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Abstract

Development of multidrug resistance (MDR) is a continuous clinical challenge partially due

to the overexpression of P-glycoprotein (P-gp) for chronic myelogenous leukemia (CML)

patients. Herein, we evaluated the inhibitory potency of emodin, a natural anthraquinone

derivative isolated from Rheum palmatum L, on P-gp in P-gp positive K562/ADM cells. Com-

petition experiments combined with molecular docking analysis were utilized to investigate

the binding modes between emodin and binding sites of P-gp. Emodin reversed adriamycin

resistance in K562/ADM cells accompanied with the decrease of P-gp protein expression,

further increasing the uptake of rhodamine123 in both K562/ADM and Caco-2 cells, indicat-

ing the inhibition of P-gp efflux function. Moreover, when incubated with emodin under differ-

ent conditions where P-gp was inhibited, K562/ADM cells displayed increasing intracellular

uptake of emodin, suggesting that emodin may be the potential substrate of P-gp. Impor-

tantly, rhodamine 123 could increase the Kintrinsic (Ki) value of emodin linearly, whereas,

verapamil could not, implying that emodin competitively bound to the R site of P-gp and non-

competition existed between emodin and verapamil at the M site, in a good accordance with

the results of molecular docking that emodin bound to the R site of P-gp with higher affinity.

Based on our results, we suggest that emodin might be used to modulate P-gp function and

expression.

Introduction

Chronic myelogenous leukemia (CML) results from the neoplastic transformation of hae-

matopoietic stem cell. The hallmark genetic abnormality of CML is a t(9;22)(q34;q11) trans-

location named the "Philadelphia chromosome", which generates the BCR–ABL fusion gene

[1, 2]. In the past decades, development of specific TKIs such as imatinib (IM) revolution-

ized the treatment of CML, however, a significant number of patients develop drug resis-

tance, especially in late stages of the disease. The drug resistance mechanisms involve many
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factors, which are mainly divided into Bcr/abl-dependent and Bcr/abl-independent mecha-

nisms [3]. Among the latter is the MDR phenotype which is mostly associated with the over-

expression of P-glycoprotein (P-gp) [4]. P-gp, an ATP-binding cassette (ABC) membrane

transporter encoded by multidrug resistance 1 (MDR1), is commonly located at the plasma

membrane and has been demonstrated to function as an ATP-dependent efflux pump for

diverse naturally occurring hydrophobic anticancer drugs such as adriamycin [5]. As a con-

sequence of this, many anticancer regents could not accumulate in tumor cells efficiently to

reach the sufficient therapeutic concentrations and led to MDR [6]. Therefore, it is necessary

to develop P-gp inhibitors to modulate its pumping activity so as to circumvent P-gp medi-

ated MDR in CML.

Emodin (1, 3, 8-trihydroxy-6-methylanthra-quinone) (Fig 1), a natural anthraquinone

derivative isolated from Rheum palmatum L., has been reported to potentiate the anti-prolif-

eration of various chemotherapeutic agents [7]. It is demonstrated that emodin reverses

MDR in resistant HL-60/ADR cells [8], and emodin and AZT exhibit synergistic growth-

inhibitory effects in K562/ADM cells [9]. In addition, emodin is confirmed to be the inhibitor

of P-gp by inhibiting P-gp efflux function and protein expression in Caco-2 cells [10]. Subse-

quently, it is proposed that emodin is the potential substrate of P-gp and further hypothesized

that emodin inhibits the P-gp function by competitively binding to the transport sites [11].

However, it is unreported whether emodin could reverse the adriamycin resistance in K562/

ADM cells. Moreover, whether emodin is the inhibitor and substrate of P-gp is controversial

in different experimental conditions [11, 12]. Importantly, it has to be noted that the hypoth-

esis about the binding modes of emodin on P-gp by Li et al is only based on the molecular

docking analysis without accurate experimental data, and to date, the definite binding sites of

emodin on P-gp are not clear yet. Hence, more direct experimental data and more detailed

molecular docking analysis are urgently needed to illuminate the binding sites of emodin on

P-gp.

In this paper, we investigated the reversal effects of emodin in adriamycin resistant K562/

ADM cells and its inhibitory effects on P-gp protein expression as well as its efflux function.

Serial studies were performed aiming to clarify whether emodin is the substrate of P-gp and

the competition experiments combined with molecular docking analysis were also designed to

clarify the binding sites of emodin on P-gp.

