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Innate lymphoid cells (ILCs) have emerged as a new family of immune cells with
crucial functions in innate and adaptive immunity. ILC subsets mirror the cytokine and
transcriptional profile of CD4+ T helper (TH) cell subsets. Hence, group 1 (ILC1), group
2 (ILC2), and group 3 (ILC3) ILCs can be distinguished by the production of TH1, TH2,
and TH17-type cytokines, respectively. Cytokine release by ILCs not only shapes early
innate immunity but can also orchestrate TH immune responses to microbial or allergen
exposure. Recent studies have identified an unexpected effector function of ILCs as
antigen presenting cells. Both ILC2s and ILC3s are able to process and present foreign
antigens (Ags) via major histocompatibility complex class II, and to induce cognate
CD4+ T cell responses. In addition, Ag-stimulated T cells promote ILC activation and
effector functions indicating a reciprocal interaction between the adaptive and innate
immune system. A fundamental puzzle in ILC function is how ILC/T cell interactions
promote host protection and prevent autoimmune diseases. Furthermore, the way in
which microenvironmental and inflammatory signals determine the outcome of ILC/T cell
immune responses in various tissues is not yet understood. This review focuses on recent
advances in understanding the mechanisms that coordinate the collaboration between
ILCs and T cells under homeostatic and inflammatory conditions. We also discuss the
potential roles of T cells and other immune cells to regulate ILC functions and to maintain
homeostasis in mucosal tissues.
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Introduction

Adaptive immune responses are tightly controlled by the selection of the T and B cell receptor
repertoire and by transcriptional networks regulating commitment, expansion, and contraction
of the responses. Upon cognate antigen (Ag)–peptide–major histocompatibility complex (MHC)
recognition Ag-specific T helper (TH) cells proliferate and differentiate into effector TH cell subsets
with distinguishable cytokine profiles. Almost 30 years ago, interferon (IFN)-γ-secreting TH1 cells
were discriminated from TH2 cells, whose cytokine profile includes interleukin (IL)-4, IL-5, and
IL-13 (1). Additional subsets of TH cells, such as TH17 (2), regulatory T (Treg) cells (3), TH9 (4),
T follicular helper cells (5), and more recently granulocyte-macrophage colony-stimulating factor
(GM-CSF) producing TH cells (6–8), were described.

In the past 5 years, new subsets of innate immune cells have emerged as a first line of defense at
mucosal barriers. Like conventional natural killer (cNK) cells, they belong to the lymphoid lineage
and develop from common lymphoid progenitor (CLP) cells but unlike T and B cells, they lack
rearranged Ag-receptors. Hence, they were termed innate lymphoid cells (ILCs). ILCs are found in
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various tissues including mucosa, lymphoid tissue, liver, skin, and
fat. They depend on the expression of the common cytokine recep-
tor γ chain (γc chain) and the transcriptional repressor inhibitor
of DNA binding 2 (ID2) for their development (9–11). The factors
involved in regulating different stages of ILC commitment from
CLPs have been recently reviewed in Ref. (12). ILCs resemble TH
cells in their developmental requirements, transcriptional regu-
lation, and in their cytokine secretion pattern. Thus, they were
classified into three groups, which are able to immediately react to
microbial and inflammatory challenge with cytokine production
thereby limiting pathogen spread and tissue injury (9). Group 1
ILCs consist of cNK cells and so-called helper ILC1s; both secrete
the TH1-type cytokine IFN-γ. Group 2 ILCs are characterized by
the production of TH2-type cytokines IL-4, IL-5, and/or IL-13.
Group 3 ILCs include fetal lymphoid tissue-inducer (LTi) cells,
as well as adult ILC3s either expressing the natural cytotoxicity
receptor (NCR) NKp46 (NCR+ILC3s) or lacking this molecule
(NCR−ILC3s). Cells within this group produce the TH17-type
cytokines, IL-17 and/or IL-22 (9). The classification into ILC1,
2, and 3 is sometimes unhelpfully restrictive because ILCs have
the potential to modulate their phenotypic and transcriptional
signature upon activation and inflammation. When exposed to
inflammatory conditions, NCR−ILC3s can produce IFNγ (13,
14), and NCR+ILC3s are able to convert into IFNγ-producing
ILC1-like cells (15, 16). Moreover, in multiple sclerosis patients,
blockade of CD25 (IL-2Rα) induces phenotypic changes of ILC3s
toward cNK cells (17). Additional evidence for heterogeneity
among ILC subsets comes from clonal analysis in humans demon-
strating that the spectrum of cytokines produced by ILC3s is
diverse (18) and in some cases, both ILC2 and ILC3 cytokines
are produced (19). Finally, environmental factors, such as retinoic
acid, short chain fatty acids, vitamins, aryl hydrocarbon receptor
(AHR) ligands, stearyl sulfate, and probably bacterial metabolites,
can shape ILC phenotypes and functions (20–24). Together, these
data now provide convincing evidence that, similar to TH cells,
ILCs have a degree of plasticity in their cytokine profile. As for TH
cell commitment, cytokine-mediated conditioning, as well as epi-
genetic (25, 26) and transcriptional regulation (27) may account
for changes of ILC subset-determining transcription factors and
cytokines.

