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ABSTRACT
Soil enzymes and microorganisms are both important to maintaining good soil
quality and are also sensitive to changes in agricultural management. The individual
effects of tillage, straw incorporation and nitrogen (N) fertilization on soil enzymes
and microflora have been widely acknowledged, but their interactive effect remains
largely unknown. In a 5–year in–situ field study, effects of rotary (RTS) and plow
tillage (PTS) practices with straw incorporation combined with three N fertilization
levels (0 kg N ha–1, CK; 187 kg N ha–1, MN; 337 kg N ha–1, HN) on soil enzyme
activities and microbial communities were assessed. Our results showed that the
activities of β–glucosidase (βG), N–acetylglucosaminidase (NAG) and acid
phosphatase (APH) were improved in RTS+MN. The bacterial and fungal
abundances in RTS+MN and RTS+HN were 1.27–27.51 times higher than those in
other treatment groups. However, the bacterial and fungal alpha diversities were
enhanced in PTS+MN and PTS+CK compared with other treatments, respectively.
Proteobacteria and Basidiomycota were the predominant phylum for the respective
bacterial and fungal communities. Moreover, significant interactive effects were
found in the fungal community composition, but only minor impacts were observed
on the bacterial community composition. Soil water content and penetration
resistance contributed more to the soil enzyme activity and microbial community
than other soil properties investigated, whereas there was a significant positive
correlation between βG and APH activities and microbial abundance. These findings
can provide new insights into tillage with straw incorporation and N fertilization on
maize cultivation in northeast China.
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INTRODUCTION
Soil microorganisms are important participants in assessing agricultural soil quality
and ecosystem function through their integral and unique roles in mediating the
decomposition of soil organic matter and the cycling of nutrients (Essel et al., 2019;
Wang et al., 2020a). Soil enzymes catalyze the chemical reactions during the degradation
processes of microorganisms leading to the subsequent release of nutrients into the soil
(Li et al., 2019; Zhao et al., 2016a). Therefore, evaluating the relationships among the soil
environment factors, enzyme activities, and microbial community is a critical step in
developing sustainable agriculture.

Returning crop straw to fields is a sustainable approach that provides nutrients for crop
growth and a carbon (C) source for soil microbe reproduction in agricultural systems
(Li et al., 2019). This method has been proven to increase microbial biomass and enzyme
activity compared with removing the crop straw (Staley, 1999; Sarker et al., 2019).
Furthermore, the location of the straw incorporated into the soil is determined through
tillage practices, which changes the physicochemical properties in soil and affects the soil
residue degradation processes (Yang et al., 2016; Sarker et al., 2019). For example,
rotary tillage employed for straw incorporation would further break the residues and
mix them more thoroughly with soil, giving the straw easy contact with the surface soil
and allowing it to quickly decompose (Helgason et al., 2014). Plow tillage for straw
incorporation breaks the plow pan layers and buries the straw 25.0–30.0 cm deep (Mu
et al., 2016). Deep plowing enhances precipitation interception and soil ventilation
conditions, which is beneficial for microbial growth in deeper soils as well as increased
enzyme activity to enhance the cycling of soil nutrients (Schneider et al., 2017; Essel et al.,
2019). When straw is incorporated into the soil, bacteria decompose the most and
aerobic microorganisms become predominant (Nicolardot et al., 2007; Xia et al., 2020).
Existing studies on soil microbial diversity and community composition affected by
conventional rotary and plow tillage practices do not evaluate the impact of straw
incorporation in northeast China.

The application of nitrogen (N) fertilizer to agroecosystems usually increases soil
organic matter, available nutrients, and thus improves crop yields (Zhao et al., 2016b).
However, the excessive use of mineral N fertilizer can decrease the soil cation exchange
capacity and pH (Russell, Laird & Mallarino, 2006; Cai et al., 2015), which can cause a
variety of environmental problems such as groundwater contamination by nitrate leaching
(De Paz & Ramos, 2004) and serious greenhouse gas emissions (Ma et al., 2010; Huang
et al., 2017). The responses of soil microbial diversity and community structure to
different durations and amounts of N application have been reported across a series of
agroecosystems (Zeng et al., 2016; Yu et al., 2019). For example, N addition strongly
reduces total microbial biomass and soil microbial activity (Ramirez, Craine & Fierer,
2012; Yu et al., 2019), and the relative abundance of copiotrophic microbial groups are
also enhanced by N addition, whereas the amount of oligotrophic microbial groups
decreases with N fertilization (Ramirez, Craine & Fierer, 2012; Li et al., 2019). Due to a
higher C/N ratio of crop straw, such as maize straw, relative to the soil microbial biomass,
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N availability affects the microbial decomposition of crop straw (Zang, Wang & Kuzyakov,
2016; Li et al., 2017a). The effect of soil mineral N levels on crop straw and soil organic
matter (SOM) decomposition varies depending on the levels of N applied and on the
microbial community structure of the soil (Treseder, 2008; Kuzyakov & Xu, 2013).
However, the interactive effects of tillage with straw incorporation and N fertilizer on soil
microbial diversity and community composition are still not fully understood, so we
sought to bridge this knowledge gap.

Northeast China is one of the major areas of agricultural production, with the region’s
total maize yield accounting for approximately 30% of the nation’s total maize production
(Liu et al., 2012). Maize straw production in this region totaled 72.3 million tons in
2014 accounting for 36.3% of the national yield (Li et al., 2017b). Promoting the
incorporation of straw back into the field as fertilizer could decrease the use of chemical
fertilizer and the burden of air pollution in this region (Yin et al., 2018). In this study, we
established a field experiment consisting of rotary tillage and plow tillage for straw
incorporation with three levels of N fertilization. The objectives were: (a) to evaluate the
effect of tillage with straw incorporation and N levels on soil environment factors and
enzyme activities; (b) to compare the responses of microbial abundance, diversity and
community composition to the combined effects of tillage practices with straw
incorporation and different N application levels; and (c) to explore the relationships
between soil microbial communities, enzyme activities and environmental factors in
northeast China for spring maize production.