Fig 1. Chemical structure of emodin (1,3,8-trihydroxy-6-methylanthraquinone).

https://doi.org/10.1371/journal.pone.0187971.g001
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Materials and methods

Chemicals and drugs

Verapamil, adriamycin, cyclosporine A, rhodamine 6G, chrysophanol and rhodamine123

were purchased from Biosharp (Nanjing, China). Emodin and 3-[4, 5-dimethyl thiazol-2-y]-2,

5-diphenyl terazolium bromide (MTT) were bought from Sigma-Aldrich (St. Louis, USA).

The BCA Protein Assay kit and RIPA lysis buffer were obtained from Beyotime (Beijing,

China). Enhanced chemiluminescence (ECL) detection kit was from Advansta (Menlo Park,

California, USA). The Annexin V Apoptosis Detection Kit APC and DAPI were available from

eBioscience (San Diego, CA). The Lipofectamine RNAiMAX Reagent was purchased from

Invitrogen Trading Co., Ltd (Shanghai, China).

Cell lines and cell culture

Human myelogenous myeloid leukemia (K562) cells and the P-gp overexpressing adriamycin-

resistant K562 cells (K562/ADM) were obtained from Institute of Hematology of Chinese

Academy of Medical Sciences (Tianjin, China). All CML cell lines were cultured in RPMI 1640

media (Thermo Fisher Scientific,Waltham, MA, USA) supplemented with 10% fetal bovine

serum (FBS) (Gibco BRL, Grand Island, NY, USA),100 U/ml of penicillin and 100 μg/ml of

streptomycin (Sigma, St. Louis, Mo, USA) at 37˚C in a humidified atmosphere of 5% CO2.

K562/ADM cells were cultured in the presence of 5 μg/ml adriamycin. Before the experiments,

adriamycin was withdrawn from the cells for two weeks.

The Caco-2 cell line (ATCC #HTB-37) was purchased from the American Type Culture

Collection. The Caco-2 cells were grown in Dulbecco’s modified Eagle’s medium (DMEM)

(Thermo Fisher Scientific, Waltham, MA, USA)supplemented with 10% FBS, 100 U/ml of

penicillin and 100 μg/ml of streptomycin at 37˚C in a humidified atmosphere of 5% CO2.

Cell cytotoxicity assay

To determine the dose-dependent and time-dependent cytotoxicity of emodin, 6×104 cells/

well of K562 and K562/ADM (cells grown in suspension) were seeded in 96-well plates. The

cytotoxicity was assessed using the conventional MTT assay as reported with minor modifica-

tion [13]. The emodin incubation time is 24, 48 or 72 h. Cell viability was calculated according

to the formula: viability% = (OD emodin treated cells − OD emodin medium control)/(OD

untreated cells − OD medium control)× 100%

For Caco-2 (cells grown in adherence), 2×104 cells/well were seeded in 96-well plates and

incubated for 24 h, then the MTT assay was carried out as described above.

Assay of the reversal efficacy

The potential of emodin to reverse MDR was evaluated by the MTT method in the K562/

ADM cell line. K562/ADM cells were seeded into 96-well plates (6 ×104 cells each well). Subse-

quently, adriamycin only or combinations with emodin (1–40 μM) or verapamil (10μM)

diluted in RPMI1640 were added. The cells were maintained at 37˚C in a humidified atmo-

sphere of 5% CO2 for 48 h, and the percentages of viable cells were evaluated by the MTT assay

and plotted against concentrations of the emodin to determine their half maximal inhibitory

concentration (IC50). The reversal fold (RF) values were calculated according to the following

formula: RF = IC50 of adriamycin alone/ IC50 of adriamycin combined with emodin. Each

assay was repeated thrice.
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Apoptosis assay

K562/ADM cells (1×106 cells/ml) were seeded in 6-well plates and treated with designated

doses of adriamycin, emodin or verapamil for 72 h. The cells were double-labeled with

Annexin V-APC and DAPI according to the manufacturer’s procedure. The cells were

detected in 2 h on BD FACScantoII flow cytometer (BD Biosciences, San Jose, CA). The data

were analyzed by FlowJo 7.6.2 software (Tree Star Inc., Ashland, OR). Triplicate experiments

were implemented for flow cytometry analysis.