The biological relevance of ILCs is based on their capacity to
sense environmental and inflammatory signals, and to respond
with the secretion of cytokines important for immune defense,
allergic reactions, and tissue repair. Recent data provide additional
evidence that ILCs can condition T cell responses, either through
cytokines, direct cell–cell contact, or through effects on accessory
cells. This review will focus on the effects of ILC–T cell inter-
actions for maintaining immune homeostasis. We will highlight
major questions on how ILCs may cooperate with T cells thereby
regulating T cell responses.

Induction and Skewing of T Cell Responses

Dendritic cells (DCs) are professional Ag-presenting cells (APCs)
known for their robust capacity to activate naïve T cells and to
modulate innate and adaptive immune responses (28). Distinct
DC subsets have decisive roles in engaging pathways responsible

for skewing the type of effector TH cell response (29, 30). More-
over, DCs can suppress immune responses in order to maintain
peripheral immune homeostasis and tolerance to self-Ags (31).
As a key step in shaping the type of TH cell response, cytokines
secreted by innate immune cells including APCs can account for
the expression of TH subset-specific transcription factors (32). For
example, IL-12 activates signal transducer and activator of tran-
scription (STAT)-4 and induces the expression of the T-box tran-
scription factor T-bet, which is critical for TH1 cell commitment
(33, 34). T-bet expression and TH1 cell differentiation are further
promoted by IL-2 (35). IL-4 induces STAT6 activation, which
enhances Gata3 expression thereby initiating differentiation into
TH2 cell lineage (36). Additionally, IL-2 signaling followed by
STAT5 activation plays a crucial role in TH2 cell commitment
by the induction of IL-4 transcription (37, 38). IL-6 signal-
ing through STAT3, together with transforming growth factor
(TGF)-β, induces retinoic acid-related orphan receptor (ROR)-
γt expression and consequently the differentiation of pathogenic
TH17 cells from naïve TH cells (39). A key issue in establishing
immune homeostasis is the induction of Treg cells that prevent
immunopathology by maintaining tolerance. In addition, active
suppression of inappropriate T cell responses is mediated by
the induction of immune-regulatory cytokines, such as IL-10
(40), the expression of inhibitory receptors including cytotoxic T-
lymphocyte-associated protein (CTLA)-4 or programed cell death
(PD)-1 or the lack of co-stimulation and bystander signals. Alto-
gether, cytokines and activating or inhibiting receptors of innate
immune cells are pivotal for generating and conditioning TH cell
responses.

Group 1 ILCs

The group 1 ILCs comprised cNK cells and helper ILC1s. Both
subsets secrete IFNγ and express the transcription factor T-bet
(15, 16, 41–43). The expression of Eomesodermin (Eomes) is
considered as a key factor for distinguishing cNK cells (Eomes+)
from ILC1s (Eomes−) (43). However, splenic NK1.1+ CD127
(IL-7Rα)+ cells, which are in some studies referred to as ILC1s,
express considerable levels of Eomes (44). Nfil3, another tran-
scription factor, has been attributed a role in specifying cNK cells
versus ILC1s. Although important for the development of all ILC
lineages, studies of Nfil3-deficient mice (42, 45, 46) revealed that
cNK cells have greater dependency on Nfil3 than ILC1s (47, 48).
This is probably due to direct transcriptional control of Eomes
expression by Nfil3 (49). Thus, NK cells resident in the salivary
gland appear to be a prototype of ILC1s, as they also do not
require Nfil3 for their development (48). Cells defined as ILC1s
in the intestinal epithelium in humans and mice express the
epithelial homing marker CD103 and readily produce IFNγ upon
stimulation (41). CD103+ intraepithelial ILC1s, similar to cNK
cells, express Eomes and T-bet, and are Nfil3-dependent, but in
contrast to cNK cells do not require IL-15 for their development.
Phenotypically, cNK cells express DX5 and, unlike most ILC1s,
lack Trail or CD127 expression (43, 47, 48). Some ILC1-like cells
derive from RORγt+ ILC3s by a process that is accompanied by
the loss of RORγt expression and the upregulation of T-bet in
both mice and humans (15, 16, 50). Future research on T-bet+
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IFNγ-secreting subsets will help to clarify the developmental and
functional relationship of group 1 ILCs.

