed, which have been increasing exponentially.
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With the improvement of microarray chip quality and
tools for data quality assurance, the focus in this field has
gradually switched from determination of the gene num-
bers with altered expression levels to the analysis of the
biological mechanism by categorizing significantly
changed genes into functional groups and pathways [5-7].
Toxicogenomics, a emerging field combining genomics
and bioinformatics to identify and characterize mecha-
nisms of toxicity (MOT) for drugs and various com-
pounds, has been developed quickly during the last
several years [8-13]. Microarrays, with their power to
examine genome-wide transcriptional responses, have
become a key technology in toxicogenomics.

During the last two decades, MPTP (1-methyl-4-phenyl-
1,2,5,6-tetrahydropyridine) – induced neurotoxicity has
attracted a great deal of attention because of the similarity
of its toxic effects to the biochemical changes in the brains
of patients with Parkinson's disease (PD) [14,15]. PD is a
progressive neurodegenerative disorder that results in
degeneration of dopaminergic neurons in the substantia
nigra (SN) and dopamine depletion in the striatum [16].
Although MPTP does not exactly reproduce PD, it has
been an extremely valuable tool to model many features
of PD in animals, and has led to a better understanding of
crucial aspects of the sub-cellular events participating in
the evolution of the PD clinical syndrome and neurotox-
icity [17-20]. In order to be active, MPTP requires
monoamine oxidase B to be converted into MPP+ (1-
methyl-4-phenylpyridinium) [21]. MPP+ is selectively
taken up by dopaminergic neurons via the dopamine
transporter of the plasma membrane [22,23] and pro-
duces neuronal loss in substantia nigra (SN), striatal
dopamine (DA) depletion and behavioral impairments in
humans [24], primates [14], and mice [15,25-28].

PC12 cells, a rat clonal pheochromocytoma cell line [29],
possess dopamine synthesis, metabolism and transporter
systems [30-32], and therefore have been used as a model
for studies of MPP+ neurotoxicity and PD. A plethora of
evidence has demonstrated that MPP+ depletes dopamine
and elicits cell death in PC12 cells [33-36]. Previously, we
demonstrated that MPP+-induced DA depletion and cell
loss in PC12 cells is dose and time-course responsive [37].
However, the mechanism of MPP+ neurotoxicity in PC12
cells is still unclear. Generally, it is believed that MPP+

directly and/or indirectly inhibits mitochondrial complex
I, causing abnormal energy metabolism and increased
production of reactive oxygen species (ROS), resulting in
cell death [34,36,38]. Our study indicated that MPP+ may
compromise heat shock protein (HSP) cell defense sys-
tems and cause apoptosis in NGF-differentiated PC12
cells and C56, but not CD1, mice [37,39]. However, some
studies have suggested that the effect of MPP+ on PC12
cells might be independent of ROS [35,40]. Recent studies

have also demonstrated that endoplasmic reticulum [41],
PI-3 [42] and cAMP pathways [43] may be possible targets
for MPP+-induced neurotoxicity. Thus, MPP+ may cause
PC12 cell injury and death via multiple complex mecha-
nisms. Therefore, DNA microarray analysis, by measuring
the expression of large numbers of genes, is a promising
tool to help elucidate the mechanism of MPP+-induced
toxicity in PC12 cells.

With the development of bioinformatics, various toxicog-
enomic databases and bioinformatics tools are available
for data manipulation and mining [9,44,45]. The Center
for Toxicoinformatics in the FDA's National Center for
Toxicological Research (NCTR/FDA) has developed a
public microarray data management and analysis soft-
ware, called ArrayTrack, for FDA-wide microarray data
storage and preliminary data analysis [10,46]. In this
study, alterations of gene expression were examined using
the Agilent microarray platform and the data were ana-
lyzed using ArrayTrack and a software package called IRI-
DESCENT.

Methods and materials
Cell culture and MPP+ treatment
PC12 cells at passage 15–20 (ATCC, Manassas, VA) were
grown in 75 cm2tissue culture flasks at 37°C under an
atmosphere of 5% CO2/95% air in RPMI 1640 medium
(Sigma, St. Louis, MO) containing 10% horse serum and
5% fetal bovine serum (complete media). At about 80%
confluence, cells were placed into 24-well plates and cul-
tured for another 2 days, and then were treated with 500
µM MPP+ iodide (Sigma, 100% purity by HPLC), a dose
that induces significant decrease in dopamine content and
cell viability [37].