Western blot analysis

P-gp antibody (sc-8313), secondary antibody (sc-2004), β-actin (sc-47778) were purchased

from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). After treatment with emodin and

adriamycin or siRNA transfection, cells were subjected to immuno-blot analysis and pro-

ceeded as previously reported [14]..

siRNA transfection

K562/ADM cells (5×105 cells/ml, 400 μl) were seeded in 24-well plates and transiently trans-

fected with siRNA against P-gp (5’-GCGAAGCAGUGGUUCAGGUTT-3’) for 48 h at the final

concentration of 100 nM using Lipofectamine RNAiMAX Reagent according to the manufac-

turer’s protocol. The negative control (5’-UUCUCCGAACGUGUCACGUTT-3’) in the trans-

fection was used as a control siRNA. The protein expressions were detected by western blot

analysis and cells with P-gp knock down were seeded for the emodin uptake assays.

LC-MS /MS analysis

Liquid chromatography was performed on a Shimadzu LC-2010CHT series chromatographic

system (Shimadzu, Nakagyo-ku, Kyoto, Japan) consisting of an on-line solvent degasser, a

quaternary gradient pump, an auto-sampler and a column oven. Quantification was achieved

with a Thermo-Finnigan TSQ Quantum Ultra AM LC–MS/MS system equipped with an

electrospray ionization (ESI) source (Thermo-Finnigan, San Jose, CA, USA). Data acquisition

was performed with Xcalibur 1.4 software (Thermo-Finnigan, San Jose, CA, USA). Chro-

matographic separation was performed on Agilent TC-C18 (5 μm, 150 mm × 4.6 mm) at 35˚C.

The mobile phases were water with 0.1% formic acid—acetonitrile (25:75, v/v) for emodin,

ammonium formate—formic acid buffer (5 mM ammonium formate and 0.1% formic acid)-

methanol (5:95, v/v) for rhodamine 123 at a flow rate of 1.0 ml/min. The auto-sampler was

adjusted to 4˚C for optimal stability. Negative ion detection mode was selected for emodin and

positive one for rhodamine 123 both with the drying gas temperature of 350˚C, an ion spray

voltage of 3.5 kV at a flow-rate of 10 L/min. Quantification was performed by selected reaction

monitoring (SRM) mode with precursor-product ion transitions: m/z 268.3! 224.9 for

emodin, m/z 252.9! 224.9 for chrysophanol (internal standard); m/z 345.2! 285.2 and

443.3! 415.2 for rhodamine123 and rhodamine 6G (internal standard) with the collision

energies of 44 eV and 35 eV respectively.

Intracellular accumulation of rhodamine 123

The effect of emodin on the intracellular accumulation of rhodamine 123 was determined in

Caco-2 cells and P-gp overexpressing K562/ADM cells. Generally, the cells treated with vari-

ous concentrations of emodin (Caco-2, 10–200 μM; K562/ADM, 0.25–20 μM) and rhodamine

123 (3 μM) were incubated at 37˚C for 120 min. P-gp inhibitor verapamil (200 μM) was also

used as a positive control. Then cells were washed in PBS and lysed in 100 μl of 8 M carbamide

Emodin and P-glycoprotein
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solution by sonication. After high speed centrifugation, the cell lysate was spiked with 10 μl

internal standard (rhodamine 6G) and 50 μl acetonitrile. After fully vortex-mixed, the mixture

was centrifuged at 12,000 rpm for 10 min, and the supernatant was analyzed by LC-MS/MS.

Cell protein was quantitated by BCA Protein Assay Kit.

Intracellular uptake of emodin

To further evaluate whether emodin was the substrate of P-gp, the intracellular uptake of emo-

din was determined in K562 and K562/ADM cells under different condition where P-gp activ-

ity was regulated. In detail, the K562 and K562/ADM cells with or without P-gp knockdown

were treated with 5 μM emodin alone or combined with classic P-gp inhibitors (verapamil and

cyclosporin A) and incubated at 37 or 4˚C for 120 min. The cells were collected and the intra-

cellular amount of emodin was determined by LC-MS/MS as described above. Cell protein

was quantitated by BCA Protein Assay Kit.

Interaction between emodin and rhodamine 123 or verapamil

To investigate the interaction between emodin and rhodamine 123, K562/ADM cells were

coadministrated with different concentrations of emodin (0.25, 0.5, 1, 2.5, 5, 20 μM) with

required concentration of rhodamine 123 (1, 3, 10 μM) for 120 min at 37˚C. Similarly, to

investigate the interaction between emodin and verapamil, 20 μl rhodamine 123 was added to

K562/ADM cells to give a final concentration of 1 μM, and different concentrations of emodin

(0.25, 0.5, 1, 2.5, 5, 20 μM) with required concentration of verapamil (0.5, 1, 2 μM) were coad-

ministrated for 120 min at 37˚C. The intracellular concentrations of rhodamine 123 were

determined by LC-MS/MS method described above. Cell protein was quantitated by BCA Pro-

tein Assay Kit.