MATERIALS AND METHODS
Site description
This in–situ field experiment was done in 2015 in Tieling City (42�49′N, 124�16′E),
Liaoning Province, China. Maize is the dominant crop in this area and is harvested once
per year. The climate in this area is subtropical arid with a mean annual temperature of
20.9 �C and average precipitation of 543.0 mm during the spring maize growth period
(from the beginning of May to the end of September). Before the field experiment started
in April 2015, the basic soil chemical properties of the top 0–20 cm soil layer were:
15.7 g kg–1 of soil organic matter (SOM), 1.2 g kg–1 of total nitrogen (TN), 25.7 mg kg–1 of
available phosphorus (AP), 109.3 mg kg–1 of available potassium (AK) and pH of 5.64.

Experimental design
This field experiment was performed using a split–plot design with three replicates. Rotary
(RTS) and plow (PTS) tillage with straw incorporation were applied to the main plots.
The three N fertilization levels were: 0 kg N ha–1 (control, CK), 187 kg N ha–1 (medium N
application, MN) and 337 kg N ha–1 (high N application, HN) and were applied to the
subplots. We designed five different nitrogen fertilizer gradients including 0, 112, 187, 262
and 337 kg N ha−1, it has been found in previous studies that maize grain yield would not
increase significantly when N application more than 187 kg N ha−1 (Sui et al., 2020).
Therefore, we chose 0, 187 and 337 kg N ha−1 in this research, represently. The main plot
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size was 28.8 m × 10 m and each subplot was 9.6 m × 10 m with the field plots arranged as
shown in Fig. 1.

After the maize harvest every year, maize straw was chopped into segments 5–10 cm in
length. For RTS treatment, a rotary tiller mixed the soil twice to incorporate maize straw
into the 0–15 cm soil layer. For PTS treatment, the soil was inverted with a plow tiller to
bury the maize straw beneath the 30 cm soil layer. Basal fertilizer with 90 kg P2O5 ha

–1

(Superphosphate) and 90 kg K2O ha–1 (potassium chloride) was used when the maize was
planted. The N fertilizer (urea) was applied as split doses: 1/3 of the total N was basal
fertilizer and the remainder was jointing fertilizer. Spring maize (Zea mays L, Zhengdan
958) was manually sown in early May and harvested at the end of September. Maize was
planted at a density of 67,500 ha–1 with 60 cm interspaces.

Soil sampling and analysis of soil physicochemical properties
Soil samples were collected from the upper 30 cm of the soil at the maize jointing stage
(June 2019). Five soil cores were randomly taken from three sampling sites in each plot and
mixed to obtain three representative samples for each treatment. A portion of the soil
sample was air–dried for soil property analysis. Subsamples were passed through a 2 mm
sieve and stored at 4 �C and –80 �C for enzyme activity and molecular analyses,
respectively.

Soil bulk density (BD) was measured using the the core ring method (Blake & Hartage,
1986). Soil water content (SWC) was determined by oven drying to a constant mass at
105 �C. Soil pH was assessed with a PHSJ–3F digital pH meter. The penetration resistance
(PR) was measured using the SC900 (Field Scout, Portland, OR, USA). SOC and TN
were determined using an elemental analyzer (EA 3000, Turin, Italy). Total phosphorus
(TP) and total potassium (TK) were assessed by digestion and then spectrophotometer
detection and flame photometer detection (Olsen, Sommers & Page, 1982). Nitrate

Figure 1 A schematic diagram of the experiment design and field arrangement.
Full-size DOI: 10.7717/peerj.13462/fig-1
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(NO–
3–N) and ammonium (NHþ

4 –N) were extracted with 2 M KCl for 1 h and determined
colorimetrically using a Smart Chem 200 auto discrete analyzer according to the method
described by Joseph & Henry (2008). AP and AK were determined using the sodium
bicarbonate Olsen method (Nafiu, 2006) and the flame photometric method (Motsara &
Roy, 2008), respectively.

Soil enzyme activities
Soil β–glucosidase (βG), N–acetylglucosaminidase (NAG), leucine aminopeptidase (LAP)
and acid phosphatase (APH) activities were measured based on the method used by Saiya-
Cork, Sinsabaugh & Zak (2002). We conducted assays using 96–well black microplates
with eight replicate wells per sample, and the analysis also involved a blank, a negative
control, and a quench standard. The microplates were incubated at 20 �C for 4 h in the
dark. Fluorescence values were read by the Synergy H4 Hybrid Reader (SynergyH4 BioTek,
Winooski, VT, USA) using a microplate fluorometer with 365 nm excitation and 450 nm
emission filters. After accounting for negative controls and quenching, activities were
expressed in units of nmol g–1 h–1.

DNA extraction, PCR amplification, and sequencing
The soil microbial DNA of each sample was extracted from 0.5 g frozen soil using a
PowerSoil DNA Isolation Kit (MOBIO Laboratories, Carlsbad, CA, USA) according to
the manufacturer’s instructions. The extracted DNA was checked on 1.2% agarose gel
and the DNA quality and concentration were evaluated using the NanoDrop 2000
Spectrophotometer (Thermo Scientific, Wilmington, DE, USA).