Group 1 ILC–T Cell Interactions

Unlike group 2 and group 3 ILCs, murine cNK cells and ILC1s
do not express MHC class II (MHC II) molecules, thus being
incapable of direct Ag-dependent interaction with CD4+ TH cells
(Table 1). Nevertheless, in recent years, a number of reports
described new aspects of a direct crosstalk between T and
cNK/ILC1 cells. Several studies defined a regulatory role for
cNK cells in controlling T cell-dependent immune responses by
direct cytotoxic activity toward CD4+ and CD8+ T cells (51–
53), as well as toward APCs required for T cell priming. Two
recent publications demonstrated that type 1 IFN confer the
resistance to cNK cell-mediated lysis of activated CD8+ T cells
(54, 55). CD8+ T cells isolated from IFN-α-receptor-1-deficient
(Ifnar1−/−) mice were preferentially targeted by cNK cells result-
ing in the elimination of cytotoxic CD8+ T cells in response to
viral infection through a perforin-dependent pathway. Another
study proposed a role for NKp46 in limiting graft versus host

disease (GVHD) (56), although it has remained obscure whether
NKp46 is required for the direct killing of host-reactive T cells,
or if it operates via targeting of accessory APCs. More recently,
Schuster et al. reported that cNKcells specifically limit the number
of virus-reactive CD4+ T cells in a model of chronic murine
cytomegalovirus (MCMV) infection in the salivary gland (57).
Intriguingly, this process is dependent on the TNF-superfamily
ligand Trail, which is, in addition to NKp46 also expressed by
ILC1s. This suggests a possible contribution of ILC1s to the pro-
cesses described above. Additionally, in humans, activated cNK
cells could be shown to positively regulate CD4+ TH cell activity
(58). cNK cells stimulated by cytokines or through activating
receptors were shown to upregulate the co-stimulatory molecules,
OX40L andmembers of B7 family (CD80/CD86). Interactionwith
such cNK cells led to augmented IFNγ production and enhanced
T cell receptor-dependent proliferation of autologous CD4+ TH
cells.

Conventional natural killer/ILC1 and T cell crosstalk operates
in a reverse direction as well. Two studies showed that Treg cells
play an important role in keeping cNK cell activity in check (59,
60). Gasteiger et al. demonstrated that upon depletion of Treg

TABLE 1 | Phenotype of mouse and human ILCs.

Mouse Human

cNK ILC1 ILC2 ILC3 cNK ILC1 ILC2 ILC3

SURFACE MOLECULES
CD90 + + + + ND ND ND ND
CD127 −a + + + lo −a + +

CD117 lo + +c + lo subl ± +

NK1.1 + + − lo + + + +o

NKp46/NKp44 + + + sub sub +a − subo

CD25 − −b + + + − + +o

ST-2 − − +d − − − + −
Sca-1 − − +e lo ND ND ND ND
TRANSCRIPTION FACTORS

ID2 + + + + ND ND ND +o

Gata3 − lo + lo lo lo + lo
RORγt − − lo + − lo lo +

T-bet + + − sub + + − −
Eomes + − − − + − − −
NFIL3 + + + + ND ND ND ND
MOLECULES INVOLVED IN ILC–T CELL INTERACTION/ILC ACTIVATION

CD69 lo lo −f ind, +h + subm subm subm, p

MHC class II − − + +i ind, +k ND +n +

CD80 − − indg indj ind, +k ND +n ND
CD86 − − indg indj ind, +k ND +n ND
CD40 − − − indj − ND ND ND
CD30L − lo − + ind, +k ND ND ND
OX40L − − − + ind, +k ND ND +

ICOS − − + ND ind, +k ND + +

ICOSL − lo + ND ND ND + lo
RANKL − − ND + − ND ND +

TRAIL − + ND lo ind, +k ND ND ND

+ indicates expression; − indicates no expression; lo indicates low expression; sub indicates expression on a subset; ind indicates activation-induced expression; ND indicates
expression is not determined.
aExpressed in certain tissues; b Intestinal ILC1s are CD25+ (44); cSkin ILC2s are CD117− (62); dSmall intestinal ILC2s are ST-2− (73); eLiver ILC2s are Sca-1− (71); fFat-associated
lymphoid cluster-derived and intestinal ILC2s are CD69+ (69); gExpressed onmediastinal LN-derived ILC2s from IL-33 treatedmice (93); hExpressed on splenic ILC3s under inflammatory
conditions (130); constitutively expressed on intestinal ILC3s (44); iExpression increased on splenic ILC3s under inflammatory conditions (130); jExpressed on splenic, but not intestinal
ILC3s under inflammatory conditions (130, 133); kExpressed after activation (159, 160); expressed at steady state (161); lMolecule expressed on certain subsets (16); mHuman peripheral
blood ILCs heterogeneously express CD69 (162); nHuman ILC2s express CD80/CD86 and HLA-DR (93); oHuman ILC population resembling ILC3s (122); pHuman splenic ILCs are
CD69+ (122).
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cells, cNK cells become hyper-responsive towardMHC I-deficient
target cells that are recognized via missing-self mechanism. This
was attributed to the increased availability of IL-2 produced by
activated CD4+ T cells (59). Another report demonstrated in a
genetic model of type 1 diabetes that the acute removal of Treg
cells leads to the accumulation of activated cNK cells in pancreatic
islets (60). On the contrary, in this experimental setting, depletion
of Treg cells did not result in an increase of IL-2 secretion by
CD4+ TH cells, but more likely increased the availability of IL-
2 to cNK cells by decreasing IL-2 consumption by Treg cells.
Interestingly, the accumulating cNK cells express CD127 (61) and
might therefore constitute an “ILC1-like” subset. These studies
provide the first example of Treg cell-dependent control of cNK
cell and possibly ILC1 activity. Given the importance of IL-2 for
the expansion of other ILC subsets (45, 62), Treg cells might also
be involved in controlling their activity. Taken together, these
findings illustrate the reciprocal immuno-regulatory relationship
between group 1 ILCs and T cells.