Calculation of Kintrinsic (Ki)

The value of Ki is the derived value of the Michaelis parameter standing for the effectiveness of

chemosensitiszers on counteracting the effect of P-gp on the accumulation of the substrates of

P-gp [6]. The value of Ki was calculated by equation:

Di ¼ D0 þ ðD1 � D0Þ � C=ðKi � D1=D0 þ CÞ;

where Di, is the intracellular amount of probe (μg/mg protein) when the concentration of

inhibitor was C (μg/ml). D1 and D0 represent intracellular amount of probe when the concen-

tration of the inhibitors is infinity and infinitesimal. The value of Ki increases when two che-

mosensitizers coadministrated to inhibit P-gp compete with each other while if

noncompetition exists, the value of Ki would remain unchanged [15].

Docking studies

The binding modes of emodin with P-gp were further evaluated by molecular docking analy-

sis, which was made with a refined murine P-gp derived from the original crystallographic

data (PDB: 3G60), comprising 87% overall sequence identity and nearly 100% identity within

the DBP with the exception of mSer725/hAla729 between mouse and human P-gp [16]. The

molecular docking analysis was conducted as previously reported with minor modification

[17]. In MOE, the R- and M- binding sites of P-gp were defined according to the amino resi-

dues mapped by Ferreria et al [18].

Emodin and P-glycoprotein
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Statistical analysis

All experiments were performed in triplicate. Data were presented as mean ± S.D. To test sta-

tistically significant differences among multiple treatments for a given parameter, one-way

analysis of variance (ANOVA) was performed. A p-value smaller than 0.05 was considered as

significant.

Results

Cytotoxicity of emodin

To choose appropriate doses of emodin to add into the cells, the cytotoxic activity of emodin

on K562, K562/ADM and Caco-2 cells was evaluated by MTT assay. Emodin inhibited the via-

bility of human leukemia K562 cells and its adriamycin-resistant K562/ADM cells in a dose-

dependent and time-dependent manner (Fig 2A and 2B). Emodin of concentrations under

20 μM had a very weak cytotoxicity (cell viability>80%) to K562 and K562/ADM cells. To

minimize the effect of emodin itself on K562 and K562/ADM cells growth, emodin concentra-

tions from 0 to 20 μM were selected for the following experiments. In Caco-2 cells, emodin of

50, 100 and 200 μM and verapamil of 200 μM showed no significant cytotoxicity (Fig 2C) and

these concentrations were selected for the following experiments.

Emodin enhanced the sensitivity of K562/ADM cells to adriamycin

The reversing effect of emodin on adriamycin resistance was tested in K562/ADM cells.

Verapamil, a well-known P-gp inhibitor, was used as a positive control. As shown in Table 1,

emodin enhanced the sensitivity of K562/ADM cells to adriamycin by 1.60, 2.47, 2.96, 4.91,

9.30-fold at the concentrations of 1, 5, 10, 20, 40 μM, respectively, in a dose-dependent man-

ner. The RF value of 10 μM verapamil was 2.66, which was comparable to that of emodin in

the same dose, hinting the similar MDR-reversal activity between emodin and verapamil.

To further ascertain the effect of emodin on the adriamycin-induced cytotoxicity in K562/

ADM cells, an apoptosis assay was executed in K562/ADM cells treated with adriamycin alone

or adriamycin in combination with emodin. Considering the maximal fluorescence spectrum

of emodin was between 515 nm and 525 nm, cells were double-stained with annexin V-APC

and DAPI in order to avoid fluorescence interference of emodin [19, 20]. As shown in Fig 3,

compared with the control group, K562/ADM cells treated with 10, 20 μM emodin or 10 μM

adriamycin showed apparent apoptosis with cell apoptosis rates of 7.35%, 10.78% and 11%,

respectively. In contrast, treatment of 10 or 20 μM emodin or 10 μM verapamil combined with

10 μM adriamycin brought about a clearly increased cells number in the right areas with the

apoptosis percents of 29.3%, 38.3%, 35.6%, respectively (p< 0.01). Therefore, it was demon-

strated that emodin could enhance adriamycin-induced apoptosis in K562/ADM cells in a

dose-dependent manner with similar effect of verapamil.

