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Ewing sarcoma (ES) is a cancer that may originate from stemmesenchymal or neural crest
cells and is highly prevalent in children and adolescents. In recent years, targeted therapies
against immune-related genes have shown good efficacy in a variety of cancers. However,
effective targets for immunotherapy in ES are yet to be developed. In our study, we first
identified the immune-associated differential hub gene NPM1 by bioinformatics methods
as a differentially expressed gene, and then validated it using real time-PCR and western
blotting, and found that this gene is not only closely related to the immune infiltration in ES,
but also can affect the proliferation and apoptosis of ES cells, and is closely related to the
survival of patients. The results of our bioinformatic analysis showed that NPM1 can be a
hub gene in ES and an immunotherapeutic target to reactivate immune infiltration in
patients with ES. In addition, treatment with NPM1 promoted apoptosis and inhibited the
proliferation of ES cells. The NPM1 inhibitor NSC348884 can induce apoptosis of ES cells
in a dose-dependent manner and is expected to be a potential therapeutic agent for ES.
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INTRODUCTION

Ewing sarcoma (ES) is a highly aggressive sarcoma of the bone and soft tissue, and is the second most
prevalent bone tumor in the world (Gaspar et al., 2015). Currently, surgery combined with
radiotherapy remains the main treatment modality for ES, and little progress has been made in
the treatment of ES in the last three decades (Gorlick et al., 2013). A previous study have shown that
ES occurs primarily as a site-specific fusion between a member of the erythroblast transformation-
specific (ETS) family of transcription factors and the EWSR1 gene (Jo, 2020). However, the
mechanisms underlying ES progression and metastasis are unknown. Therefore, there is a need
to develop new therapeutic targets for the management of ES.
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One option is the use of immuno-oncology which is attracting
increasing interest, and immunotherapy has achieved good
results in cancers treatment such as pancreatic and lung
cancers (Steven et al., 2016; Morrison et al., 2018). An
increasing number of immune targets has been developed, and
the development of immune checkpoint inhibitors such as PD-
L1, PD-1, and CTLA-4 as drugs has shown good results (Chong
et al., 2021). However, in ES, monoclonal antibodies against PD-1
or PD-L1 have not shown significant clinical efficacy (Morales
et al., 2020). Therefore, comprehensive analysis of the
relationship between immune-related genes and patients with
ES and the development of new immunotherapeutic targets may
provide a new reference for the treatment and prognostic
assessment of patients with ES.

With the rapid development of bioinformatics technology,
many tools for identifying biomarkers have been developed
(Zarabi et al., 2020), among which the weighted gene co-
expression network analysis (WGCNA) and single-sample
Gene Set Enrichment Analysis (ssGSEA) algorithms have been
applied to the screening of a large number of tumor biomarkers
(Tian et al., 2020; Zhou et al., 2021). In our study, we aimed to use
bioinformatics to identify and test new therapeutic targets for ES.

MATERIALS AND METHODS

Data Acquisition
A working flow chart is depicted in Supplementary Figure S1,
We downloaded the dataset of ES from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/).
The dataset GSE34620 (Postel-Vinay et al., 2012) contains the
RNA sequences of 117 patients with ES; GSE17674 (Savola et al.,
2011) contains the RNA sequences of 18 normal skeletal muscle
samples, and RNA sequence and survival information of 44
patients with ES. In addition, GES45544 (Agelopoulos et al.,
2015) and sarcoma data from The Cancer Genome Atlas
(TCGA) were used for the validation of the final results. All
relevant information of these 3 GEO datasets was showed in
Supplementary Table S1.

Bioinformatic Analysis of the Immune
Microenvironment in Patients With ES
We obtained the relevant gene sets of 28 immune cell species
from the literature (Jia et al., 2018), then we used the R package
“GSVA” (Hänzelmann et al., 2013) to score immune cells in 117
patients. Based on the immune cell scoring, we divided the
patients into three clusters using unsupervised clustering and
used the R package “pheatmap” to draw an immune scoring heat
map to visualize the differences in immune infiltration among the
three groups. Based on the heat map, we selected the two groups
with the greatest difference in immune infiltration and classified
them into high and low immune infiltration groups; we screened
the two groups for differential genes [false discovery ratio (FDR)
< 0.05, |logFC|>1], and a differential gene heat map was drawn.