RNA Isolation
Twenty-four hours after MPP+ treatment, 12 wells of PC12
cells from same treatment group in a 24-well plate were
pooled into one single sample. Two control and two
MPP+-treated samples were prepared for microarray
hybridization. Total RNA was extracted using Qiagen™
RNeasy Mini Kits (Qiagen, Valencia, CA) following the
RNeasy mini protocols for isolation from animal cells (I.
spin protocol). RNA quantity was measured using the
NanoDrop® ND-1000 UV-Vis Spectrophotometer (Wilm-
ington, DE), while RNA quality was monitored using Agi-
lent 2100 bioanalyzer and expressed as RNA integrity
number (RIN) value using Agilent 2100 RIN Beta Version
Software (Palo Alto, CA). For all 4 RNA samples, the ratios
of 260/280 (indication of protein contamination) and
260/230 (indication of reagent contamination) deter-
mined by the NanoDrop spectrophotometer were above
2, and the RIN values determined by an Agilent bioana-
lyzer were 10 (Best RNA quality according to the grading
of Agilent 2100 RIN Software).
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Microarray studies
Agilent 22K 60-mer oligonucleotide microarray slides
(Palo Alto, CA) were used and a dye-swap experimental
design was applied. High-quality RNA samples (200 ng
each) acquired from PC12 cells were amplified and
labeled with Cy5-and Cy3-CTP (Amersham Biosciences)
to produce labeled cRNA using Agilent low RNA input flu-
orescent linear amplification kits following the manufac-
turers protocol. After the amplification and labeling, the
dye-incorporation ratio was determined using a Nano-
drop spectrophotometer and the ratios were within 10 to
20 pmol per µg cRNA, the range the manufacturer sug-
gests prior to hybridization. For hybridization, the Agilent
60-mer oligo microarray processing protocol (Rev. 7, SSC
Wash/6-screw hybridization chamber) was strictly fol-
lowed. Briefly, 750 ng Cy3-labeled control and 750 ng
Cy5-labeled MPP+-treated sample were mixed and incu-
bated with an Agilent microarray slide for 17 hours using
an Agilent in situ hybridization kit following SSC buffer
washing. Sample pairs were dye-swapped and processed
at the same time. The washed slides were immediately
dried using an ultra pure filtered N2 stream in an ozone-
free Biobubble. After drying, the slides were scanned using
an Axon GenePix 4000B scanner with the PMT settings at
770 for Cy5 and 670 for Cy3, and the raw data were gen-
erated using GenePix Pro 6.0 software (Axon Instruments,
Union City, CA).

Data analysis and MOT interpretation
Four datasets were acquired in this experiment, Slide 230:
control 1 (Cy3)/treated 1(Cy5); Slide 231: control
2(Cy3)/treated 2(Cy5); Slide 232 (dye-swap of slide 230):
control 1 (Cy5)/treated 1 (Cy3); Slide 233 (dye-swap of
slide 231): control 2(Cy5)/treated 2(Cy3). Raw data gen-
erated from GenePix Pro 6.0 software was input into the
ArrayTrack database. ArrayTrack is logically constructed of
three linked components: a) a database (MicroarrayDB)
that stores microarray experiment information; b) tools
(TOOL) for data visualization and analysis; and c) librar-
ies (LIB) that provide curated functional data from public
databases for data interpretation. Specifically, ArrayTrack
is MIAME (Minimum Information About A Microarray
Experiment) supportive for storing both microarray data
and experiment parameters associated with a toxicoge-
nomics study. A quality control mechanism is imple-
mented to assess the quality of entire expression data as
well as quality of each spot on the chip. In addition, many
data analysis and visualization tools are available with
ArrayTrack, including four normalization methods, sev-
eral statistical approaches for identification of differen-
tially expressed genes, clustering/classification methods.
ArrayTrack also provides a rich collection of functional
information about genes, proteins and pathways drawn
from various public biological databases for facilitating
data interpretation [10,46]. After data input, an auto-

mated data quality control was made by serial criteria of
data quality control parameters in ArrayTrack to assure the
data quality (Fig. 1A). Subsequently, data were normal-
ized using the Lowess normalization method [47] to cor-
rect intensity-dependent ratio bias in ArrayTrack (Fig. 1B).
Raw intensity data were logarithm (base 2) transformed
and the log ratio of treated/control was calculated in
ArrayTrack. The data set was then exported and the subse-
quent data analysis was performed employing JMP statis-
tical software 5.0.1 and Spotfire DecisionSite
bioinformatics software. The genes were categorized
based on their functions derived from OMIM http://
www.ncbi.nlm.nih.gov and PubMed literature http://
www.pubmed.com as well as GO biological process and
molecular functions.

IRIDESCENT
A software package called IRIDESCENT [48-50] was also
used to tie responding genes back to the published litera-
ture and identify commonalities among and between
genes, diseases, chemical compounds, ontological catego-
ries and FDA-approved drugs. Commonalities are scored
based upon how many genes within the entire set of
microarray responders are observed to be related to each
''object'' via their co-occurrence within MEDLINE
abstracts versus how many relationships would be
expected statistically, by chance[49]. This enables valida-
tion of experimental data by comparing the microarray
response to the published literature to verify that at least
some previously documented relationships are being
reproduced by the experiment. It also enables the identifi-
cation of common themes and potential new leads.
Graphs were drawn using GraphViz, a software package
written by AT&T Labs.