Group 2 ILCs

ILC2s are the most homogenous ILC subset albeit with a specific
phenotypic signature in the lung and intestine (44, 63). They
express CD127, CD90.2 (Thy1), various levels of CD25, and
the IL-33-receptor subunit ST2 (Table 1). The development of
ILC2s depends on the transcription factors, ROR-α, Gata3, and
T cell factor (TCF)-1 (64–67). ILC2s in both humans and mice
secrete TH2-type cytokines IL-4, IL-5, and/or IL-13 in response
to IL-9, IL-25, IL-33, and thymic stromal lymphopoietin (TSLP),
as well as during pulmonary inflammation or infection with
Nippostrongylus brasiliensis, a helminth controlled by TH2-type
cytokine responses (63, 68–78). In addition to ILC2s, another cell
type, the multipotent progenitor type 2 (MPPtype2) is described.
MPPtype2 cells exhibit similar phenotypic and functional charac-
teristics with ILC2s (79), but do not produce TH2-type cytokines
in response to IL-33 (80). The release of TH2-type cytokines
by ILC2s is not only involved in N. brasiliensis expulsion (81)
but can also trigger airway inflammation and allergic responses
in humans (82–84). Together, ILC2s share developmental and
inducible cytokine signatures with TH2 cells suggesting a role in
type 2 immune responses.

Group 2 ILC–T Cell Interactions

Type 2 immune responses are severely impaired in IL-4-receptor-
α-deficient (Il4Rα−/−) and IL-4-deficient (Il4−/−) mice indicat-
ing that IL-4 has a role in TH2 cell differentiation (85, 86). Further,
the accumulation of TH2 cells afterN. brasiliensis/ovalbumin chal-
lenge is dramatically reduced in IL-4 and IL-13-double-deficient
(Il4−/−Il13−/−) mice as compared to wild type (WT) mice (87).
TH2 cell differentiation is most likely initiated by innate immune
cells, which become activated in the early phase of immune
responses. Beside basophils and mast cells (88–90), it is now
well established that ILC2s can secrete IL-4 suggesting a role
for these cells in the induction of TH2 cell differentiation and
type 2 immune responses. Indeed, several reports provide evi-
dence that ILC2s and CD4+ T cells cooperate at multiple levels

(91–97). Inmice, which either have dramatically reduced numbers
or a complete lack of ILC2s, the generation of type 2 immune
responses uponN. brasiliensis infection, challengewith house dust
mite Ag or with protease-allergen papain is impaired indicating
a contribution of ILC2s to TH2 cell responses (91, 93, 95). The
addition of ILC2s to cultures of naïve CD4+ T cells promotes the
differentiation into TH2 cells, while inhibiting the differentiation
into TH1 cells even in the presence of IL-12, a cytokine that drives
TH1 differentiation (33, 34, 92). In line with this finding, type 2
cytokines are not detectable when TH cells are co-cultured with
ILC2s unable to secrete IL-4 (94).On the other hand, in vivodiffer-
entiation of TH1/TH17 cells occurs independently of ILC2s, since
mice, which lack ILC2s, show normal responses when exposed to
Saccharopolyspora rectivirgula, a bacterium inducing TH1/TH17
inflammatory responses (95). Together, there is evidence that
ILC2-derived IL-4 contributes to type 2 cytokine production of TH
cells, although an IL-4-independent pathway for ILC2-driven type
2 immune responses may also occur (91). Beside the direct effect
of ILC2s on TH2 differentiation, TH2-type cytokines secreted by
ILC2s can also affect CD4+ T cells indirectly via DCs. Evidence
for this comes from the finding that ILC2-derived IL-13 promotes
migration of DCs into lung-draining lymph nodes (LNs), where
activated DCs induce the differentiation of CD4+ T cells into TH2
cells (91).