We used the R package “ESTIMATE,” which is an algorithm
developed by Yoshihara et al., for sample immune scoring,

stromal scoring, assessing tumor purity and estimated scoring
for 117 patients for the next step of WGCNA analysis (Yoshihara
et al., 2013).

Selection of Soft Thresholds and the
Construction of Immune-Related Modular
Trait Relationships in Patients
WGCNA is a bioinformatics algorithm developed by Langfelder
and Horvath (2008), which is used to cluster highly related genes
into modules according to the phenotype of interest. The
connectivity between genes needs to meet the criteria of a
scale-free network. In a scale-free network, the logarithm
[log(k)] of the number of nodes containing connectivity k and
the logarithm {log [p(k)]} of the probability of occurrence of the
node should show a negative correlation, and the correlation
coefficient between them should be greater than 0.85. This
coefficient is called the soft threshold, and higher the soft
threshold, higher is the chance of conforming to the scale-free
network rules. Individual modules were then identified by
hierarchical clustering and dynamic branching cuts, with a
unique color assigned to each module as an identifier. Gene
significance (GS) and module affiliation (MM) values were then
calculated to associate modules with immune-related traits. The
corresponding module gene information was extracted for
further analysis.

Selection of Immune-Related Differential
Genes
Using the dataset GSE17674, we screened for differentially
expressed genes between normal skeletal muscle tissue and ES
tissue (FDR < 0.05, |logFC|> 2). The data of the intersection of
differential genes with immune traits were taken and a Venn
diagram showing immune-related differential genes was plotted.

Selection of Hub Genes
We used the string online website (https://string-db.org) to
construct the immune-related differential gene protein
interaction network, and then used the “cytohubba” plugin in
“Cytoscape” software to select the top five most correlated hub
genes using the Matthews correlation coefficient (MCC)
algorithm.

Cell Culture
ES is a cancer that may originate from stem mesenchymal or
neural crest cells (Kersting et al., 2018), and according to the
literature, this experiment used RD-ES and A673 cell lines
purchased from the American Type Cell Culture (ATCC) as
disease group and mesenchymal stem cells (MSCs) purchased
from Cyagen (Guangzhou, China) as normal control group (Li
et al., 2019). We used 89% Dulbecco’s Modified Eagle Medium
(DMEM; Gibco, United States), 10% fetal bovine serum (Gibco,
United States), 1% double antibody (100 U/ml penicillin and
100 mg/ml streptomycin), complete medium, and 25T culture
flasks to culture MSCs, RD-ES, and A673 cells at 37°C and 5%
CO2, respectively.
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Real Time-PCR
We used Trizol (Sigma, United States) to extract total RNA from
the cells, which was reverse transcribed into cDNA using a reverse
transcription kit (Takara, Japan). Real-time PCR was performed
using SYBR Premix Ex Taq (Takara, Japan) according to the
manufacturer’s instructions. PCR reaction conditions:
denaturation at 95°C for 10 s, annealing at 60°C for 15 s, and
extension at 72°C for 30 s. This cycle is amplified for 45 times, and
the melting curve is analyzed after the cycle. We design primers
by using the online website “primerBank” (pga.mgh.harvard.
edu). The primer sequences are listed in Supplementary
Table S2.

Western Blotting
The protein lysis solution was prepared using
radioimmunoprecipitation (RIPA) buffer, phosphatase
inhibitor, and phenyl methane sulfonyl fluoride (PMSF) at 97:
2:1. After lysis for 30 min, loading buffer was added, and the
mixture was boiled at 100°C for 10 min. Proteins were resolved by
electrophoresis on 12% sodium dodecyl sulfate–polyacrylamide
gel electrophoresis (SDS-PAGE). After electrophoresis and
membrane transfer, the membranes were blocked with 5%
skimmed milk for 2 h at room temperature. The membranes
were then incubated with NPM1 antibody (1:2000, Abcam,
United Kingdom) and β-actin antibody (1:2000, Abcam,
United Kingdom) overnight at 4°C and washed three times
with Tris-buffered-saline-Tween 20 (TBST) for 10 min. Finally,
the polyvinylidene fluoride (PVDF) membranes were incubated
with secondary antibodies (Sigma, United States) at room
temperature for 1 h and fluorescence was detected using a
western blot analysis system with electrochemiluminescence
(ECL) fluorescent agent. In natural PAGE gel experiments,
samples were not denatured by heating, and electrophoresis
was performed in the absence of SDS.