Emodin suppressed expression of P-gp protein in K562/ADM cells

Since the reversal of P-gp mediated MDR might be associated with the alteration of protein

expression, emodin was examined for the potential to modulate the P-gp protein expression in

K562/ADM cells. As illustrated in Fig 4A and 4B, the treatment of 20 or 40 μM emodin alone

or combined with 10 μM adriamycin exerted significant downregulation of P-gp protein

expression compared with the control group and the group treated with 10 μM adriamycin

alone. These results suggested that emodin suppressed P-gp protein expression in human

K562/ADM cells, which might contribute to its MDR reversal activity.
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Fig 2. Effect of emodin on the viability of K562, K562/ADM cells and Caco-2 cells. The K562 (A), K562

/ADM (B) cells were treated with emodin at different doses for 24, 48 or 72 h, Caco-2 (C) cells for 48 h

respectively. Data were expressed as means ± standard deviations (S.D.) of three independent experiments.

https://doi.org/10.1371/journal.pone.0187971.g002
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Emodin increased intracellular accumulation of rhodamine 123

The decrease of intracellular drug concentrations, a result of the efflux of anticancer drugs in

tumor cells, is believed to be a common cause of P-gp-mediated MDR. To investigate whether

emodin could inhibit the efflux function of P-gp, the intracellular accumulation of rhodamine

123, a classical substrate of P-gp, was measured in the Caco-2 and K562/ADM cells by LC-MS/

MS. As shown in Fig 5, emodin concentration dependently increased the intracellular accumu-

lation of rhodamine 123 in Caco-2 and K562/ADM cells. In Caco-2 cells, emodin exhibited a

similar efficiency on the rhodamine 123 accumulation at 20 μM compared with 200 μM verap-

amil (Fig 5A). These data demonstrated that emodin could inhibit the P-gp efflux function to

modulate MDR in K562/ADM cells as well as in Caco-2 cells.

Table 1. Effect of emodin on adriamycin cytotoxicity in K562/ADM cells.

Treatment K562/ADM

IC50 (μM) RF

Adriamycin 10.97 -

Adriamycin + 1 μM Emodin 6.34 ± 0.12** 1.6

Adriamycin + 5 μM Emodin 4.01 ± 0.15** 2.47

Adriamycin + 10 μM Emodin 3.20 ± 0.22** 2.96

Adriamycin + 20 μM Emodin 1.53 ± 0.28** 4.91

Adriamycin + 40 μM Emodin 0.99 ± 0.17** 9.30

Adriamycin + 10 μM Verapamil 3.05 ± 0.25** 2.66

Effect of emodin on the sensitivity of K562/ADM cells toward adriamycin were examined by MTT method as

described above. The cells were treated with various concentrations of adriamycin in the presence of

emodin for 48 h. The IC50 values for adriamycin were calculated. The results were presented as means ± S.

D. from three independent experiments.

*p< 0.05,

** P<0.01. RF = IC50 of adriamycin / IC50 of adriamycin and emodin in combination.

https://doi.org/10.1371/journal.pone.0187971.t001

Fig 3. Effect of emodin on adriamycin-induced apoptosis in K562/ADM cells measured by annexin V-APC/DAPI double-staining assay. The

K562/ADM cells were treated with adriamycin (10 μM), emodin (10 and 20 μM) or verapamil (10 μM) alone;, or adriamycin (10 μM) combined with

emodin (10 and 20 μM) or verapamil (10 μM) for 48 h. Then cells were stained with annexin V-APC and DAPI before being subjected to flow cytometry

for analysis. Histogram represented the means ± S.D. values for apoptotic cells obtained from three independent experiments. *P < 0.05; ** P < 0.01.

https://doi.org/10.1371/journal.pone.0187971.g003
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Emodin inhibited P-gp function as a substrate

To clarify whether emodin is a substrate of P-gp, the intracellular amount of emodin was

determined by LC-MS/MS in sensitive K562 and resistant K562/ADM cells under different

conditions where the P-gp function were inhibited. The data showed the amount of emodin in

K562 cells was higher than that in the K562/ADM cells at 37˚C (p< 0.01, Fig 6A). In addition,

compared with K562/ADM incubated at 37˚C, K562/ADM cells incubated at 4˚C, at which

the P-gp efflux activity was inactivated, showed higher intracellular emodin concentrations

(p< 0.01). On the contrary, insensitive K562 cells, the intracellular amount of emodin was

nearly at a similar level in K562 cells incubated at 37˚C and K562/ADM incubated at 4˚C

(Fig 6A). Furthermore, two classic P-gp inhibitors, verapamil and cyclosporine A could effec-

tively increase the accumulation of emodin in K562/ADM cells (Fig 6B). Besides, the RNAi

technology was also introduced to down-regulate the P-gp protein level in K562/ADM cells

successfully (Fig 6C). Obviously, the concentration of emodin was much higher in the P-gp

Fig 4. Effect of emodin on expression of P-gp protein in K562/ADM cells. The cells were incubated in absence or presence of

adriamycin or emodin for 48 h. The protein expression was determined by western blot analysis (A) and the relative expression of P-

gp was calculated (B). *p< 0.05; **p< 0.01.

https://doi.org/10.1371/journal.pone.0187971.g004
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knockdown K562/ADM cells compared with that of the controls, while comparable with that

in K562 cells (p< 0.01, Fig 6D). All the above results provided reliable evidence that emodin

was most likely the substrate of P-gp and it could be effuxed by P-gp.