Interleukin-33, a pro-inflammatory cytokine expressed by a
variety of cell types can trigger the generation of inducible reg-
ulatory T (iTreg) cells (98) and the activation of ILC2s to produce
type 2 cytokines and amphiregulin (AREG). AREG is an epithe-
lial growth factor that promotes restoration of airway epithelial
integrity following influenza virus-induced damage (63). Impor-
tantly, analysis of ILC2-depleted, influenza virus-infected mice
revealed a strong reduction inAREGmRNAsuggesting that ILC2s
are the main source of AREG under such inflammatory condi-
tions. In other inflammatory models, mast cells were thought to
be the major source of AREG and importantly, in these models,
AREG was found to be critical for efficient Treg cell function (99).
In view of their abundance in the skin, lung, and colon, their
strong responsiveness to IL-33, and early inflammatory signals,
AREG-secreting ILC2s may have a function in tissue repair and
likely also in triggering Treg cell responses.

Another mechanism through which ILC2s have an influence
on CD4+ TH cells is by their ability to serve as APCs. Co-
stimulatory signals via OX40 are crucial for effector/memory T
cell responses and for initiating TH2 differentiation (100, 101).
OX40-ligand (OX40L) is detectable on ILC2s, and the production
of TH2-type cytokines in ILC2-T cell co-cultures is significantly
inhibited when anti-OX40L antibodies (Abs) are added, suggest-
ing that ILC2s promote TH2-responses via OX40/OX40L inter-
actions (94). Further evidence for cell–cell interactions between
ILC2s and CD4+ T cells is provided by the finding that human
and mouse ILC2s express both inducible T cell co-stimulator
(ICOS) and ICOS-ligand (ICOSL) (70, 102), a co-stimulatory
receptor/ligand pair known for its function for survival, prolif-
eration, and cytokine secretion of TH cell subsets (103). More-
over, ILC2s can process Ags and present peptides on MHC II.
They express the co-stimulatory molecules, CD80 and CD86, and
induce proliferation of TH2 cells, albeit to a lesser extent than
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professional APCs (92, 93). Interestingly, the expression of MHC
II is higher on LN-, spleen-, and Peyer’s Patch (PP)-derived ILC2s
than on peritoneal lavage-, bronchoalveolar lavage-, and lung-
derived ILC2s. Therefore, lymphoid tissue-specific factors might
be responsible for sustained MHC II expression.

Together with the finding that ILC2s can express MHC II
and co-stimulatory molecules, the direct ILC2–T cell interaction
not only promotes TH responses but also extends to cytokine-
mediated help from activated TH cells for ILC2 effector functions.
During the acute phase ofN. brasiliensis infection, Rag2-deficient
(Rag2−/−) mice show a similar expansion of ILC2s as WT mice.
However, adaptive immune cells are required for prolonged ILC2
expansion and complete clearance of the infection (70). In a
papain-induced inflammation model, IL-9 production by ILC2s
is severely reduced in Rag2−/− mice suggesting that cytokine
secretion by ILC2s is also dependent on the adaptive immune
system (68). In vitro co-culture of CD4+ T cells and ILC2s results
in the upregulation of IL-4 mRNA in ILC2s, suggesting that TH
cells induce type 2 cytokine production by ILC2s (94). Addition-
ally, activated CD4+ T cells in co-culture with ILC2s can directly
induce ILC2 proliferation and IL-5/IL-13 secretion (92). This
effect is partially impaired by adding anti-IL-2-neutralizing Abs

but not by separatingCD4+ T cells from ILC2s in transwell assays,
suggesting an IL-2-driven feedback mechanism from activated
CD4+ T cells to ILC2s (92). In line with this, treatment of mice
with IL-2/anti-IL-2 complexes results in increased in vivo prolifer-
ation of ILC2s (62) and expansion of ILC2 progenitors in the bone
marrow (BM) (45). IL-2 can also promote IL-9 release by ILC2s,
whereas IL-33 induces the upregulation of the IL-2-receptor sub-
unit CD25 on ILC2s (104). The induction of CD25 expression
may help ILC2s to become more sensitive to T cell-derived IL-2.
It is currently unclear to what extent ILC2s and Treg cells, which
express high levels of CD25, or other TH subsets, compete for
IL-2. Hence, the expression of CD25 by ILC2s may also reduce
the availability of IL-2 for T cells. Based on these observations,
we propose the following model (Figure 1): ILC2s can be rapidly
activated by various alarm signals leading to the release of TH2-
type cytokines, which help to induce TH2 cell responses and DC
migration into LNs toward T cell zones. Further, activated ILC2s
secrete AREG, and it remains to be investigated whether this can
trigger Treg cell responses. The cognate interaction between ILC2s
and CD4+ T cells via MHC II–Ag presentation, co-stimulatory
signals, and cytokines helps to amplify both ILC2 and CD4+ T
cell responses.