Results
Microarray data consistency
Data consistency was examined employing both
ArrayTrack tools and JMP software. Figure 2 shows the
correlation ratios between sample pairs (r = 0.898 for slide
230 versus 231; r = 0.922 for slide 232 versus 233), indi-
cating data consistency between biological samples. How-
ever, poor correlation ratios of dye-swapped slides (Slide
230/232 and slides 231/233) were observed in this study
(Fig. 3) due to anti-correlation, a common phenomenon
in dye-swapped slides. Further analysis using ArrayTrack
tools indicated that these spots are consistent in the two
swapped-slide sets (shown red) (Fig. 3A) and most of
them are low-intensity spots and internal Cy3 controls
(shown red) (Fig. 3B).

Identification of genes altered by MPP+ treatment
Genes with the lowest average intensity in this study (an
arbitrary threshold at log 2 transformed intensity = 8)
were excluded to reduce variance. Log ratios of the dye-
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Data quality control and Lowess normalizationFigure 1
Data quality control and Lowess normalization. A. the graph shows a sample of data quality controlled by ArrayTrack. The 
lower part of Figure 1A showed the criterion parameters, the values of Cy3 (F532) and Cy5 (F635), default threshold, and if 
the specific slide passed the threshold. The upper part shows the scatter plot of the two dyes (Cy3 and Cy5) (Left) and the 
spot density distribution (right). B. Lowess normalization. The left and right panel shows the MA plot before and after the nor-
malization, respectively.
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Pearson correlation ratio between biological repeats determined by mixed scatter plot tool in ArrayTrackFigure 2
Pearson correlation ratio between biological repeats determined by mixed scatter plot tool in ArrayTrack. A. correlation of 
slide 230 (treated/control sample pair 1)/231 (treated/control sample pair 2); B. correlation of slide 232/233. It should be noted 
that all the Agilent embedded positive and negative controls were included.
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Anti-correlation spots were determined in ArrayTrackFigure 3
Anti-correlation spots were determined in ArrayTrack. A. Determination of the consistency of anti-related spots in different 
dye-swapped slide sets. The left panel shows the scatter plot of slide 230/232 and the right shows the scatter plot of slide 231/
233. Red color labeled the same spots in the two graphs. B. Determination of the intensity of anti-related spots. The left panel 
shows the anti-correlation effect of slide 231/233 and the right one shows the intensity scatter plot of Cy5 and Cy3 of each 
spot on slide 231. Red color labeled represents the anti-correlated spots (left) and their corresponding log intensities (right). It 
should be noted that slide 231 is used as an example to show the intensities of anti-correlated spots, but similar results are 
observed in all other 3 slides.
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swapped slides were averaged and the mean of two sam-
ple pairs were subsequently used to determine the fold
change of gene expression in MPP+-treated groups in con-
trast to control. Figure 4 shows the correlation of the
treated/control log (base 2) of the two sample pairs after
the dye-swapped slides were averaged (r = 0.90), indicat-
ing low variance between the two samples sets. In this
study, a 2-fold cutoff was applied as significant. Genes
with log 2 transformed ratio (MPP+ treated/control) = 1
(representing 2-fold and above increase) showed red and
≤ 1 (representing 2-fold and above decrease) showed
green. In total, there were 106 genes (44 genes induced
and 62 genes repressed) with equal to and greater than a
2-fold change with MPP+ treatment.

MOT analysis
Based on GO term information, OMIM and PubMed liter-
ature, ArrayTrack was used to categorize genes into 6 func-
tional groups, which were: Oxidative stress, DNA and
protein damage, metabolic process, neurotransmission
and neuronal growth, cell arrest and apoptosis, and cell
cycle (Tables 1, 2, 3, 4, 5, 6). Additionally, genes that can-
not be categorized or with unclear functions were also
listed (Table 7).