Emodin and rhodamine 123 shared the common binding sites in K562/

ADM cells

Previous studies confirmed that the classic substrate of P-gp, rhodamine 123, acts with P-gp

on the binding site called R [21 22]. Since the present study showed that emodin was a sub-

strate of P-gp, the competition style between emodin and rhodamine 123 was investigated to

see whether the two substrates shared the same binding sites when pumped out by P-gp. The

Fig 5. Effects of emodin on rhodamine 123 uptake in Caco-2 and K562/ADM cells. The concentration-

dependent effects of emodin on rhodamine 123 accumulation in Caco-2 (A) and K562/ADM (B) cells were

investigated, respectively at final concentrations of 10, 50, 100, 200 μM; 0.25, 0.5, 1, 2.5, 5, 20 μM. Data were

represented as the mean ± S.D. of three independent experiments. *p < 0.05; ** p< 0.01.

https://doi.org/10.1371/journal.pone.0187971.g005
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three curves in Fig 7A showed the increase of rhodamine 123 accumulation brought about by

increasing variable substrate emodin at the range of 0 to 20 μM, while the fixed substrate

rhodamine 123 was set at 1, 3 and 10 μM. From each curve, the values of Ki for emodin were

computed and plotted against the rhodamine 123 concentrations. The Ki clearly increased

consistently with the increasing rhodamine 123 concentrations (Fig 7B), indicating competi-

tion interactions between emodin and rhodamine 123. Thus, based on the data obtained, it

could be concluded that emodin and rhodamine 123 may share the same R binding site as P-

gp substrates.

Emodin displayed noncompetition with verapamil

Apart from rhodamine 123 as a substrate probe, the classic inhibitor verapamil which binds to

P-gp at the binding sites called the M site was also used as a fixed modulator to verify the bind-

ing sites of emodin on P-gp [18, 23]. The calculated Ki values were obtained for emodin and

plotted against the verapamil concentrations. As shown in Fig 7D, the Ki of emodin was almost

Fig 6. Intracellular amount of emodin in K562/ADM and K562 cells. Both cells were incubated with various concentrations of emodin (0.1–10 μM)

at 37˚C or 4˚C for 2 h (A); K562/ADM cells were co-treated with 0, 1, 3, 10 μM of verapamil or 0, 2, 4, 10 μM of cyclosporine A and emodin (5 μM) for 2

h (B). RNAi of P-gp (C). A-: K562/ADM cells transfected with negative control siRNA; AL: K562/ADM cells transfected with Lipofectamine RNAiMAX

Reagent; AP: K562/ADM cells transfected with P-gp siRNA; A: K562/ADM cells; S: K562 cells. After transfection with P-gp siRNA, intracellular

amount of emodin (5 μM) was enhanced compared with other control groups (D). Data were represented as the mean ± S.D. of three independent

experiments. *P < 0.05; ** P < 0.01.

https://doi.org/10.1371/journal.pone.0187971.g006
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unchanged with increasing verapamil concentrations, confirming that emodin and verapamil

were non-competitors or else very weakly competitive. Consequently, it is reasonable to con-

clude that verapamil increased the accumulation of emodin in a non-competition style at the

M site (Fig 6B).

Molecular docking analysis

To further verify the detailed modes of emodin interacting with P-gp on R- and M- binding

sites, molecular docking was performed among emodin and the X-ray crystal structure of P-

gp. According to the molecular docking results, emodin bound to the R binding site with the

binding free energy of -28.612 kcal/mol (Table 2). As shown in Table 2, Fig 8A and 8A’, at R

binding site, emodin formed seven H-bonds with residues Ala 830, Ala714, Gln 769, Asn

717, Gln 986, and provided two strong π-π interactions with Phe 990 and Phe 833. In con-

trast, it bound to the M site with a less negative binding free energy of -21.437 kcal/mol (the

less negative binding free energy of emodin with P-gp binding sites means the less easier

interaction with P-gp) than that of R site and formed only one π-π interaction with Phe 728

as well as two H-bonds with Ser 975 and Tyr 303 at the M site (Table 2, Fig 8B and 8B’). Com-

bined, emodin could bind to the R binding site of P-gp with a much higher affinity than to

the M site.