FIGURE 1 | Group 2 ILC–CD4+++ T cell interactions. ILC2s polarize CD4+ T cell responses toward TH2 immunity directly by presenting cognate Ag and by
secreting TH2-inducing cytokines. Reciprocally, activated CD4+ T cells produce IL-2, which serves as a growth factor leading to the expansion of ILC2s.
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Group 3 ILCs

All ILC3 subsets depend on the transcription factor RORγt
for their development (105–107), and produce the TH17-type
cytokine IL-22 (107–111). IL-22 has a major role in protecting
intestinal epithelial cells from bacterial infections and in promot-
ing tissue repair through induction of epithelial cell proliferation
and production of antimicrobial peptides (112). Group 3 ILCs
can be phenotypically classified into a subset of fetal RORγt+
CD127+ CD117+ LTi cells (106, 113–116), and adult NCR+ or
NCR−RORγt+ ILC3s (107, 108, 111, 117).

Group 3 ILC–T Cell Interactions

ILC3s can modulate TH cell immune responses in several ways.
One pathway involves the development of lymphoid tissue and T
cell zone stroma.Already before birth, the cellular crosstalk of fetal
lymphotoxin (LT)α1β2-expressing LTi cells with mesenchymal
stromal cells (MSCs) plays a pivotal role in the formation of LNs
and PPs, in which immune responses are generated. Adult ILC3s
retain the capacity to induce lymphoid tissue formation (118, 119).
Following lymphocytic choriomeningitis virus (LCMV) infection

in mice, the crosstalk between LTα1β2-expressing ILC3s and T
cell zone fibroblastic reticular cells helps to restore the disrupted
T-zone compartment and hence the structure to generate proper
immune responses (120). Similarly, LTα1β2

+ ILC3s can restore
lymphoid follicle organization in the colon of mice infected with
Citrobacter rodentium (121). The interaction of ILC3s with MSCs
is also reciprocal. In humans, the crosstalk between LTα1β2

+

ILC3s and marginal reticular cells (MRCs), a subset of marginal
zone stromal cells, induces the production of MRC-derived sur-
vival factors for ILC3s, such as IL-7 (122). A second pathway,
by which ILC3s can modulate TH cell immune responses, is
through altering the recruitment of CD4+ TH cells. ILC3s are able
to release soluble LTα3, which promotes the homing of CD4+
TH cells to the gut lamina propria where they differentiate into
functional TH cell subsets (Figure 2) (123). In a model of airway
inflammation, ILC3-derived IL-22 reduces CCL17 production by
epithelial cells thereby limiting TH2 cell recruitment and immune
responses to allergens in the lung (124). These data show that
ILC3s have an impact on generating functional T cell compart-
ments and recruitment of CD4+ TH cells to mucosal sites.

In the adult spleen, ILC3s are localized in the marginal zone
and around the central arterioles, and in LNs in proximity to

FIGURE 2 | Group 3 ILC–CD4+++ T cell interactions. Tissue localization greatly affects the outcome of Ag-dependent T cell–ILC3 interaction. Intestinal ILC3s
maintain tolerance toward commensal microbiota, while splenic ILC3s are efficient in the induction of Ag-specific CD4+ T cell responses and memory CD4+ T cell
survival.

Frontiers in Immunology | www.frontiersin.org August 2015 | Volume 6 | Article 4166

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


von Burg et al. ILC/T cell interactions

high endothelial venules and interfollicular areas (122, 125–
127). Because of the close association of splenic ILC3s to Ag-
entry sites and T cells as well as their expression of the co-
stimulatory molecules, CD30-ligand (CD30L) and OX40L, it has
been assumed that they may directly interact with T cells during
adaptive immune responses (125).Micewith a deficiency inCD30
and OX40 (CD30−/−OX40−/− mice) lack proper memory Ab
responses due to a failure in survival of primed CD4+ TH cells
(128). In vitro, ILC3s can promote survival of memory CD4+ TH
cells from WT but not from CD30−/−OX40−/− mice suggesting
that both CD30L and OX40L molecules expressed by ILC3s are
essential for CD4+ TH memory responses (128). This possibility
was supported by an in vivo study, which identified ILC3s as
the key players in the maintenance of CD4+ memory TH cells
(Figure 2) (129).