The primer pair 338F (5′–ACTCCTACGGGAGGCAGCA–3′) and 806R (5′–GGA
CTACHVGGGTWTCTAAT–3′) targeted the V3–V4 region of the bacterial 16S rRNA
gene (Wang et al., 2015). The ITS5F (5′–GGAAGTAAAAGTCGTA ACAAGG–3′) and
ITS2R primers (5′–GCTGCGTTCTTCATCGATGC–3′) (Duan et al., 2019) were used to
amplify the fungal internal transcribed spacer (ITS1) region. The PCR components
contained 5 ml reaction buffer (5×), 5 ml GC buffer (5×), 2 ml of 2.5 mmol L−1 dNTP, 1 ml of
10 mmol L−1 forward primer, 1 ml of 10 mmol L−1 reverse primer, 1 ml of DNA template,
9.75 ml of ddH2O and 0.25 ml of Q5 DNA polymerase (New England Biolabs, Beijing,
China). The PCR process consisted of a 5 min initial denaturation step at 98 �C, followed
by 25 or 28 cycles of 30 s at 98 �C, 30 s of annealing at 52 �C, and extension at 72 �C for
1 min, with a final extension at 72 �C for 5 min for bacteria and fungi, respectively.
The PCR products were checked on 2% agarose gel and further purified using the TruSeq
Nano DNA LT Library Prep Kit (Illumina, CA, USA). Subsequently, the purified
amplicons were sequenced (468 bp for bacteria and 280 bp for fungi) according to an
equimolar and paired–end method with the Illumina MiSeq platform (Majorbio
Bioinformatics Technology, Shanghai, China). The PCR products of the 16S rRNA and
ITS1 genes were used as a template for establishing the sequencing library using the
Illumina Miseq Platform.

The raw sequence data was processed using the QIIME2 bioinformatics software.
The very first step applied the DADA2 pipeline for de-noising and de-replicating of the
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paired-end sequences including chimera removal at the end (Callahan et al., 2016).
The gene sequencing of 16S rRNA resulted in a total of 1,290,394 sequence reads. After
filtering, 1,234,878 sequence reads remained, and 1,064,843 sequence reads remained after
the quality control step. The sequence reads from the gene sequencing of ITS1 totaled
1,016,644, with 969,667 and 950,213 sequence reads remaining after filtering and quality
control, respectively. Operational Taxonomic Units (OTUs) were clustered at a 97%
sequence identity cut–off using the QIIME software (Version 1.17). The effective
sequences obtained from pyrosequencing were compared with Greengenes 16S rRNA and
UNITE ITS gene database using NCBI’s BLASTN tool, and the species distribution
diagram was employed. The taxonomic classification of OTUs was based on the Ribosomal
Database Project classifier according to a 70% confidence threshold. The bacterial and
fungal alpha–diversity, including the richness estimator of the Chao1 index and the
diversity indices of Shannon index, were also analyzed.

Quantitative PCR (qPCR)
Real–time PCR amplification of the bacterial 16S rRNA and fungal ITS1 genes were
performed on the CFX96 (Bio–Rad, Hercules, CA, USA) using the AceQ qPCR SYBR
Green Master Mix (Jizhenbio, Shanghai, China). The reaction mixtures contained 7.5 ml
SYBR Green Mix (2×) for each primer and 1 ml of DNA extract as the template.
The amplification profile was 95 �C (5 min), followed by 40 cycles of 95 �C (10 s), 55 �C
(15 s), 75 �C (30 s), and 1 cycle of 95 �C (15 s), 60 �C (1 min), 95 �C (45 s) for bacteria and
fungi. Cycle threshold (Ct) values were determined with the Bio–Rad CFX Manager
software (Bio–Rad, Hercules, CA, USA). Standard curves were generated by serially
diluting plasmids, as described by Wang et al. (2020b). At the end of each PCR run, a
melting curve analysis was performed to evaluate the amplification specificity (Yu et al.,
2019). The amplification efficiency was 91.8% and 105.2% and R2 value was 0.991, 0.994
for the bacterial and fungal communities, respectively.

Statistical analysis
The differences between the effects of tillage with straw incorporation or N levels and their
interaction on soil properties, enzyme activities, alpha diversity indices and abundance of
bacterial and fungal were tested using two factor analysis of variance (ANOVA) and
Duncan’s multiple range Test with SPSS 23.0 (SPSS Inc. Chicago, IL, USA). A Spearman’s
correlation analysis was performed to reveal the relationships between soil properties,
enzyme activities, gene abundance and the bacterial and fungal alpha diversity indices.
The clustering of different samples and the microbial community structure was illustrated
by nonmetric multidimensional scaling (NMDS) as microbial beta diversity. Correlations
among the soil properties and microbial compositions were determined using a
redundancy analysis (RDA) in CANOCO 4.5. The figures were drawn in Origin 9.0. A p
value < 0.05 was considered statistically significant.
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RESULTS
Variations in the physicochemical properties of the soil and the
enzyme activities after tillage with straw incorporation and N
fertilization
Tillage with straw incorporation (Ts), N fertilization (N) and their interaction (Ts × N)
greatly affected soil properties and enzyme activities (Table 1). The addition of N
decreased soil pH in both RTS and PTS treatments. The SOC, TN, NO–

3–N and AP
contents under RTS treatment increased with N addition, and NHþ

4 –N, AK and TP
contents under PTS treatment were also greater with increasing N levels. However, SOC
and TN contents decreased in PTS treatment (Table 2 and Fig. 2). Averaged over all N
levels, SWC, BD, PR, SOC, TN, AP and AK contents of RTS treatment were higher than in
the PTS treatment, but pH, TP, TK, NO–

3–N and NHþ
4 –N contents under RTS were lower

compared to PTS (Table 2 and Fig. 2; p < 0.05).
As for soil enzyme activity, the activities of βG, NAG and APH were significantly

enhanced by N addition in RTS treatments (Fig. 3). However, compared with CK, MN

Table 1 The ANOVA F-values of the effects of tillage with straw incorporation and N fertilization on soil physicochemical properties, enzyme
activities, and bacterial and fungal gene abundance and diversity.