Fig 7. Effect of emodin combined with various amount of rhodamine 123 or verapamil on inhibition of

P-gp. K562/ADM cells were incubated with emodin (0.25–20 μM), together with 1, 3, 10 μM of rhodamine

123, respectively (A); The Ki of emodin was calculated and plotted against the concentrations of rhodamine

123 (B). K562/ADM cells were incubated with emodin (0.25–20 μM) with 0.5, 1, 2 μM of verapamil and 1 μM of

rhodamine 123 (C). The calculated values of Ki for emodin were plotted against the concentrations of

verapamil (D). Data were represented as the mean ± S.D of three independent experiments.

https://doi.org/10.1371/journal.pone.0187971.g007
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Discussion

Multidrug resistance (MDR) is an obstacle to successful cancer chemotherapy [24], one of the

main mechanisms being the overexpression of P-gp. Similarly, P-gp mediated MDR in CML is

also a key factor that leads to the failure of imatinib-based chemotherapy [25, 26]. K562/ADM,

a P-gp-overexpressed adriamycin resistant CML cell line, shows resistance not only to adria-

mycin itself, but also to a broad range of anticancer reagents, including vincristine, etoposide

and the one line CML chemotherapeutic drug imatinib [27, 28]. Consequently, the K562/

ADM cell line was selected to evaluate the reversal effects of emodin on MDR in CML and to

investigate whether emodin is the substrate of P-gp as well as its binding sites to P-gp.

In our study, emodin significantly reversed the adriamycin resistance in K562/ADM cells,

which was also confirmed by the apoptosis assay. The results of western blot analysis revealed

that emodin alone or combined with adriamycin concentration dependently decreased the P-

gp protein level. Meanwhile, emodin increased the intracellular amount of rhodamine 123 in

Table 2. Free binding energies and residues identified to interact with emodin dependent on the bind-

ing sites.

Binding

sites

Free binding energy

(kJ/mol)

Amino residues

R site -28.612 Ala 830, Ala714, Phe 833, Gln 769, Asn 717, Phe 766, Ser 989, Gln

986, Phe 990

M site -21.437 Ser 975; Val 978; Phe 728; Ser 725; Tyr 303; Phe 724; Tyr 306; Phe

332; Phe 71; Leu 971; Phe 974,

https://doi.org/10.1371/journal.pone.0187971.t002

Fig 8. Docking views of emodin with P-gp. The three-dimensional diagrams show the interactions and

preferred conformation of emodin on the R site (A) and the M site (B) with labeled amino residues which

significantly contributed for binding free energy. Emodin is colored in yellow. The hydrogen-bond is

represented in purple dotted line. The π-π interaction is represented in green dotted lines. The two-

dimensional diagrams display the interactions of emodin to the amino acid residues at the emodin on the R

site (A’) and the M site (B’) of P-gp.

https://doi.org/10.1371/journal.pone.0187971.g008
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both Caco-2 and K562/ADM cells. In other words, emodin is an effective inhibitor of P-gp by

indirect mechanisms related to the decrease of P-gp protein expression or directly binding to

P-gp and then weakening the P-gp function, coincident with previous reports [9, 10, 29]. In

addition, the LC-MS/MS method was established for the assay of rhodamine 123 and emodin

in K562/ADM and Caco-2 cells owing to the strong fluorescence interference between emodin

and rhodamine 123 as a result of the maximum emission wavelength of the two compounds

both being around 525 nm [19, 30].

As for whether emodin was the substrate of P-gp, it was previously proposed that emodin

was the potential substrate of P-gp [11]. Differently, Zhang et al reported that emodin was not

the substrate of P-gp based on a one way intestinal perfusion rat model [12]. Herein, to clarify

the discrepancy, many methods were applied to inhibit the function of P-gp. RNAi, one of the

most powerful tool to suppress the protein expression, was introduced to down regulate the P-

gp protein level in K562/ADM cells. Besides, at 4˚C, the P-gp efflux function will be weaken

[31, 32], thus the K562/ADM cells were incubated both at 37 and 4˚C. Moreover, the classical

P-gp inhibitors verapamil and cyclosporine A were also used. As shown, when the P-gp pro-

tein level was decreased or the P-gp effux function was inhibited, the intracellular amount of

emodin remarkably increased, which proved that P-gp mediated the efflux of emodin in K562/

ADM cells. In conclusion, consistent with Li et al [11], it was more comprehensively and rea-

sonably recognized that emodin was a substrate for P-gp.