Cell Viability Assays
RD-ES cells (approximately 4 × 103 cells) and A673 cells
(approximately 1 × 104 cells) were seeded in 96-well plates at
a plate laying time of 24 h. The cells were stimulated with the
NPM1 inhibitor NSC348884 at concentrations of 0, 0.5, 1, 1.5, 2,
and 3 µM. The inhibitor ESC348884 was dissolved in dimethyl
sulfoxide (DMSO) (Sigma, United States). Four replicate wells
were used for each concentration. After 24 h of incubation, 10 µl
of Cell Counting Kit (CCK)-8 reagent was added to each well and
incubated for another 2 h. The absorbance was measured at
450 nm. The cell survival rate was calculated as follows:
Average OD value of dosed cells/average OD value of control
cells � survival rate.

Apoptosis Assay
RD-ES cells and A673 cells in the logarithmic growth stage were
inoculated in 6-well plates at approximately 1 × 106 cells per well;
after the cell confluence reached 70%, stimulation was carried out
with a gradient of inhibitor concentrations at 0, 0.5, 1, 1.5, 2, and
2.5 µM.MSCs were stimulated with 0, 1, 2, and 3 µmNSC348884.
After 24 h, cells were collected by trypsin digestion, washed three
times with 1 × phosphate buffer solution (PBS), and the number

of cells was adjusted to approximately 1 × 106. The apoptosis rate
was detected using an Annexin V-fluorescein isothiocyanate
(FITC)/propidium iodide (PI) double-stained apoptosis
detection kit (Bestbio, Shanghai, China) and flow cytometry
(BD Biosciences, Franklin Lakes, New Jersey, United States).

Evaluation of the Effectiveness of
Immunotherapy
To evaluate the effect of NPM1 expression on immunotherapy in
patients with ES, we calculated Tumor Immune Dysfunction and
Exclusion (TIDE) scores of 117 patients with ES from GSE34620
using the TIDE website developed by Harvard University (http://
tide.dfci.harvard.edu/). Based on the median expression of
NPM1, the samples were divided into high- and low-
expression groups, and the differences in TIDE scores between
the two groups were compared.

Statistical Methods
Bioinformatic analyses were implemented using R 4.0.3, and the
Wilcoxon rank sum test was used for the analysis between two
groups. The Bayesian test was used for the selection of differential
genes. External experiments were repeated three times, and
statistical analyses were performed using GraphPad Prism 6.0
(GraphPad Software), and Student’s t-test was used for
comparison between the two groups.

RESULTS

Immune Infiltrative Subtypes of ES
As per the ssGSEA algorithm, we scored each ES sample for the
enrichment of 29 immune cells, and the 117 patients with ES were
then divided into three groups: cluster1, cluster2, and cluster3
using an unsupervised clustering method, and a clustering tree
was drawn (cutoff � 1, Figure 1A). In addition, the enrichment
scoring heat map also visualizes the difference in degree of
immune infiltration among the three groups, where cluster1 is
the moderate immune infiltration group with 30 samples, cluster2
is the low immune infiltration group with 78 samples, and
cluster3 is the high immune infiltration group with 9 samples
(Figure 1B). Using the R package “limma,”we screened immune-
related genes for differences between the high and low immune
groups and found that 3,342 genes were differentially expressed,
and the differences between the two groups were shown in a heat
map (Figure 1C).

WGCNA Selection of Immune-Related
Genes
We first calculated the soft threshold power β and propose its co-
expression similarity to calculate the adjacency relation. We used
the function “ickSoftThreshold” to perform network topology
analysis via the R package “WGCNA.” In the subsequent analysis,
the soft threshold power β was set to 3, as the scale independence
reached 0.85, and had relatively high average connectivity
(Figure 2A). Based on β � 3, the 3,342 immune-related
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differential genes were grouped into five modules, including
brown, green, yellow, blue, and turquoise (Figure 2B).
Combined with the immune score, stromal score, estimate
score, and tumor purity, the module correlation heat map was
drawn (Figure 2C). According to previous studies, lower levels of
immune infiltration are often associated with a poorer prognosis
in patients with tumor (Zhou et al., 2021). Therefore, we selected
the turquoise module with the strongest negative correlation with
immune scoring for inclusion in the follow-up study.