Varieties Properties Tillage with straw incorporation (Ts) N levels (N) Ts × N

Soil physicochemical properties pH 573.29*** 649.93*** 6.50*

Soil water content (SWC) 46.92*** 13.74** 4.38*

Soil bulk density (BD) 149.76*** 12.83** 3.58ns

Penetration resistance (PR) 103.65*** 11.02** 1.46ns

Soil organic carbon (SOC) 42.62*** 7.01* 24.21***

Total nitrogen (TN) 45.43*** 1.74ns 18.43***

Total phosphorus (TP) 31.15*** 38.95*** 36.18***

Total potassium (TK) 80.41*** 127.69*** 101.98***

Ammonium (NHþ
4 -N) 19.42** 6.79* 11.04**

Nitrate (NO�
3 -N) 166.59*** 119.36*** 64.66***

Available phosphorus (AP) 86.01*** 133.95*** 10.36**

Available potassium (AK) 900.00*** 694.78*** 190.33***

Enzyme actives β-glucosidase (βG) 196.52*** 142.51*** 71.46***

N-acetylglucosaminidase (NAG) 51.88*** 57.05*** 21.79***

Leucine aminopeptidase (LAP) 1.48ns 6.16* 1.01ns

Acid phosphatase (APH) 75.41*** 59.97*** 17.81***

Bacterial Bacterial gene copy numbers (BGCN) 249.42*** 1.64ns 25.64***

Bacterial Chao 1 index (BCI) 13.85** 0.30ns 2.65ns

Bacterial Shannon index (BSI) 17.05** 1.00ns 2.05ns

Fungal Fungal gene copy numbers (FGCN) 233.06*** 51.68*** 44.49***

Fungal Chao 1 index (FCI) 4.92* 10.85** 4.47*

Fungal Shannon index (FSI) 33.33*** 141.49*** 37.81***

Note:
Ns, no significant difference; One (*), two (**) and three (***) asterisks indicate a significant difference among treatments at p < 0.05, p < 0.01 and p < 0.001, respectively.
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increased the activity of βG, NAG and APH, while HN decreased the activity of βG and
NAG in PTS treatments. Moreover, RTS treatments led to significant increases in βG,
NAG and APH activity of 33.3%, 37.1% and 23.3%, respectively, but no remarkable
variation was observed for LAP compared with PTS treatments (p < 0.05). Furthermore,
the activities of βG, NAG, LAP and APH were positively related to soil AP and AK
contents, and negatively related to pH (Table 3). Meanwhile, the activity of βG, NAG and
APH were also positively associated with SWC, BD, PR, SOC and TN (p < 0.05).

Table 2 Soil properties under tillage with straw incorporation practices and N fertilization.

Treatment pH SWC (%) BD (g cm−3) PR (Mpa)

RTS CK 5.67 ± 0.01b 18.09 ± 0.07bc 1.39 ± 0.04b 397.64 ± 30.12b

MN 5.31 ± 0.02e 18.93 ± 0.25b 1.44 ± 0.04a 527.74 ± 29.88a

HN 5.13 ± 0.02f 20.41 ± 1.14a 1.41 ± 0.03ab 522.23 ± 58.95a

PTS CK 5.88 ± 0.03a 16.87 ± 0.14d 1.30 ± 0.05d 222.46 ± 46.29d

MN 5.44 ± 0.02d 17.82 ± 0.53cd 1.35 ± 0.04c 268.28 ± 24.96cd

HN 5.60 ± 0.04c 17.68 ± 0.09cd 1.28 ± 0.06d 324.54 ± 65.42bc

Note:
Rotary tillage with straw incorporation (RTS), Plow tillage with straw incorporation (PTS), 0 (CK), 187 (MN) and 337
(HN) kg N ha−1 applied. Soil water content (SWC), soil bulk density (BD), penetration resistance (PR). The values are
mean ± standard deviation (n = 3). Different letters indicate comparisons with significant difference (p < 0.05) between
treatments.

Figure 2 Changes in total soil nutrients (A) and available nutrients (B) after tillage with straw incorporation practices and N fertilization
levels. Different letters indicate significant differences (p < 0.05) between treatments. The values are mean ± standard deviation (n = 3). Soil
organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), total potassium (TK), nitrate (NO−

3 -N), ammonium (NHþ
4 -N), available

phosphorus (AP), and available potassium (AK). Rotary tillage with straw incorporation (RTS), Plow tillage with straw incorporation (PTS), 0 (CK),
187 (MN) and 337 (HN) kg N ha−1 applied. Full-size DOI: 10.7717/peerj.13462/fig-2
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Figure 3 Changes in soil enzyme activities after tillage with straw incorporation and N fertilization.
Different letters indicate significant differences (p < 0.05) between treatments. The values are mean ±
standard deviation (n = 3). β-glucosidase (βG), N-acetylglucosaminidase (NAG), leucine aminopeptidase
(LAP), acid phosphatase (APH). Rotary tillage with straw incorporation (RTS), Plow tillage with straw
incorporation (PTS), 0 (CK), 187 (MN) and 337 (HN) kg N ha−1 applied.

Full-size DOI: 10.7717/peerj.13462/fig-3

Table 3 Pearson’s correlation coefficients between enzyme activities and soil properties.