A third mechanism by which ILC3s interact with CD4+
TH cells is through receptors required for immune recogni-
tion. ILC3s isolated from various tissues of fetal, neonatal, and
adult mice express MHC II and MHC II-associated gene tran-
scripts (44, 113, 130–132). NCR−ILC3s are able to internal-
ize, process, and present foreign Ags to CD4+ TH cells (130,
131). Under non-inflammatory conditions, ILC3s express nei-
ther CD40 and CD80 nor CD86 (130, 131). However, following
stimulation with IL-1β splenic but not intestinal, NCR−ILC3s
can upregulate co-stimulatory molecules (130). A recent study
confirmed that even after toll-like receptor ligand (TLRL) or
pro-inflammatory cytokine exposure, intestinal ILC3s do not
upregulate co-stimulatory molecules (133). The finding that
mLN-derived ILC3s are as well unable to express co-stimulatory
molecules upon stimulation is likely due to the fact that ILC3s
found in the mLNs are originally intestinal ILC3s, which were
trafficking from the intestine to the mLNs (127). It is notewor-
thy that genome-wide transcriptional profiling of splenic ILC3s
reveals an enrichment for genes involved in cell activation and
immune responses (63). In contrast to splenic ILC3s, intestinal
ILC3s express the activation marker, CD69 (44), a glycoprotein
involved in establishing oral tolerance (134) and limiting dextran
sodium sulfate (DSS)-induced inflammation (135). Moreover,
ILC3s present in the small intestine express neuropilin-1 (Nrp1)
(44), which promotes Treg cell survival and functional activity
(136–138). It is therefore conceivable that ILC3s exert tissue-
specific immune functions with immunogenic versus tolerogenic
activity in the spleen and intestine, respectively. This hypothesis is
further supported by the notion that splenicNCR−ILC3s promote
CD4+ TH cell responses in vitro and in vivo, whereas intestinal
ILC3s fail to efficiently stimulate CD4+ TH cells (Figure 2) (130).
In mice, intestinal ILC3s express lower levels of MHC II as com-
pared to ILC3s identified in other tissues (130, 131, 133). Together
with the observation that intestinal ILC3s lack co-stimulatory
molecules, this may contribute to maintaining intestinal T cell
tolerance, similar to immature DCs expressing low surface levels
of MHC II and co-stimulatory molecules (139).

Hepworth et al. reported the development of spontaneous
intestinal inflammation in mice lacking MHC II exclusively on
ILC3s (ILC3∆MHCII mice) and found a role for intestinal ILC3s in
limiting commensal bacteria-specific pro-inflammatory colonic
CD4+ TH cell responses through induction of PD (131, 133).

Since other laboratories failed to detect spontaneous signs of
inflammation in ILC3∆MHCII mice (130, 132), it is possible that
the development of immunopathology is triggered by microbial
co-factors. In the intestine, ILC3s can inhibit TH17 cell-mediated
inflammation through AHR signaling, release of IL-22, and by
preventing the expansion of aberrant segmented filamentous bac-
teria (SFB) (140). In pediatric Crohn’s disease (CD) patients,MHC
II levels on intestinal ILC3s are significantly reduced, and such low
expression correlates with increased frequencies of colonic TH17
cells and circulating commensal bacteria-specific IgG (133). This
study is the first to describe an association of ILC3-mediated Ag
presentation and control of commensal bacteria-specific adaptive
immunity in humans. It remains unclear which are the mecha-
nisms that underlie loss of MHC II in CD patients and whether
this is sufficient to trigger inflammatory bowel disease. Together,
these findings suggest that intestinal ILC3s can inhibit expan-
sion of TH17 cells and immunopathology after exposure to pro-
inflammatory stimuli.

Analogously to ILC2–T cell interactions, the crosstalk between
ILC3s and CD4+ TH cells might be bidirectional and depends
on cytokines. This is further supported by the findings that the
presence of the adaptive immune system has an effect on the
number and IL-22 production of intestinal ILC3s, most likely
through competition for growth factors (141, 142). Human and
activated mouse ILC3s produce IL-2 (19, 130), and conversely,
TLR2-driven proliferation of human ILC3s is partially dependent
on IL-2 (19). Availability of IL-2 alone or in combination with
Pam3Cys promotes increased CD25 expression in human ILC3s
suggesting that CD25 expression might help ILC3s to win the
competition for IL-2 against T cells (19). Moreover, there is some
evidence that mouse ILC3s have a higher capacity to bind IL-2
than activated CD4+ TH cells (133). Therefore, the availability of
IL-2 can restrict ILC3 and TH responses as a result of receptor
density, efficiency of binding, and kinetics of IL-2 consumption.