Enrichment Analysis of Turquoise
Module-Related Genes
Genes included in the turquoise module were analyzed using
the web tool “Matascape” for pathway and process enrichment
analysis. Several biological functions related to immunity were
discovered (Figures 3A,B). The negative correlation between
our screening module and immune infiltration was again
verified by the “negative regulation of the immune system
process.”

The Selection of Hub Genes
FromGSE17674, we obtained 1,032 differentially expressed genes
(DEGs) between normal and ES groups (| logFC | > 2 and FDR <
0.05, Supplementary Figure S1), In addition, we excluded the
genes with GS > 0 in the turquoise module, and the remaining 862
genes negatively associated with immune infiltration were
selected to intersect with the differential genes to obtain 85
differential genes that were negatively associated with immune
infiltration (Figure 5A). The protein interaction network
(Figure 4B) was constructed using the String (https://string-
db.org) online tool, optimized by “cytoscape” software, and
the top 5 hub genes were obtained by “cytohubba” plugin
using the “MCC” algorithm, namely, MYC, CCND1, WNT5A,
NPM1, and HIST1H2BH (Figures 4C,D). By reviewing the
literature, we finally selected NPM1, a poorly studied gene in
ES, for inclusion in the follow-up study.

GSEA Analysis
The R package “clusterprofiler” was used to perform Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and

FIGURE 1 | Clustering based on immune microenvironment in Ewing sarcoma (ES). (A) The samples were divided into three groups based on single-sample Gene
Set Enrichment Analysis (ssGSEA) immune scoring. (B) The enrichment levels of 28 immune-related cells in the high immune cell infiltration group (Immunity_H), middle
immune cell infiltration group (Immunity_M), and the low immune cell infiltration group (Immunity_L). (C) Heatmap showing the difference between Immunity_H and
Immunity_L.
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Genomes (KEGG) enrichment analysis of the high and low
expression groups (Figures 5A,B). We found that multiple
immune-related biological functions and pathways were
enriched in the NPM1-low expression group, including

“Intestinal immune network for IgA production, Viral protein
interaction with cytokine and cytokine receptor, T cell activation
via T cell receptor contact with antigen bound to MHC molecule
on antigen presenting cell, IgG binding and others.”

FIGURE 2 | Construction of immune-related modular by weighted gene co-expression network analysis (WGCNA). (A) Analysis of the scale-free fit index of the
1–20 soft threshold power (β), and the average connectivity of 1–20 soft threshold power. (B) Genes are grouped into various modules by hierarchical clustering, and
different colors represent different modules. (C) Relationship between the gene modules and the immune-related information.
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Relevance of NPM1 to Immunity
Based on the correlation plot of immune cell enrichment and
immune-related pathways, the enrichment of immune function,
and NPM1, we found that NPM1 showed a close negative
correlation with them. Moreover, the immune score and the
expression of PD-L1 showed a significant negative correlation
with NPM1 expression, suggesting that patients with low NPM1
expression may have better immunotherapy efficacy (Figure 6).

Validation of the Hub Gene by RT-PCR and
Western Blotting
The results of RT-PCR showed that the relative expression levels
of five hub genes, including WYC, CCND1, WNT5A,

HIST1H2BH, and NPM1 were higher in RD-ES cells than in
MSCs (Figure 7A), while in the A673 cell line, in addition to
MYC, the remaining four hub genes were also significantly
overexpressed in the tumor (Figure 7B). In addition, we
explored the difference in the expression of NPM1 in tumor
group versus control group at the protein level. The results of
western blotting showed that NPM1 was more highly expressed
in ES cell lines than in MSCs (Figure 7C).