Soil properties βG NAG LAP APH

pH –0.818** –0.731** –0.531* –0.875**

SWC 0.616** 0.494* 0.242 0.607**

BD 0.803** 0.794** 0.349 0.783**

PR 0.614** 0.491* 0.228 0.657**

SOC 0.770** 0.805** –0.004 0.723**

TN 0.773** 0.749** –0.062 0.741**

TP 0.172 0.153 0.323 0.125

TK 0.171 0.231 0.438 0.114

NHþ
4 -N –0.293 –0.226 0.426 –0.199

NO�
3 -N 0.135 0.220 0.306 0.078

AP 0.900** 0.854** 0.599** 0.894**

AK 0.609** 0.563* 0.698** 0.685**

Note:
Soil water content (SWC), soil bulk density (BD), penetration resistance (PR), soil organic carbon (SOC), total nitrogen
(TN), total phosphorus (TP), total potassium (TK), ammonium (NHþ

4 –N), nitrate (NO
–
3–N), available phosphorus (AP),

available potassium (AK), β–glucosidase (βG), N–acetylglucosaminidase (NAG), leucine aminopeptidase (LAP), acid
phosphatase (APH). One (*) and two (**) asterisks indicate significant difference among treatments at p < 0.05 and
p < 0.01, respectively.
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Effect of tillage with straw incorporation and N fertilization on
microbial abundance
Ts and its interaction effect with N had significant effects on the bacterial and fungal gene
abundance of the soil (Table 1). N addition significantly increased bacterial (Fig. 4A) and
fungal (Fig. 4D) gene copy numbers in RTS treatments, however, for PTS treatments,
decreased trends were observed with N addition (Fig. 4A). Moreover, RTS treatments
increased bacterial (Fig. 4A) and fungal (Fig. 4D) gene copy numbers compared with PTS
treatments. The highest and lowest bacterial gene copy numbers (ranging from 3.0 × 105 to
2.5 × 106 copies g−1 soil) were detected in RTS+MN treatment and PTS+MN treatment,
respectively. The highest fungal gene copy number (1.5 × 106 copies per g−1 of soil) was in
RTS+HN treatment and the lowest (4.1 × 104 copies per g−1 of soil) was in PTS+MN
treatment.

Figure 4 Changes in soil microbial (bacterial and fungal) abundance (gene copy numbers) and alpha diversity (Chao 1 and Shannon index)
after tillage with straw incorporation and N fertilization.Different letters indicate significant differences (p < 0.05) between treatments. The values
are mean ± standard deviation (n = 3). Rotary tillage with straw incorporation (RTS), plow tillage with straw incorporation (PTS), 0 (CK), 187 (MN)
and 337 (HN) kg N ha−1 applied. Full-size DOI: 10.7717/peerj.13462/fig-4
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The Pearson’s correlation coefficients between soil properties and enzyme activities, as
well as microbial abundance, showed that the bacterial gene copy number was significantly
related to soil pH, SWC, BD, PR, SOC, TN, TP, TK, NHþ

4 –N, NO
–
3–N, βG, NAG and

APH (Fig. 5, p < 0.05). The fungal gene copy number was significantly related to soil pH,
SWC, BD, PR, SOC, TN, NHþ

4 –N, βG and APH (p < 0.05).

Effect of tillage with straw incorporation and N fertilization on
microbial diversity
Ts had a large influence on the soil bacterial and fungal alpha diversity, N and Ts × N
greatly affected soil fungal alpha diversity (Table 1). Overall, significant effects on Chao 1
and the Shannon index were found between treatments from both bacteria and fungi
(p < 0.05), but greater variations were obviously observed from the fungal diversity indices
compared to the response of bacteria on treatments (Figs. 4B, 4C, 4E, 4F). Moreover,
treatments of increasing N input markedly lessened the Shannon diversity index of fungi
compared with CK treatments with either RTS or PTS (Fig. 4F). Similar trends were also
seen in the Chao 1 index of fungi, but with slight variations among treatments.

The results of the Pearson’s correlation coefficient tests showed that the bacterial Chao 1
index was significantly related to SWC, PR, TP, TK, NHþ

4 –N and NO–
3–N (Fig. 5, p < 0.05).

Figure 5 Pearson’s correlation coefficients between the soil properties, enzyme activities and
microbial abundance and diversity. One asterisk (*) and two asterisks (**) indicate the correlation is
significant at the 0.05 and 0.01 level, respectively. Soil water content (SWC), soil bulk density (BD),
penetration resistance (PR), soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP), total
potassium (TK), nitrate (NO−

3 -N), ammonium (NHþ
4 -N), available phosphorus (AP), available potas-

sium (AK), β-glucosidase (βG), N-acetylglucosaminidase (NAG), leucine aminopeptidase (LAP), acid
phosphatase (APH), bacterial gene copy numbers (BGCN), bacterial Chao 1 index (BCI), bacterial
Shannon index (BSI), fungal gene copy numbers (FGCN), fungal Chao 1 index (FCI), fungal Shannon
index (FSI). Full-size DOI: 10.7717/peerj.13462/fig-5
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Similarly, the bacterial Shannon index was significantly related to pH, SWC, BD, PR,
SOC, TN, NHþ

4 –N, AP, AK, βG, NAG and APH (p < 0.05). However, the fungal Chao 1
index was significantly related to SWC, PR and TN (p < 0.05). Similarly, the fungal
Shannon index was significantly associated with pH, SWC, PR and TN (p < 0.05).

A nonmetric multidimensional scaling analysis (NMDS) reflecting microbial beta
diversity indicated that there was no significant changes in the number of bacteria
observed (Fig. 6). With respect to fungi, the diversities from RTS+MN, PTS+MN and
PTS+HN treatments were nearly the same, whereas the RTS+CK, RTS+HN and PTS+CK
treatments were greatly affected by Ts and N level treatments.