Genes associated with oxidative stress (Table 1)
Nine genes were functionally categorized in this group.
Vmp1 is a stress-induced gene which may promote forma-
tion of intracellular vacuoles followed by cell death [51].
Although it is still not clear the exact function of isg12(b),
it is believed to play a role in resisting cellular or environ-
mental stress. Herpud1 encodes an endoplasmic reticu-
lum stress-inducible protein [52]. Heat shock protein is
generally induced by oxidative stress. Ephrin A1 acts as an
early response protein in response to oxidative stress. This
gene along with its receptor increased in response to DNA
damage and is regulated by p53 in apoptosis [53]. Ftl1 is
a gene that is often induced due to iron-related oxidative
stress, which is important for Parkinson's disease [54].
The induction of these genes indicates that MPP+ may
induce oxidative stress in PC12 cells. However, leukot-
riene B4 12-hydroxydehydrogenase which also plays a
role in antioxidative function [55], CD24 involved in
defense response [56] and Gstm1, a general stress-
response gene, were down-regulated in response to MPP+

treatment, an outcome in opposition to the enhanced oxi-
dative stress hypothesis. However, it should be noted that
the above 3 genes are also involved in other functions.
Alterations of these 3 genes may provide other mechanis-
tic information for MPP+-induced toxicity.

Genes associated with DNA and protein damage (Table 2)
Both Myd116 [57] and Ddit3 (OMIM: +126337) are
DNA-damage inducible genes, and their induction pro-
vides direct evidence for DNA damage with MPP+ treat-
ment. Dut is involved in purine metabolism, thus, the
decrease of this enzyme may compromise the DNA-repair
system. In addition, as mentioned above, increased
expression of ephrin A1 is also an indication of DNA dam-
age. Limited evidence was found to indicate protein dam-
age. Tryptophanyl-tRNA synthetase catalyzes the first step
of protein synthesis and is an essential function in the
cell's protein synthesis machinery (OMIM: *191050).
Cathepsin L is a protein associated with proteolysis and
peptidolysis and induced by oxidative stress [58,59].
These genes, along with heat shock protein 70, indicate
cellular response to protein damage. Tcp1 functions as a
cytosolic chaperone in the biosynthesis of tubulin
[60,61]. Although there is no evidence to indicate that this
protein is involved in protein damage and repair, it has
been reported that tubulin is involved in MPP+ elicited
toxicity in PC12 cells [62]. The decreased expression of
this gene may affect the synthesis of tubulin, whose
assembly into microtubules is critical to many cellular
processes. It should be noted that LOC296368 has a
sequence similar to ubiquitin-conjugation enzyme E2C,
and is down-regulated with MPP+ treatment. However,
because the exact function of this sequence is still
unknown, the effect of these data on our hypothesis is
unclear.

Scatter plot of the averaged log ratio of dye-swapped slide sets (Avg [230+232] / Avg [231+233]) in Spotfire (Correla-tion ratio: R = 0.90)Figure 4
Scatter plot of the averaged log ratio of dye-swapped slide 
sets (Avg [230+232] / Avg [231+233]) in Spotfire (Correla-
tion ratio: R = 0.90). Red labeled spots represents those with 
log values ≥ 1 (2-fold and above increase) and green labeled 
spots represents those with log values ≤ -1 (2-fold and above 
decrease).
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Genes associated with metabolic processes (Table 3)
If cellular functions are severely damaged, it is expected
that most metabolic activities, especially fuel-utilization
and energy metabolism, will be compromised. As Table 3
shows, MPP+ induces suppression of chromogranin A, a
gene that modulates glucose, lipid and protein metabo-
lism, and other genes associated with energy production,
except acsl4. Therefore, we can primarily conclude that
metabolic processes were down-regulated by MPP+ in
PC12 cells. In addition, chromogranin A is also co-stored
and co-released with catecholamines from storage gran-
ules in the adrenal medulla (OMIM: *118910). Although

the function is still not known, the decrease of chrom-
ogranin A may indicate decreased dopamine content with
MPP+ treatment as previously reported [33,37].

Genes associated with neurotransmission and neuronal 
growth (Table 4)
MPP+-induces dopamine depletion, however, our prelim-
inary study using real-time PCR has demonstrated that
there are only minor gene expression changes with MPP+

treatment in PC12 cells (data not shown), unlike that in
vivo [28]. In this study, instead of tyrosine hydroxylase,
dopa decarboxylase (Ddc) was down-regulated following

Table 1: Genes associated with oxidative stress

UniGene ID Genbank Acc ID Gene Symbol Gene Name Fold change

Rn.840 NM_138839 Vmp1 vacuole Membrane Protein 1 3.18
Rn.10656 NM_138863 Ltb4dh leukotriene B4 12-hydroxydehydrogenase -4.99
Rn.22509 BF398773 isg12(b) putative ISG12(b) protein 3.76
Rn.11088 NM_013083 Hspa5 heat shock 70 kD protein 5 4.03
Rn.4028 NM_053523 Herpud1 homocysteine-inducible, endoplasmic reticulum stress-inducible, 

ubiquitin-like domain member 1
2.56

Rn.93760 NM_017014 Gstm1 glutathione S-transferase, mu 1 -2.60
Rn.1905 NM_022500 Ftl1 ferritin light chain 1 2.85
Rn.8427 BF284120 Efna1 ephrin A1 2.03
Rn.6007 NM_012752 Cd24 CD24 antigen -3.80