Exploration of the Biological Function of
NPM1
Since NPM1 may be a potential therapeutic target for patients
with ES, the NPM1 inhibitor was identified by reviewing the

FIGURE 3 | Enrichment analysis of core modules. (A) The top 20 enriched terms are shown in a bar chart. (B) Network diagram showing the association between
each enrichment item.
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literature as NSC348884, which can bind specifically to NPM1
and specifically interfere with the formation of NPM1 oligomers
(Qi et al., 2008). In our study, we found that the synthesis of
NPM1 protein oligomers was also inhibited in ES cells
(Figure 7D). Therefore, we assayed cell survival by stimulating
RD-ES cells and A673 with NPM1 inhibitor NSE348884 using the
CCK8 kit, and plotted the concentration effect curve of
NSE348884 (Figure 8B) and derived a 50% inhibition
concentration (IC50) of 1.511 µM for this inhibitor in RD-ES
cells (Figure 8A) and IC50 of 1.926 µM in A673 cells (Figure 8B).

In ES cell lines, the apoptosis rate increased with increasing drug
concentration. When NSC348884 concentrations were greater
than 1.5 µM, the apoptosis rate was >45%. The apoptosis rate was
greater than 50% at ESC348884 concentrations greater than 2 µM
in A673 cells, and the apoptosis rate of cells increased with
increasing drug concentration (Figures 8C,D,F,G). Together,
these data support the notion that NSC348884 induces
apoptosis in ES cells through the inhibition of NPM1.
Therefore, targeted therapy against NPM1 is of great
importance for the treatment of ES.

FIGURE 4 | Selection of hub genes. (A) A Venn diagram showing immune-related differential genes. (B) Protein interaction network mapping based on negatively
associated differential immune genes. (C) Top five differential genes were obtained according to theMatthews correlation coefficient (MCC) algorithm. (D) The correlation
between the five hub genes was calculated based on the Pearson correlation coefficient, and red color indicates positive correlation.
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FIGURE 5 | Gene Set Enrichment Analysis (GSEA) of the high and low expressing NPM1 groups. (A) The results of Gene Ontology (GO) enrichment analysis. (B)
The results of Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis.
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FIGURE 6 | Relevance of NPM1 to immunity. (A) Correlation of NPM1 with single-sample Gene Set Enrichment Analysis (ssGSEA) scoring of 28 immune cells. (B)
Correlation of NPM1with 29 immune functions, immune-related pathways and ssGSEA scoring. (C)Calculation of correlation between NPM1 and immunization scoring
based on Pearson correlation coefficient. (D) Calculation of correlation between NPM1 and PD-L1 (CD274) based on Pearson correlation coefficient. (E) Differences in
human leukocyte antigen (HLA) family expression between high and low NPM1 subgroups are demonstrated by box plots.
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Relationship Between NPM1 Expression
and Survival Rates
In both GSE17674 and GSE45544, we found that NPM1 showed
significantly high expression in ES (p < 0.05, Figures 9A,B).
Moreover, we found that NPM1 was closely associated with the
survival of patients with ES, and high expression of NPM1 in the
ES data of GSE17674 and the sarcoma dataset of TCGA often
predicted a poor prognosis for patients (p < 0.05, Figures 9C,D).

These results suggest that high NPM1 expression is a clear risk
factor for patients with ES.

Overview of NPM1 in Human Cancer
Overall, NPM1 is overexpressed in multiple cancer types.
Probably due to insufficient sample size, differential
expression of NPM1 was not observed in some cancers
including bladder cancer (BLCA) and head and neck
squamous cell carcinoma (HNSC) (Figure 10A).

FIGURE 7 | (A,B) The mRNA expression of MYC, CCND1, WNT5A, HIST1H2BH, and NPM1 detected between mesenchymal stem cells (MSC), and Ewing
sarcoma (ES) cell lines. (C) NPM1 protein expression levels were higher in RD-ES and A693 cells than in MSCs by western blotting. (D) RD-ES and A673 cells were
treated with NSC348884 at 0, 1, 2 µM for 24 h and the results of western blotting showed that NSC348884 inhibits the formation of NPM1 protein oligomers (NA, p >
0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001).
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Moreover, we found that NPM1 was strongly associated with
patient prognosis in several cancers and acted as an
unfavorable prognostic factor (Figure 10B). Furthermore,
to explore the association between NPM1 and immune
infiltration in other cancers, we analyzed the association
between NPM1 and immune scoring in multiple cancers, and
in cancers with statistically significant differences (p < 0.001),

we found a strong negative association between NPM1 and
patients’ immune scoring (Figure 10C). In particular, in
sarcoma, the results in TCGA were also validated with the
results of our GEO analysis. In addition, through the online
website TISIDB (http://cis.hku.hk/TISIDB/), we found that
NPM1 expression was negatively correlated with populations of
lymphocytes, MHC molecules, immunostimulators, chemokines,