Effect of tillage with straw incorporation and N fertilization on
microbial composition
According to bacterial community composition, the dominant phyla (abundance >1%) across
all treatments were Proteobacteria, Actinobacteria, Acidobacteria, unclassified_Bacteria,
Bacteroidetes, Gemmatimonadetes, Chloroflexi and Patescibacteria, with contributions of
36.65%, 27.48%, 12.09%, 7.74%, 4.45%, 4.43%, 2.90% and 1.46%, respectively (Fig. 7A).
Among them, a relatively higher abundance of Proteobacteria, Acidobacteria, Chloroflexi and
Patescibacteria were observed under RTS treatments compared with PTS treatments.
In contrast, lower relative abundance of Actinobacteria and unclassified_Bacteria were
observed under RTS treatments relative to PTS treatments. Similarly, such trends of
taxonomic composition were observed at the class and order level as well (Tables S1 and S3).
Among all sequences, the dominant fungal phyla were Basidiomycota, Ascomycota,
unclassified_Fungi and Mortierellomycota, with average contributions of 63.32%, 29.23%,
2.81% and 2.02%, respectively (Fig. 7B). Among them, a relatively greater abundance of
Basidiomycota and smaller relative abundance of Ascomycota and Mortierellomycota were
present under RTS treatments compared to PTS treatments. Additionally, increasing levels of
N reduced the relative abundance of Ascomycota, unclassified_Fungi and Mortierellomycota,

Figure 6 Nonmetric multidimensional scaling analysis (NMDS) of changes in soil bacterial and
fungal beta diversity after tillage with straw incorporation and N fertilization levels. Rotary tillage
with straw incorporation (RTS), plow tillage with straw incorporation (PTS), 0 (CK), 187 (MN) and 337
(HN) kg N ha−1 applied. Full-size DOI: 10.7717/peerj.13462/fig-6
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but improved the relative abundance of Basidiomycota, compared with CK treatments.
Similar results between treatments were also observed at the class and order level of microbial
composition (Tables S2 and S4).

The bacterial and fungal taxa that responded to soil property changes at the phylum
taxonomic level are shown in Fig. 8. SWC, PR, BD, SOC, TN and AK were considerably
related to changes in Proteobacteria, Actinobacteria, Acidobacteria, unclassified_Bacteri
and Chloroflexi for bacterial phyla (Fig. 8A). Furthermore, soil properties such as the pH,
SWC and PR were considerably related to changes in the relative abundances of the fungal
phyla Basidiomycota, Ascomycota and Mortierellomycota (Fig. 8B).

DISCUSSION
Responses of soil properties and enzyme activities to tillage with
straw incorporation and N fertilization
Sustainable crop productivity is defined by the changes in soil physicochemical parameters
associated with soil quality (Karlen et al., 1997). Xue et al. (2015) reported that rotary
tillage with straw incorporation significantly increased surface layer (0–30 cm depth) SOC
and TN concentrations, which was also reflected in our study. AP and AK contents (Fig. 2)
were significantly higher and corresponded with SOC and TN concentration trends
compared with PTS treatments. These results indicated that the fields under RTS
treatments were rotated to 15 cm depth, thereby uniformly distributing the straw in the
0–15 cm soil layer. Straw was mixed into the topsoil, which accelerated straw
decomposition and SOC and TN immobilization (Dikgwatlhe et al., 2014; Helgason et al.,

Figure 7 Changes in soil microbial (bacterial and fungal) taxonomic composition at the phylum level after tillage with straw incorporation
and N fertilization levels. Rotary tillage with straw incorporation (RTS), Plow tillage with straw incorporation (PTS), 0 (CK), 187 (MN) and 337
(HN) kg N ha−1 applied. The groups accounting for 1% are shown, whereas those accounting for <1% are combined as Others.

Full-size DOI: 10.7717/peerj.13462/fig-7
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2014). Shallow tillage with straw improved soil microbial biomass and increased the
proportion of microbial biomass C in total SOC (Balota et al., 2003; Heinze, Rauber &
Joergensen, 2010). Furthermore, rotary tillage caused a plow pan layer and decreased SOM
decomposition at 15–30 cm soil depth (Kabiri, Raiesi & Ghazavi, 2016). However,
around the jointing stage of maize, the decomposition of straw and SOM released minerals,
which could be acquired by microorganisms, then mineralized to NHþ

4 or NO–
3 and were

likely utilized by crop roots (Kuzyakov & Xu, 2013). Thus, most of the N fertilization is
allocated to microorganisms shortly after N application or released from decomposing
straw (Kuzyakov & Xu, 2013; Li et al., 2017a). As a result, lower NHþ

4 –N and NO–
3–N

content and higher AP and AK content were found in RTS treatments. Conversely, straw
was buried into the 25–30 cm soil layers in PTS treatments, and the favorable soil
ventilation conditions and broken soil aggregates with acquired straw promoted SOM
decomposition and CO2 emissions in the 0–20 cm soil layer (Dong et al., 2008). Thus,
lower SOC and TN contents were found in PTS treatments. In addition, changes in SOC
and TN under different tillage treatments were affected by N levels in this study. SOC and
TN contents were enhanced with N addition in RTS treatments, whereas the opposite
results were observed in PTS treatments. This might be because N addition improved soil
labile SOC and TN pool in RTS and promoted native soil SOC and TN mineralization
in PTS (Sommer et al., 2011; Pu et al., 2019). Furthermore, a higher available nutrient
content was present with MN under both RTS and PTS treatments. These results reveal

Figure 8 Ordination plots of the results from the redundancy analysis (RDA) to identify the relationships between the microbial (bacterial and
fungal) taxa (blue arrows) and the soil properties (red arrows) at the phylum level. (A) The relationship between the soil bacterial taxa and the soil
properties; (B) the relationship between the soil fungal taxa and the soil properties. Bacterial taxa: Proteobacteria (Prot), Actinobacteria (Acti),
Acidobacteria (Acid), unclassified_Bacteria (uncl-B), Bacteroidetes (Bact), Gemmatimonadetes (Gemm), Chloroflexi (Chlo), Patescibacteria (Pate),
Verrucomicrobia (Verr). Fungal taxa: Basidiomycota (Basi), Ascomycota (Asco), unclassified_Fungi (uncl-F), Mortierellomycota (Mort). Soil prop-
erties: pH, soil water content (SWC), soil bulk density (BD), penetration resistance (PR), soil organic carbon (SOC), total nitrogen (TN), total
phosphorus (TP), total potassium (TK), nitrate (NO−

3 -N), ammonium (NHþ
4 -N), available phosphorus (AP), available potassium (AK).