Table 2: Genes associated with DNA and protein damage

UniGene ID Genbank Acc Gene Symbol Gene Name Fold change

Rn.2232 NM_133546 Myd116 myeloid differentiation primary response gene 116 3.50
Rn.6102 NM_053592 Dut Deoxyuridinetriphosphatase (dUTPase) -2.46
Rn.11183 NM_024134 Ddit3 DNA-damage inducible transcript 3 3.57
Rn.14939 BI286828 Wars tryptophanyl-tRNA synthetase 2.12
Rn.7102 AI412322 Tcp1 t-complex protein 1 -2.06
Rn.3102 AI102920 LOC296368 similar to ubiquitin-conjugating enzyme E2C; DNA segment, Chr 2, 

ERATO Doi 695, expressed
-2.04

Rn.11088 NM_013083 Hspa5 heat shock 70 kD protein 5 4.03
Rn.1294 NM_013156 Ctsl cathepsin L 2.89

Table 3: Genes associated with metabolic process

UniGene ID Genbank Acc Gene Symbol Gene Name Fold change

Rn.10826 NM_030834 Slc16a3 monocarboxylate transporter -2.18
Rn.83595 NM_031841 Scd2 stearoyl-Coenzyme A desaturase 2 -2.20
Rn.874 NM_012615 Odc1 ornithine decarboxylase 1 -2.22
Rn.29938 AI409214 LOC360688 similar to glucan (1,4-alpha-), branching enzyme 1; DNA segment,

Chr 16, ERATO Doi 536, expressed
-5.38

Rn.37838 NM_022922 LOC300465 similar to triosephosphate isomerase 1 -2.83
Rn.3687 NM_017025 Ldha lactate dehydrogenase A -3.54
Rn.64496 NM_023964 Gapds glyceraldehyde-3-phosphate dehydrogenase, spermatogenic -2.18
Rn.28161 NM_053445 Fads1 fatty acid desaturase 1 -2.28
Rn.41024 NM_021655 Chga chromogranin A -2.07
Rn.87821 NM_053623 Acsl4 acyl-CoA synthetase long-chain family member 4 2.15
Rn.87821 NM_053623 Acsl4 acyl-CoA synthetase long-chain family member 4 2.84
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MPP+ treatment. In addition, cytochrome b561, a major
transmembrane protein that is specific to catecholamine
and neuropeptide secretory vesicles of the adrenal
medulla (OMIM: *600019), was down-regulated. As
mentioned above, chromogranin A may be involved in
dopamine metabolism in PC12 cells.

In PC12 cells, genes involved in neurogenesis and neuro-
nal development were down-regulated following MPP+

treatment. These include Vgf (OMIM: *602186), Nnat
[63], Plk2 [64], Hmgb2 (GO terms, biological process)
and Bhlhb3 (GO terms, biological process). The decrease
of these growth-related genes may suggest cell damage,
cell growth arrest and a tendency toward apoptosis.

Genes associated with general cell growth arrest and 
apoptosis (Table 5)
With MPP+ treatment,, the expression of Gadd45a and
Gas5 [65], genes associated with cell growth and respon-
sive to DNA-damage stimulus [66], were induced. As
shown above, induction of ephrin A1 also indicates p53-
dependent activation in response to DNA damage [53].
Furthermore, Trib3 (Kegg pathway) and Vmp1, which are
involved in apoptosis, are both induced. Adenosine A2a
receptor is also included in this group because it has been
reported that Activation of A2A adenosine receptors
(Adora2a) was found to prevent reactive oxygen species
(ROS) formation and apoptosis in pheochromocytoma
PC12 cells [67]. The repression of this gene may facilitate
apoptosis and ROS damage. In addition, this receptor is
cAMP mediated, thus the repression of this receptor may

be involved in subsequent cAMP regulated functions,
such as CREB. ADM is one of the proteins that are cAMP
pathway regulated. Although the function is still not clear,
it has been reported to be highly expressed in pheochro-
mocytoma and adrenal medulla (OMIM: *103275).