FIGURE 8 | Effect of NSC348884 on the survival rate and apoptosis of RD-ES and A673 cells. (A) Survival rate of RD-ES stimulated by different inhibitor
concentrations. (B) Survival rate of A673 cells stimulated by different inhibitor concentrations. (C) Apoptosis rate of RD-ES cells stimulated under six different
concentrations, from left to right were 0, 0.5, 1, 1.5, 2, and 2.5 µM. (D) Apoptosis rate of A673 cells stimulated under six different concentrations of ion, from left to right
were 0, 0.5, 1, 1.5, 2, and 2.5 µM. (E) The bar graph shows the apoptosis rate of RD-ES cells at different drug concentrations. (F) The bar graph shows the
apoptosis rate of A673 cells at different drug concentrations (NA, p > 0.05; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001).
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and receptors in most of the 30 cancer species (Supplementary
Figure S2).

TIDE Score to Assess the Impact of the
Expression of NPM1 on Immune
Checkpoint Inhibitor Treatment
Previous studies have shown that high TIDE prediction scores
indicate potential immune evasion, suggesting that patients are
less likely to benefit from ICI therapy (Chen et al., 2021). In our
results, the TIDE score of NPM1 group was lower than that of
NPM1 group (p � 0.011). Moreover, NPM1 expression showed a
significant negative correlation with TIDE score. Supplementary
Figure S3 shows the significance of NPM1 in guiding
immunotherapy in patients with ES.

DISCUSSION

Currently, the prognosis of most patients with ES is poor, even with
a comprehensive treatment strategy (Gaspar et al., 2015). In
addition, ES is highly invasive and metastatic, and patients often
suffer from bone and lung metastases, leading to deterioration of
health (Cao et al., 2015). Therefore, it is necessary to develop new
therapeutic targets for ES and consider the treatment of the disease
from various aspects, such as immune infiltration and proliferation
inhibition. According to our analysis, NPM1 is not only highly
expressed in patients with ES, but is also closely associated with poor
patient prognosis and immune infiltration; therefore, the
development of drugs targeting NPM1 is essential.

NPM1, also known as nuclear phosphoprotein, consists of 294
amino acids and is an abundant and multifunctional nucleolar

FIGURE 9 | External dataset validation of the variability of NPM1 and correlation with survival. (A,B) In GSE17674 and GSE45544, NPM1 was highly expressed in
ES groups. (C,D) Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) data demonstrate that high NPM1 expression is strongly associated with
poor prognosis.
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phosphoprotein that frequently shuttles between the nucleus and the
cytoplasm of cells and is involved in a variety of important biological
activities (Karimi Dermani et al., 2021). Previous studies have shown
that NPM1 plays an important role in cell growth and proliferation
by regulating cell cycle progression and centrosome replication
(Okuda, 2002). NPM1 plays an important role in both solid
tumors and leukemia. The World Health Organization (WHO)
classification has defined acute myeloid leukemia (AML) with
NPM1 mutations as a distinct entity (Heath et al., 2017). In
breast cancer, colon cancer, and other cancers, overexpression of
NPM1 often results in a poor prognosis prediction for patients (Liu
et al., 2012; Zeng et al., 2019).

In recent years, the successful use of ICI therapy in tumors has
led to an increasing interest in immune-targeted therapies (Wang

et al., 2016). Immune targets such as PD-L1, PD-1, and CTLA-4 have
been shown to be effective in a variety of tumors, and targeting
immune cells to activate checkpoints has been shown to be the most
effective way to activate anti-tumor immune responses (Rotte, 2019).
In recent years, more and more immune checkpoint inhibitors have
been developed, such as PD-L2, CD80, CD86 and so on (Sugiura
et al., 2019; Wennhold et al., 2021). They both achieved good results
in the reactivation of immune cells. Previous studies have shown that
clinically detected tumors often require immune escape to evade
antitumor immune responses in order to grow; therefore, a higher
degree of immune infiltration often predicts a better prognosis for
patients with tumor (Gajewski et al., 2013; Yi et al., 2020). The
relevance of NPM1 in immune infiltration in patients with tumors
has been demonstrated in several tumors. According to Qin et al.,