Full-size DOI: 10.7717/peerj.13462/fig-8
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that MN application level could be considered as an optimal N application level and
contribute to soil microbial reproduction and nutrient supply.

Soil enzymes played a vital role in the cycling of soil nutrients in agroecosystems, and
soil enzyme activity could be used as an index of soil microbial activity (Zhao et al.,
2016a). Previous studies reported that the effect of shallow tillage with straw increased soil
enzyme activities in the 0–20 cm soil layer, including β–glucosidase, urease, phosphatase
and catalase activities (López-Garrido et al., 2014; Kabiri, Raiesi & Ghazavi, 2016).
Therefore, it is reasonable that significant improvements in soil βG, NAG and APH
activities were also observed in RTS treatments (Fig. 3), suggesting that straw mixed with
surface soil could enhance soil enzyme secretion, which is critical for straw decomposition
and SOC sequestration. Meanwhile, higher soil βG, NAG, LAP and APH activities were
shown at the MN application level. Therefore, the increase in soil available nutrient
contents with MN treatment appeared to be a consequence of higher soil enzyme activity
for nutrient cycling. Furthermore, our research displayed that the activities of four soil
enzymes were significantly correlated with the physical and chemical properties of soil
(Table 3). Higher soil enzyme activities corresponded to an increase in soil nutrient
accumulation (SOC, TN, AP and AK), which was likely due to positive feedback. Straw and
SOM contain sufficient substrates to stimulate the synthesis of these enzymes (Kabiri,
Raiesi & Ghazavi, 2016). There was also a positive relationship between soil enzyme
activities and physical properties (e.g., BD, PR and SWC). This suggests that tillage
practices changed the location of straw incorporation into soil and affected soil structure,
further regulating soil enzyme activities. In addition, there was a significant negative
correlation between soil enzyme activities and soil pH, which was consistent with Dick,
Rasmussen & Kerle (1988), who reported that long–term straw return practices and N
fertilizer addition altered the soil pH, catalytic efficiency and soil enzyme activities.

Responses of microbial abundance and diversity to tillage with straw
incorporation and N fertilization
Many believe that the incorporation of crop straw into soil might intensify SOM
mineralization. This effect is named the ‘priming effect’ and has been clearly shown at the
rhizosphere scale (Broadbent, 1947; Bingeman, Varner & Martin, 1953). In addition,
linking experiments with modeling has revealed that, shortly after the input of substrates,
the microbial turnover increases (termed the ‘apparent priming effect’), and only later does
the turnover of SOM change a significant extent (the real priming effect) (Blagodatsky
et al., 2010). Our results found that RTS treatments significantly increased the bacterial and
fungal gene copy numbers compared with PTS treatments (Figs. 4A, 4D). Moreover,
there were significant positive effects of SWC, BD, PR, SOC, TN, βG and APH on both
bacterial and fungal gene levels (Fig. 5). These results indicated that higher SWC, BD and
PR in RTS treatments were more incorporated into the soil and straw, which greatly
stimulated the increase of microbial abundance, leading to soil microbial communities
dominated by the fast–growing r–strategists (Chen et al., 2014). These microorganisms
could produce extracellular enzymes (such as βG, which was responsible for degrading
cellulose), facilitate the decomposition of crop straw, and increase the apparent priming
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effect and straw–derived CO2 emissions (Kabiri, Raiesi & Ghazavi, 2016; Chen et al.,
2014). Conversely, PTS treatments buried the straw beneath the plow layer and the
microbial communities in the topsoil hardly contacted the straw layers, leading to slow
growing K–strategists becoming the dominant soil microbes (Chen et al., 2014). These
microorganisms have advantages in utilizing recalcitrant organics and could elevate the
real priming effect and SOM–derived CO2 emissions, thus decreasing SOC and TN
content (Fontaine, Mariotti & Abbadie, 2003; Chen et al., 2014). Furthermore, there were
significant negative effects of NHþ

4 –N on bacterial and fungal gene abundance. These
results demonstrated that RTS decreased NHþ

4 –N due to microbial immobilization, and
thus intensified the competition for NHþ

4 –N between plants and microorganisms
(Kuzyakov & Xu, 2013; Li et al., 2017a). However, N addition significantly impacted the
growth of microbial communities under both Ts systems. Our results showed that higher
bacterial abundance under RTS treatments was found after MN treatment, while fungal
abundance significantly increased with N addition. These phenomena followed the
‘microbial stoichiometry’ theory (Hessen et al., 2004), which states that r–strategist
microorganisms would markedly enhance with N application, and thus accelerate the
degradation of the crop straw and improve SOC and TN content (Chen et al., 2014).
On the other hand, in this study, the bacterial gene abundance in PTS treatments decreased
with N addition, while fungal abundance was not significantly changed. These results are
explained by the ‘microbial N mining’ theory, which demonstrated that K–strategist
microorganisms multiply under low–N availability conditions (Moorhea & Sinsabaugh,
2006).