Genes associated with cell-cycle (Table 6)
It is evident that if cell growth is arrested, cell cycle and
proliferation should be ceased. Thus, it is not surprising to
see that genes for anti-proliferation (Btg1, Copeb) were
induced and genes for cell cycle and replications were
reduced. As shown in Table 6, Mcmd6 (mini chromosome
maintenance deficient 6), which belongs to a family of
early S-phase proteins required for DNA replication, may
play a role in cell-cycle progression and DNA replication
[68]. Calcyclin (S100A6) is a calcium-binding protein that
belongs to the family of S100 proteins. Its gene was dis-
covered on the basis of its cell cycle-dependent expres-
sion. This gene is expressed at its maximal level during the
transition between G0 to S phase of the cell cycle [69,70].
Snf1lk encodes a protein kinase that may function in cell
cycle regulation [71]. Tcf19 is a transcription factor that
may be involved in cell growth [72]. H2Afz is a protein
synthesized throughout the cell cycle (OMIM: *142763).
These genes, along with some typical genes of the cell
cycle (cdc2a, S-phase kinase-associated protein, Rfc2, Ret,
Pcna), were all down-regulated by MPP+ treatment.
Although the oncogene c-Myc has been considered a gene
for proliferation, it is usually up-regulated during apopto-
sis [73,74]. Thus, the induction of this gene is consistent
with apoptotic processes induced by MPP+.

Table 4: Genes associated with neurotransmission and neuronal growth

UniGene ID Genbank Acc ID Gene Symbol Gene Name Fold change

Rn.9704 NM_030997 Vgf VGF nerve growth factor inducible -2.19
Rn.12100 NM_031821 Plk2 polo-like kinase 2 (Drosophila) 4.00
Rn.5785 NM_053601 Nnat neuronatin -2.23
Rn.14673 BI302561 LOC303601 similar to Cytochrome b561 (Cytochrome b-561) -2.39
Rn.14673 BI302561 LOC303601 similar to Cytochrome b561 (Cytochrome b-561) -2.04
Rn.2874 NM_017187 Hmgb2 high mobility group box 2 -2.23
Rn.11064 NM_012545 Ddc dopa decarboxylase -2.79
Rn.11064 NM_012545 Ddc dopa decarboxylase -2.68
Rn.10784 NM_133303 Bhlhb3 basic helix-loop-helix domain containing, class B3 -2.34

Table 5: Genes associated with cell growth arrest and apoptosis

UniGene ID Genbank Acc ID Gene Symbol Gene Name Fold change

Rn.22325 NM_144755 Trib3 tribbles homolog 3 (Drosophila) 4.66
Rn.14733 BI303289 Gas5 growth arrest specific 5 2.47
Rn.10250 NM_024127 Gadd45a growth arrest and DNA-damage-inducible 45 alpha 2.19
Rn.8427 BF284120 Efna1 ephrin A1 2.03
Rn.840 NM_138839 Vmp1 vacuole Membrane Protein 1 3.18
Rn.11180 NM_053294 Adora2a adenosine A2a receptor -2.31
Rn.10232 NM_012715 Adm adrenomedullin -2.13
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Genes with unknown functions (Table 7)
There are also some genes that cannot be categorized into
gene groups. Generally this is due to their unknown func-
tions. However, GPNMB, expressed in melanoma cell
lines, was preferentially expressed in low-metastatic cell
lines (OMIM: *604368). There was an inverse relation-
ship between the expression of GPNMB compared to cal-
cyclin (OMIM: *604368). In PC12 cells, this pattern was
also observed. Acp5 is a gene related to bone growth
(OMIM: *171640), which made it difficult to correlate
with its function in PC12 cells.

IRIDESCENT Analysis
Thus far, genes have been discussed individually and in
terms of their known ontological processes. Gene catego-
ries shown above indicated that MPP+-induced toxicity
might be related to the production of oxidative stress,
DNA and protein damage, cell growth arrest, cell cycle/
proliferation repression and apoptosis. IRIDESCENT was
used to gain a broader perspective on how the 59 respond-
ing genes with known functions were related and whether
these gene expression changes resonated with MPTP-
induced neurotoxicity and Parkinson's disease. Only 47 of
these 59 gene names, however, appeared in the literature
at least once and could be used in the analysis based on
the IRIDESCENT search. Genes with sequence similarity

Table 6: Genes associated with cell-cycle

UniGene ID Genbank Acc ID Gene Symbol Gene Name Fold change

Rn.14867 AI103327 Tcf19 transcription factor 19 -2.19
Rn.42905 NM_021693 Snf1lk SNF1-like kinase -2.05
Rn.3233 NM_053485 S100a6 S100 calcium binding protein A6 (calcyclin) -2.09
Rn.22905 AA899195 Rfc2 replication factor C (activator 1) 2 (40 kD) -2.14
Rn.22905 AA899195 Rfc2 replication factor C (activator 1) 2 (40 kD) -2.14
Rn.44178 AJ299016 Ret ret proto-oncogene -3.61
Rn.223 NM_022381 Pcna proliferating cell nuclear antigen -2.41
Rn.12072 NM_012603 Myc v-myc avian myelocytomatosis viral oncogene homolog 2.02
Rn.33226 U17565 Mcmd6 mini chromosome maintenance deficient 6 (S. cerevisiae) -2.54
Rn.41428 AI706769 LOC304951 similar to NUF2R protein -2.10
Rn.8884 AI112987 LOC292071 similar to CDT1 protein -2.26
Rn.3477 AA858962 LOC287280 similar to S-phase kinase-associated protein 1A isoform b; organ of 