FIGURE 10 |Overview of NPM1 in human cancer. (A) The mRNA expression of NPM1 between tumor and normal control tissues was assessed from The Cancer
Genome Atlas (TCGA) database. (B) Univariate Cox regression analyses estimating prognostic value [overall survival (OS)] of NPM1 in different cancer types from TCGA
database. (C) Association between immune scoring and NPM1 expression in multiple tumors.
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NPM1 upregulates PD-L1 transcription and suppresses T-cell
activity in triple-negative breast cancer (Qin et al., 2020). In lung
adenocarcinoma, NPM1 is also involved in immune infiltration and
its expression is closely related to the presence of a variety of immune
cells (Liu et al., 2021). Our study also found a significant negative
correlation between NPM1 and immune infiltration in patients with
ES. GSEA enrichment analysis also showed that patients with low
NPM1 expression were enriched for multiple immune-related
biological functions and pathways. Moreover, we found that
NPM1 showed a significant negative correlation with various
immune cells, immune functions, and human leukocyte antigen
(HLA) families. Therefore, we speculate that inhibition of NPM1 can
reactivate immune infiltration in patients with ES, and NPM1 is
expected to be a new immunotherapeutic target.

NSC348884, a specific inhibitor of NPM1, binds to NPM1 and
specifically disrupts the hydrophobic pocket structure of the
amino terminus, thereby inhibiting the formation of oligomers
and disrupting their abnormal function in cancer cells (Qi et al.,
2008). Our study revealed that NSC348884 also inhibited NPM1
oligomers in ES cells. Moreover, the inhibition of NPM1 function
can promote the apoptosis of ES cells.

In addition to NPM1, our study identified MYC, CCND1, and
WNT5A as potential therapeutic targets for ES. They may jointly
influence the immune infiltration of ES and the development of
tumorigenesis through interaction with NPM1. In an earlier report,
Kawano et al. reported thatmicroRNA-20b promotes cell proliferation
in ES cells by increasing MYC expression (Kawano et al., 2017). A
previous study showed that MYC-driven cancer cells promote
tumorigenesis through immune escape, suggesting that MYC-
induced tumors may be particularly sensitive to immuno-
oncological intervention, which is consistent with our findings,
suggesting a strong negative correlation between MYC and
immune infiltration in ES. The high expression of CCND1 in ES
has been demonstrated in several studies (Fagone et al., 2015; Palombo
et al., 2019), and overexpression of this gene contributes to the
dysregulation of the cell cycle in cancer, leading to the proliferation
of tumor cells (Palombo et al., 2019). A study by Zhe Jin et al. showed
thatWNT5AcouldpromoteES cellmigration byupregulatingCXCR4
expression. These studies again validate our results and show that
NPM1, CCND1, WNT5A, and NPM1 can act as key genes for ES.

Our study has some limitations: first, the interactions ofNPM1with
other proteins and its correlation with immune cells are based only on
bioinformatic analysis and require experimental validation. This will be
discussed in a future study. Second, NPM1 has an effect on ES cell
apoptosis, but the molecular mechanism behind this is not clear, and
we lacked clinical samples and clinical prognostic information to
validate our results. Finally, NPM1 was identified as a hub gene
based on the GEO dataset; however, the effectiveness of NPM1 as a
therapeutic target and prognostic factor needs to be further validated.

In conclusion, the results of our bioinformatics analysis showed
that NPM1 is essential for the proliferation of ES cells and can also
act as an immunotherapeutic target to reactivate immune
infiltration in patients with ES. In addition, treatment with
NPM1 promoted apoptosis and inhibited the proliferation of ES
cells. Therefore, NPM1 is expected to be an independent
prognostic factor and a new therapeutic target for ES. The
NPM1 inhibitor NSC348884 can induce apoptosis of ES cells in
a dose-dependent manner without affecting the survival of normal
cells. Therefore, it can be a potential therapeutic target for ES.
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