In successive years, many efforts were paid to elucidate the presence of multiple drug bind-

ing sites on P-gp. Safa et al have reported by kinetic analysis that vinblastine and cyclosporin A

competitively interact competitively with a common binding site on P-gp whereas while they

noncompetitively interact with the azidopine-binding site, which indicate there are more than

one binding site of P-gp [33,34]. Later, a more complete view believed that three drug binding

sites existed on P-gp [21]. More recently, after the the publication in 2009 of the murine crys-

tallographic structure that clarified P-gp’s structural properties, three putative drug-binding

sites were hereby characterized by means of molecular docking, two of which are named as R

(Rhodamine) site and M (modulatory) site [18,23,35]. Previous studies indicated that rhoda-

mine 123 and photoaffinity analogs of verapamil could both bind specifically to p-gp [36, 37].

Competition studies confirmed that rhodamine 123 bound to the R site preferentially [21],

while molecular docking studies show that verapamil binds to the M site as a modulator [18].

The clarification of explicit binding sites of emodin on P-gp will provide vital information for

chemical modification to develop emodin into an effective P-gp inhibitor, thereby, the investi-

gation of the emodin binding sites is of important priority. Hence, in the present study, com-

petition studies were performed between emodin and rhodamine 123 or verapamil for the first

time. The Ki values of emodin were calculated according to the formula created by Stein’s

group based on the classical Michaelis-Menten scheme, which successfully described the com-

petitive, noncompetitive, and cooperative interactions between several P-gp modulators [15].

A competitor binds to the same site when it competes with other substrates and the value of Ki

increased linearly with the concentration of other substrates, while if noncompetition exists,

the Ki value will be unchanged [6, 15]. Meaningfully, the Ki of emodin increased linearly with

the concentrations of rhodamine 123 while remained nearly unchanged with increasing verap-

amil concentrations, which indicated emodin competitively bound to P-gp with rhodamine

123 at the R site, defined as a transport site, whereas no or else very weak competition existed

between verapamil and emodin. These results were consistent with previous studies that most

modulators displayed their MDR reversal activities by competitively binding to the transport

site [38]. Nevertheless, it was still uncertain whether emodin could bind to the M site.

Molecular docking analysis helped to provide much more information on the interaction

modes of emodin with P-gp drug binding sites. According to amino residues mapped by
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Ferreia et al [18], the R- and M- sites of P-gp were defined as the docking cavity of emodin for

the first time. Then, the binding free energies and the interactions of emodin at R- and M-

sites were obtained to evaluate the binding affinity of emodin. Generally, the more negative

binding free energy means the easier interaction with each other. The docking studies showed

that emodin bound to the R site with a more negative binding free energy than to the M site

and formed more Pi interactions and H bonds at R site, which were in reasonable agreement

with the observed results of competition experiments that emodin competed with rhodamine

123 (R site) rather than verapamil (M site) at P-gp. Partially coincident with our results, it was

reported by Li et al that emodin had four potential Pi interactions with Phe974 and Phe728 in

the internal cavity of P-gp [11]. As to the differences between the docking studies, it had to be

noted that our docking cavity was refined in the R- and M- sites at P-gp respectively while Li

et al performed the docking study in the whole internal cavity of P-gp. In comparison, our

docking studies provided more accurate binding modes of emodin at the R- and M- sites.

Additionally, due to the lack of a high resolution crystal structure of human P-gp, all molecular

docking analysis was based on the crystal structure of mouse P-gp [35] or different homology

model structures of human P-glycoprotein [39–41], therefore it could be understood that in

some cases the docking data showed a great amount of controversy. All in all, the binding sits

of emodin on P-gp needs further confirmation in future studies.

Conclusion

In summary, the present study verified that emodin reversed P-gp mediated MDR in K562/

ADM cells through the inhibition of P-gp protein expression and its drug efflux function as a

substrate. Our data firstly provided direct evidence that there is competitive interaction among

emodin and rhodamine 123 at the R site of P-gp, whereas emodin noncompetitively bound to

the M site with verapamil. Taken together, we suggest that emodin might be used to modulate

P-gp function and expression. In future, more detailed pharmacokinetic and pharmacody-

namics studies are needed to reveal the underlying molecular mechanisms of emodin in the

reversal of P-gp mediated MDR.
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