Immune Homeostasis in the Gut: Tolerance
Versus Inflammation

The critical question regarding maintenance of immune home-
ostasis is where, when, and how immune responses prevent tissue
injury. The intestine is a prime example that has been extensively
studied with respect to cellular networks and pathways patrolling
tissue integrity and regulating inflammation. Treg and TH17 cells
are the most abundant CD4+ TH cells in the intestinal mucosa
under steady state (143–145). The balance between the two sub-
sets is crucial for the outcome of mucosal immune responses
(146). Commensal bacteria have a specific impact on the number
of both TH subsets (147) and on the capacity of ILC3s to regulate
TH subset responses (148). On the other hand, ILC3s contribute to
maintenance of intestinal epithelial barrier function thereby limit-
ing microbes entry and inflammatory TH cell responses (108, 109,
117, 141, 148). Whereas under steady-state conditions, intestinal
ILC3s produce high levels of IL-22, the production of IL-17 is
rather low (44). Importantly, TH17 cells are induced by SFB (149,
150) by a mechanism that requires SFB presentation by DCs (132,
151). In contrast, ILC3 presentation of Ag prevents amplifica-
tion of SFB-independent TH17 cells (132). In line with this, the
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expansion of SFB and pathogenic TH17 cells inversely corre-
lates with the number of intestinal ILC3s (140). In an IL-17-
dependent autoimmune mouse model, it was recently shown
that SFB colonization was associated with enhanced auto-Ab
titers (152). The increase in IL-17-producing cells, as observed
in CD patients (153), is probably not sufficient per se to induce
immunopathology. Specificity of inflammatory TH cells, intesti-
nal infections, pro-inflammatory bystander cells, and loss of
functional Treg cells might be required to trigger intestinal
inflammation.

All these studies published in recent years raised the question
of whether and how ILC–T cell interactions regulate pro- or
anti-inflammatory responses in the gut. Since ILC3s can prevent
dissemination of commensal bacteria in the gut and commensal
bacteria-specific TH cell responses (123, 131, 132, 148), they prob-
ably promote an immunological tolerogenic state in the gut. In
addition, the production of GM-CSF by ILC3s has the potential
to enhance iTreg cell numbers and function thereby promoting
intestinal homeostasis (154). In some colitis models, however,
ILC3s were reported to enhance intestinal inflammation (13,
15), and pathogenic ILC1 numbers were increased in patients
with CD (16, 41). The functional polarization toward IFNγ-
producing ILC1s or IL-22-producing ILC3s appears to depend on
tissue-specific and pro-inflammatory conditions. Environmen-
tal changes may immediately affect the ratio and/or polariza-
tion of ILC and T cell subsets. For example, induction of pro-
inflammatory cytokines, such as IL-23, was shown to counteract
the responsiveness toward IL-33, and the generation of iTregs
in the intestine (98). As for TH cell differentiation, it is likely
that the amount of cytokines determines ILC cytokine polar-
ization. Under homeostatic conditions, the intestine provides a
microenvironment enriched of cytokines with inhibitory effects,
such as TGF-β. At high dose, TGF-β inhibits TH17 responses,
whereas low-dose TGF-β promotes TH17-differentiation (155–
157). A similar impact of cytokine concentrations for immune
homeostasis has also been discussed for IL-22 (158). There-
fore, excessive release of cytokines by ILCs may contribute to
immunopathology, whereas under steady-state conditions, ILCs
rather promote epithelial tissue integrity and tolerogenic T cell
responses. During inflammation, ILC3s can switch off RORγt
expression, which may eventually be regained at later time
points. The modulation of cytokine receptors during a criti-
cal time window of ILC activation and ILC-T cell interaction
might also contribute to prevent excessive immunopathology.
This has been shown for a number of receptors controlling
growth and survival of both ILCs and T cells. Finally, the
polarization toward protective versus inflammatory response
in the gut likely requires a tight balance between temporal

regulation, amount, and combination of cytokines co-expressed
by individual ILCs.

Conclusion

Our understanding of immune homeostasis has been challenged
by the notion that environmental factors, including commen-
sal bacteria and nutritional components, as well as choliner-
gic and metabolic signals can regulate immune functions and
pro-inflammatory processes. ILCs are important “early sentinel”
cells, which connect innate and adaptive immunity by sensing
environmental changes, such as infections and inflammation
and by the release of immuno-regulatory cytokines. They not
only contribute to T cell immune homeostasis by promoting TH
cell differentiation and effector functions but can also directly
interact with CD4+ TH cells. Both ILC2s and ILC3s internal-
ize and present Ag to TH cells. Considering the fact that the
number of ILCs in most tissues is rather low as compared to
other immune cells, they appear to have a surprising in vivo
impact on immune homeostasis. The localization of ILCs in rel-
atively high density at Ag-entry sites and T cell areas as well
as bystander effects on classical DCs might explain this effect.
In addition, advances in two-photon microscopy have shown
that several CD4+ TH cells are often clustering with the same
APC, a fact that may increase local cytokine concentrations for
optimal cell–cell interactions. The capacity to elicit cognate TH
cell proliferation or rather prevent TH cell responses strongly
depends on environmental factors and the nature of Ag, and it
will be important to further investigate the mechanisms by which
ILCs prevent or promote T cell responses in various tissues. For
example, it will be interesting to unravel whether ILCs can express
inhibitory receptors and/or collaborate with Treg cells. Finally,
there are clearly cytokine-driven reciprocal effects between ILCs
and T cells, which might help to coordinate and/or limit immune
responses. Taken together, a better understanding of the regula-
tion of cytokine expression by ILCs and their interaction with
T cells will help to develop new strategies to treat inflammatory
diseases in humans.
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