In this study, we observed that the Chao 1 and Shannon index of both bacteria and
fungi were significantly influenced by the Ts factor (Table 1). On average, there was a
relatively higher Chao 1 and Shannon index of both bacteria and fungi after PTS
treatments (3,548.3, 350.3, 10.4 and 4.9) than RTS treatments (3,230.5, 317.3, 10.1 and
4.3; Fig. 4). In addition, there were significant negative effects of SWC and PR on bacterial
and fungal alpha diversities (Fig. 5), indicating that PTS treatments might break the plow
pan layers and improve soil ventilation conditions, thus decreasing SWC and PR and
increasing microbial diversities (Schneider et al., 2017; Essel et al., 2019). Furthermore,
there was a negative correlation between bacterial and fungal diversities and soil pH
observed in our study, which was similar to observations from a previous investigation
(Zhou et al., 2016). However, N addition has different effects on the alpha diversities of
bacteria and fungi. Bacterial alpha diversities were slightly changed with N fertilization in
this study (Fig. 4), while all soil samples with N addition had lower fungal alpha diversities
and showed a trend towards a negative response to TN (Fig. 5), which was consistent
with the result that N fertilizer application reduced the diversity of fungi (Zhou et al., 2016).
They also suspected that the decrease in fungal diversities coincided with the inordinately
high concentrations of TN in ultra–rich soils. Moreover, soil microbial beta diversity
could represent the overall response of microbial community structure to treatments in this
study. Different treatments in this study changed different characteristics of bacteria and
fungi (Fig. 6); the fungi community compositions varied more than bacteria in response to
the combined treatment effects.
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Responses of microbial compositions to tillage with straw
incorporation and N fertilization
Bacteria and fungi represent overall soil biodiversity and dominate the essential soil
processes, so the soil nutrients content and structural traits of soil can be affected by
changing the bacterial and fungal community composition (Bastian et al., 2009). Due to
relatively high soil humidity and compact soil structure in RTS treatments, the amount
of readily available straw C and nutrients are abundant for soil microbial growth, thus
stimulating the growth of both the bacterial and fungal groups, including Proteobacteria,
Acidobacteria and Basidiomycota at the phylum level (Fig. 7), Alphaproteobacteria,
Actinobacteria, Acidobacteriia and Tremellomycetes at the class level (Tables S1, S2), and
Unclassified–alphaproteobacteria, Acidobacteriales and Cystofilobasidiales at the order
level (Tables S3, S4). Alphaproteobacteria is part of the copiotrophic bacterial group
(r–strategists), which are adapted to break down the straw into simpler compounds in the
early stages of decomposition (Li et al., 2019). It has been proposed that Acidobacteria,
Basidiomycota and their respective classes (Acidobacteriia and Tremellomycetes) and orders
(Acidobacteriales and Cystofilobasidiales) are oligotrophic microorganisms (K–strategists),
involved in the degradation of complex substrates (cellulose, hemicelluloses and lignin;
Bastian et al., 2009). It is also generally accepted that Actinobacteria contain both
r–strategists and K–strategists (Morrissey et al., 2016). These microbial taxonomic groups
colonize straw and then mineralize straw–derived C releasing CO2. In contrast, with the
heavily ventilated soil conditions after PTS treatments, there are higher taxonomic divisions
in Actinobacteria and Ascomycota at the phylum level (Fig. 7), Sordariomycetes at the
class level (Table S2), and Betaproteobacteriales and Sordariales at the order level (Tables S3,
S4). It is commonly believed that Ascomycota and its respective order, Sordariomycetes, and
class, Sordariales, are r–strategists, which might affect the decomposition of soil organic
matter (Xiong et al., 2014). Similarly, Actinobacteria and Betaproteobacteria have been
described as r–strategists (Morrissey et al., 2016) or K–strategists (Ishii et al., 2011), but
previous research observed an enrichment of such bacteria at the decomposition of complex
and recalcitrant substrates (Li et al., 2019). In general, these microbial communities
facilitated the mobilization of SOM, thus decreasing the SOC and TN content in this study.
These results warrant further study for more insights on the benefits of returning crop straw
to the field.

Fungal communities were markedly affected by N addition relative to bacterial
communities (Fig. 7). Basidiomycota and its corresponding classes and orders were
improved with N addition (Tables S2, S4), while the opposite results were observed in
Ascomycata and its corresponding classes and orders. During straw decomposition,
Basidiomycota played a role later in the degradation process with their ability to degrade
recalcitrant organic matter. Ascomycata might play a crucial part in the initial steps of
straw decomposition (Bastian et al., 2009). These results indicated that the combination of
tillage with straw and N fertilizer significantly increased K–strategist fungal groups, which
was beneficial for the degradation process of maize straw (Li et al., 2019).
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CONCLUSIONS
This study has shown the different impacts of tillage with straw incorporation and N levels
on soil enzyme activities and microbial communities from spring maize in northeast
China. Our results demonstrate that rotary tillage with straw incorporation significantly
increased soil enzyme activities and microbial (bacteria and fungi) abundance and
decreased alpha diversity compared to plow tillage with straw incorporation. Increasing N
input was not beneficial for fungal diversity, but a medium N application amount could
improve soil enzyme activities. Moreover, the fungal community composition varied
significantly relative to the community composition of bacteria in response to the
combined effects of tillage with straw incorporation and applied N levels. Additionally, soil
water content and penetration resistance played important roles in driving the soil
enzyme activity, microbial abundance and community composition. Overall, these results
suggest that rotary tillage with straw incorporation and medium N fertilizer application
were helpful for the short–term improvement of soil properties and soil microbes in
northeast China.
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