Corti protein 2; transcription elongation factor B (SIII), polypeptide 
1-like; RNA polymerase II elongation factor-like protein OCP2; cyclin 
A/CDK2-associated p19

-2.74

Rn.57 NM_019904 Lgals1 lectin, galactose binding, soluble 1 -2.18
Rn.3636 NM_022674 H2afz H2A histone family, member Z -2.23
Rn.7947 BI298478 Copeb core promoter element binding protein 2.01
Rn.11252 NM_031642 Copeb core promoter element binding protein 2.08
Rn.11252 NM_031642 Copeb core promoter element binding protein 2.72
Rn.6934 NM_019296 Cdc2a cell division cycle 2 homolog A (S. pombe) -2.50
Rn.1000 NM_017258 Btg1 B-cell translocation gene 1, anti-proliferative 2.17
Rn.1000 NM_017258 Btg1 B-cell translocation gene 1, anti-proliferative 2.20

Table 7: Genes with unknown functions

UniGene ID Genbank Acc Gene Symbol Gene Name Fold change

Rn.6738 AA924324 LOC305709 similar to transcription elongation factor IIS – mouse 2.33
Rn.3494 NM_019144 Acp5 acid phosphatase 5, tartrate resistant -3.36
Rn.13778 NM_133298 Gpnmb glycoprotein (transmembrane) nmb 2.69
Rn.24007 AI178104 LOC293623 similar to RIKEN cDNA 2400009B11 gene -2.10
Rn.1935 BI288713 LOC305234 similar to genethonin 1 2.94
Rn.7233 AI230347 Ns5atp9 Ns5atp9 protein -4.04
Rn.18835 AW252093 LOC360847 similar to RIKEN cDNA 2700084L22 -2.05
Rn.12866 BQ782988 LOC361168 similar to HTPAP protein 2.32
Rn.18387 AW251335 LOC363028 similar to RIKEN cDNA 2410030K01 -2.21
Rn.22267 AA943981 LOC311209 similar to endoplasmic reticulum membrane protein with at least 3 

transmembrane domains of bilaterial origin like (XB300)
-2.05

Rn.8733 NM_138892 LOC300708 similar to RS21-C6 protein -2.37
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to other genes were not used (e.g. the LOC* entries).
When examining how each of these genes was related to
one another within the scientific literature, 34 genes had
no detected relationships, suggesting that at least a few of
these genes may be the result of noise or a non-specific
response. It is also possible, of course, that their relation-
ship to MPP+ and PD has not yet been documented and
are thus valuable leads.

Discarding the genes without known connections, the
most apparent pathway identified by the literature analy-
sis was the DNA damage pathway (Figure 5), with
GADD45 and GADD153 (Ddit3) in a relatively central
role. Interestingly, these genes have been documented in
other microarray experiments to play a role in dopamine-
induced toxicity [75], yet have been only weakly associ-
ated with PD thus far. Both MPTP and PD are included in
this graph so that literature relationships to the respond-
ing genes are apparent. Note the strong relationship
between MPTP and PD and that the genes related to MPTP
are also strongly related to PD. Roughly, the graph also
segregates between a responding (up-regulated) and
repressed (down-regulated) group of genes. Because we
expect genes related by function or process in the litera-
ture to behave in a similar manner to a greater degree than
unrelated genes, this helps confirm the specificity of the
microarray experiments conducted. This graph also helps
visualize to a greater degree the central players in the tran-
scriptional response – in this case, PCNA, which has been
called the "ringmaster of the genome" and can lead to
apoptosis when downregulated [76]. GADD45 is also
upregulated, which is known to occur after DNA damage
[77]. Collectively, these factors within this analysis sug-
gest that the MOT is likely due to DNA damage. As part of
the shared relationship analysis, IRIDESCENT also identi-
fied Methyl Methanesulfonate (MMS) as being highly
related to the responding genes. Because MMS is known
to induce DNA damage through DNA alkylation, it would
be interesting to compare the MPTP and MMS responses
in future microarray experiments to identify both similar-
ities and differences in their gene expression patterns.

