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For most of the world, normal vision and visual acuity are central to our lives and livelihoods.

Abnormal vision is often equated with conditions such as cataracts or retinal degeneration,

but increasingly recognized contributors to abnormal vision are serious disturbances in visual

acuity caused by uncorrected refractive error. In 2017, the Vision Loss Expert Group projected

that uncorrected refractive error will become a major cause of global vision impairment and

blindness by 2020 [1]. Although refractive error such as nearsightedness (myopia) and far-

sightedness (hyperopia) is usually correctable with eyeglasses, high myopia and high hyperopia

can result in significant vision loss, and even irreversible blindness, due to complications such

as macular degeneration and glaucoma. Myopic macular degeneration gives rise to similar

outcomes as does age-related macular degeneration, with a notable difference—the former

affects patients of much younger age. At the other end of the refractive spectrum, high hyper-

opia commonly leads to angle closure glaucoma. Furthermore, extremely high hyperopia asso-

ciated with nanophthalmos—a small eye caused by developmental abnormalities—almost

always leads to angle closure glaucoma, for which surgical correction is challenging and often

associated with severe complications [2]. Understanding the pathogenesis of refractive error is

greatly needed to develop effective treatments.

High myopia or hyperopia is commonly caused by lengthening or shortening of axial length

(AL) of the eye, respectively. If AL is too long, the sclera (the white outer layer of the eye)

becomes stretched and thinned, predisposing to retinal detachment and degeneration of the

retinal pigment epithelium. Conversely, if AL is too short, internal eye structures are crowded,

and the sclera becomes thickened, predisposing to angle closure glaucoma and choroidal

effusion.

Recent studies in PLOS Genetics provide new insight into the genes and gene interactions,

that contribute to abnormalities in axial length and refraction, and, furthermore, represent an

intersection between common and rare genetic disease. On the common side of the spectrum,

myopia and hyperopia have been the subject of several genome wide association studies

(GWAS). TMEM98, which encodes a widely expressed single transmembrane protein of

unknown function [3,4], is one of several loci associated with high myopia in GWAS, but a

definitive and mechanistic role for TMEM98 in axial length has not been apparent from

GWAS. On the rare side of the spectrum, however, deleterious coding alterations in TMEM98
co-segregate with autosomal dominant nanophthalmos in large multigenerational families

[5,6]. Intriguingly, nanophthalmos is the phenotypic opposite of high myopia, a paradox that

is underscored by a report of 3 variants in TMEM98 associated with high myopia in Chinese

patients [7].
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Nanophthalmos can be caused by genes other than TMEM98. In fact, the first nanophthal-

mos locus (NNO1) was mapped in 1998 [8], and last year, using the same family, Garnai and

colleagues reported in PLOS Genetics that the underlying cause was a mutation in MYRF that

leads to a C-terminal truncation [9]. MYRF encodes a transcription factor that regulates the

production of myelin, especially for the optic nerve. But MYRF is also a gene in which different

alleles lead to different phenotypes, including a syndromic condition with diaphragmatic her-

nia, cardiac defects, and urogenital abnormalities [10]. To better understand the role of MYRF
and MYRF mutations in ocular development and disease, Garnai and colleagues added to their

PLOS Genetics manuscript the investigation of a tissue-specific loss-of-function MYRF allele in

mice, targeted to the developing retina and retinal pigment epithelium (RPE) [9]. Interestingly,

these animals exhibited degeneration of the retina and RPE, but did not exhibit an alteration

in axial length [9]. Now, mouse eyes are very different from human eyes, so absence of a short-

ened axial length in Myrf mutant mice is perhaps not so surprising [11]. On the contrary, Myrf
mutant mice faithfully recapitulate the retinal abnormalities, which is perhaps not surprising

since other genes identified in Mendelian nanophthalmos cases, such as CRB1 and BEST1,

have profound roles in the retina and RPE [12,13]. Although it has been postulated that the

RPE, which is anatomically interposed between retina and sclera, plays a critical role in relay-

ing signals from neural retina to sclera as an end target for regulation of axial length, the pre-

cise mechanism remains largely elusive and begs further investigation [14].

Cross and colleagues did just that in a study published in April 2020’s issue of PLOS Genet-
ics [15]. The authors provide yet another surprising, but not unexpected finding, that mice

lacking Tmem98 have greatly enlarged eyes with long axial length. This study was built upon

their previous investigation, which found that when two known missense mutations of

TMEM98 in human autosomal dominant nanophthalmos were engineered into mice, they did

not have nanophthalmos, but instead developed retinal pathology [16]. They further con-

firmed the strong expression of TMEM98 in RPE, consistent with previous reports [9]. To

understand the mechanism of action, the investigators in the current study produced mice

deficient for Tmem98 in the RPE to avoid perinatal lethality caused by global knockout of the

gene. Those mice developed retinal and RPE abnormalities as expected. More strikingly, they

exhibited greatly enlarged eye size with compressed choroid and thin sclera, which could be

detected as early as embryonic day 17.5 and persisted to adult life. The extremely thin sclera in

the Tmem98 mutant mice is likely the root cause of the extremely enlarged eye, yet electron

microscopy failed to show obvious collagen fibril abnormalities, which is counterintuitive. It

may even contradict the findings from surgical specimens of a nanophthalmos patient, as

shown by Yamani et al. [17]. The full-thickness nature of the sclerectomy specimens of the

human eye allowed detailed views of all three layers of sclera, in which the innermost layer- the

lamina fusca, which is adjacent to the choroid and RPE- had the most pronounced collagen

fibril abnormalities, highlighting a possible role of RPE in determining the thickened sclera

phenotype in nanophthalmos. The lack of obvious abnormalities of collagen fibrils in the

Tmem98 conditional knockout mice could be due to the intrinsically thin nature of mouse

sclera, perhaps highlighting the necessity of large animal models with similar eye size and anat-

omy to human eyes.

To understand the molecular mechanism of action, the investigators performed an unbi-

ased experiment and discovered MYRF as an interacting partner to TMEM98. This was an

extremely important finding, but again came as no surprise for two main reasons: first, muta-

tions of MYRF are known to cause autosomal dominant nanophthalmos in human patients

[9]; second, Garnai and colleagues had previously discovered interaction of the same two pro-

teins, prompting them to propose a new pathway for eye size regulation [9]. In addition, the

interaction between those two proteins was already shown in oligodendrocytes in mice [18].
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Because MYRF is a membrane-bound transcription factor activated by self-cleavage of the N

terminus and nuclear translocalization of the C terminal portion, there likely exists a negative

feedback loop between MYRF and TMEM98 (Fig 1). In fact, the study from Cross and col-

leagues bolsters that idea: TMEM98 inhibits the autoproteolytic cleavage of the N terminus of

MYRF. When TMEM98 is lacking in the RPE, MYRF is ectopically activated and translocated

to nuclei to activate transcription of downstream genes. It would be very interesting to know if

Myrf mutant mice could rescue the phenotypes observed in Tmem98 mutant mice. These

experiments would shed more light on the regulation of eye size and could ultimately suggest

therapeutic approaches to make the eye size just right–not too long, not too short.
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