Discussion
During the last decade, DNA microarrays have been one
of the hottest topics in biological research and biotechnol-
ogy industry. The first paper about a DNA microarray was
published from Pat Brown's laboratory in Stanford Uni-
versity in 1995 [78]. By the end of 2004, the number of
microarray-related publications was 11,625 (http://
www.pubmed.com, keyword searching: DNA micro-
array). However, data assurance and data quality are still
great challenges in microarray studies [4,79]. In this study,
the experiment was performed under stringent quality
control, with minimum standards sets for RNA purity,
RNA degradation, and dye-incorporation ratios. The cor-

relation ratio between the two sample-sets was up to 0.9,
thus, we assume that variance introduced by the experi-
mental procedure was small. The anti-correlation effect
exists more or less in all dye-swapped microarray experi-
ments, which is due to natural differences between the
Cy5 and Cy3 dyes. As our data indicated, the anti-correla-
tion was intensity-dependent, and occurred primarily
with low-intensity spots. The cut-off threshold applied in
this study (log intensity ≥ 8) can, therefore, largely exclude
these low intensity spots. This cutoff may cause false-neg-
ative discovery because the low-expressed genes, which
may be altered by treatment, are also eliminated. How-
ever, it was interesting to note that none of the genes with
expression levels lower than the cutoff level were changed
up to 2-fold with MPP+ treatment. This is mainly due to
the dye anti-correlation effect as shown in Figure 2.

In this study, the good correlation of sample set 1 and
sample set 2 (Fig. 4) indicated low variance, which made
it justifiable to use fold-change criterion to determine
genes that were altered following MPP+ treatment. Actu-
ally, the correlation ratio of the two sample sets was up to
0.98 if only those genes with 2-fold change were counted
(data not shown). Two-fold is a somewhat arbitrary fold-
change criterion that has been applied in many micro-
array studies [80-83], but nonetheless necessary to delin-
eate a tentative set of responders. We have to admit that it
is an arbitrary criterion, and it does not mean that the
genes altered lower than 2-fold change are not meaning-

Within the subset of genes expressed at a 2-fold or greater level in the MPTP microarray experiments, these 13 were found co-mentioned together within MEDLINE abstracts at least twiceFigure 5
Within the subset of genes expressed at a 2-fold or greater 
level in the MPTP microarray experiments, these 13 were 
found co-mentioned together within MEDLINE abstracts at 
least twice. Green colors = down-regulated genes, Red = 
upregulated genes. Relationships with MPTP (octagon) and 
Parkinson's Disease (rectangle) are also displayed. Relation-
ship weights were calculated as (number of abstract co-men-
tions × 0.5) + (number of sentence co-mentions × 0.8). 
Relationships with weights ≤ 1 are not shown.
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ful. Certainly, more genes will be determined to be signif-
icant if the threshold is decreased to 1.5 or lower, but this
will produce more false discovery. Currently, this criterion
is still the most acceptable criterion regarding the magni-
tude of fold change and biological significance.

Data interpretation (mechanism of toxicity) is the ulti-
mate and most complicated aspect of a microarray study,
in part because there is no standard approach. Although
there are more and more tools, websites and biological
libraries to assist MOT analysis, biological knowledge and
understanding the pertinent literature are generally more
important for MOT analysis. Our study indicated that
MPP+ may produce its toxicity via the production of oxi-
dative stress as indicated by induction of associated genes
(Vmp1, Hspa5, Herpud1, Ftl1, Efna1, Ctsl, etc.), and at
the same time suppression of general defense systems
(Gstm1, Cd24, Adora2a, etc.). Previous studies have dem-
onstrated that MPP+ elicits its toxicity in PC12 cells via the
production of oxidative stress [84,85], and this study pro-
vides evidence of oxidative stress production at the gene
level. Oxidative stress may be responsible for the DNA
and protein damage as represented by the induction of
DNA and protein damage-inducible genes. It has been
reported that MPP+ elicits DNA damage and subsequent
apoptosis [86,87] and induced heat shock proteins such
as HSP70, which is an indicator of protein damage and
repair [88,89]. DNA and protein damage are involved in
cell growth arrest and cell cycle repression and eventually
apoptosis [90,91]. A plethora of evidence has demon-
strated that MPP+ can elicit cell death in PC12 cells
[34,36,88]. Therefore, this study confirmed the previous
findings at the gene expression level, and more impor-
tantly the genes identified in this study suggested specific
mechanistic pathways of MPP+-induced toxicity.

In summary, this study provides new insight on the mech-
anism of toxicity induced by MPP+. Our data indicate that
MPP+ induces oxidative stress, elicits damage in DNA and
proteins, and causes cell growth arrest, cell cycle suppres-
sion and apoptosis. Literature analysis by IRIDESCENT
has revealed some genes such as PCNA and GADD45 that
are likely central players in this toxic response. In addi-
tion, IRIDESCENT analysis demonstrated that some of the
genes altered by MPP+ in PC12 cells are involved in MPTP
induced neurotoxicity in mice and Parkinson's disease.
We have also identified MMS as a compound related to
the genes in our experimental transcriptional response,
and since no studies on the effects of MMS on PC12 cells
have been published thus far, this is a potentially promis-
ing avenue for future experimentation the mechanism of
toxicity for MPTP.
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