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Social media is increasingly being used to express opinions and attitudes

toward vaccines. The vaccine stance of social media posts can be

classified in almost real-time using machine learning. We describe the

use of a Transformer-based machine learning model for analyzing vaccine

stance of Italian tweets, and demonstrate the need to address changes

over time in vaccine-related language, through periodic model retraining.

Vaccine-related tweets were collected through a platform developed for

the European Joint Action on Vaccination. Two datasets were collected, the

first between November 2019 and June 2020, the second from April to

September 2021. The tweets were manually categorized by three independent

annotators. After cleaning, the total dataset consisted of 1,736 tweets

with 3 categories (promotional, neutral, and discouraging). The manually

classified tweets were used to train and test various machine learning

models. The model that classified the data most similarly to humans was

XLM-Roberta-large, a multilingual version of the Transformer-based model

RoBERTa. The model hyper-parameters were tuned and then the model

ran five times. The fine-tuned model with the best F-score over the

validation dataset was selected. Running the selected fine-tuned model on

just the first test dataset resulted in an accuracy of 72.8% (F-score 0.713).

Using this model on the second test dataset resulted in a 10% drop in

accuracy to 62.1% (F-score 0.617), indicating that the model recognized

a di�erence in language between the datasets. On the combined test

datasets the accuracy was 70.1% (F-score 0.689). Retraining the model

using data from the first and second datasets increased the accuracy
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over the second test dataset to 71.3% (F-score 0.713), a 9% improvement from

when using just the first dataset for training. The accuracy over the first test

dataset remained the same at 72.8% (F-score 0.721). The accuracy over the

combined test datasets was then 72.4% (F-score 0.720), a 2% improvement.

Through fine-tuning a machine-learning model on task-specific data, the

accuracy achieved in categorizing tweetswas close to that expected by a single

human annotator. Regular training of machine-learning models with recent

data is advisable to maximize accuracy.

KEYWORDS

vaccines, machine learning, artificial intelligence, vaccination hesitancy, Transformer

model

Introduction

In 2019, the World Health Organization listed vaccine

hesitancy (1) among the top ten threats to global health (2).

Decreased confidence in vaccines can have a serious impact on

vaccine uptake, impairing vaccination programs and ultimately

leading to a re-emergence of vaccine preventable diseases (3,

4). In the context of the COVID-19 pandemic, the impact

of vaccine hesitancy has been evident. Lack of confidence for

and actual refusal of COVID-19 vaccines has been ubiquitous,

especially in high-income countries (5). A higher morbidity

and mortality by COVID-19 has been reported in unvaccinated

than in vaccinated individuals (6, 7), and limited vaccine uptake

could also reduce the possibility of relaxing non-pharmaceutical

interventions in the population (8).

Monitoring vaccine confidence and its determinants, which

are typically context-specific, is crucial to understanding

the reasons behind willingness to be vaccinated and to

inform actions aimed at restoring or maintaining confidence

in vaccines.

Social media is increasingly being used to express opinions

and attitudes toward vaccines. Social media enables an

unmediated circulation of information, which has facilitated the

diffusion of misinformation and disinformation, both at the

regional-national level and across countries (9), and decreased

trust toward official sources of health information (10).

The role of social media in vaccine communication has been

often studied, including investigations on the use of social media

as a source of information on vaccines (11) and as means to

deliver vaccine promotion campaigns (12). Researchers have

also analyzed findings from social media monitoring projects

(13, 14). Social media monitoring has been recommended as a

Abbreviations: NLP, Natural Language Processing; BERT, Bidirectional

Encoder Representations from Transformers; EU-JAV, European Joint

Action on Vaccination; Tfidf, Term-frequency inverse document

frequency; RoBERTa, A Robustly Optimized BERT Pretraining Approach;

SVM, Support Vector Machine.

means to complement classical qualitative research on vaccine

hesitancy (15, 16), and to integrate classic vaccine-preventable

disease surveillance (17), due to its potential to provide health

authorities in real time with large sets of data, spontaneously

provided by social media users.

The overabundance of information circulating on the web,

both from reliable and from questionable sources, has been

defined by the World Health Organization as the “infodemic”

(18). Recently, the WHO developed a framework to effectively

respond to the infodemic related to COVID-19, including

a recommendation to “understand the circulating narratives

and changes in the flow of information, questions, and

misinformation in communities” and to systematically apply

analysis of online conversation (19).

An accurate analysis of social media posts requires an

extensive amount of time and resources, which might negatively

impact the potential timeliness of social media monitoring

compared to classical methods to assess vaccine confidence.

Semi-automated analytical techniques have been used to

overcome this limit, and different methodologies for natural

language processing (NLP) have been applied to this aim (20).

The field of NLP has seen many advances in the last 30

years, moving from grammar-like rules to analyzing neighboring

words, representing words as vectors (Word2Vec) (21, 22)

and word embeddings (GloVe) (23). Deep neural nets were

developed based on the human brain framework, where

processing layers or neurons connect together to get from an

input to a result (24, 25). In 2015 the attention mechanism

was proposed which was a huge success and led Google to

propose a new network architecture known as the Transformer

(26). Bidirectional Encoder Representations from Transformers

(BERT) models were a paradigm shift in NLP.

Sentiment analysis is frequently used in studying public

opinion (social media marketing, opinion mining, results of

media campaigns, brand reputation, etc.). Sentiment analysis

classifies the overall tone or language of a text, whether it is

positive, negative or neutral, without considering the meaning

or message of the text (27). For this reason, sentiment analysis
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may not be the most appropriate method for analyzing vaccine

conversations on social media: a tweet criticizing the anti-vax

movement can have a negative sentiment, despite expressing

a favorable opinion toward vaccines. Recently, stance analysis

has been proposed as an alternative method to study vaccine-

related social media posts, as this type of analysis does not

take into account the tone of the text but rather determines

favorability toward a chosen topic of interest (28). Kummervold

et al. used stance analysis to explore the discourse on vaccination

during pregnancy, reaching an accuracy of 81.8% in stance

classification (29).

One of the biggest challenges in NLP is the shortage of

training data. Modern deep learning-based NLP models benefit

from large amounts of data, using millions, or even billions

of annotated training examples. However, most task-specific

datasets contain only a few hundred or perhaps thousand

human-labeled training examples. To help close this gap in data,

a variety of techniques for training general purpose language

representation models have been developed, including using

enormous amounts of unannotated text from the web to pre-

train a model. The pre-trained model can then be fine-tuned

on small task-specific datasets, resulting in substantial accuracy

improvements compared to training on just the small task-

specific datasets.

One additional, critical issue that may impair the precision

of automatic text analysis for health or vaccine-related contents

is the changes that commonly occur in the everyday language

used during health emergencies (30). The language used by

most social media users in conversations regarding vaccines has

deeply changed since the first phase of the pandemic, when

initial data on COVID-19 vaccine studies started to circulate,

and even more so since the available COVID-19 vaccines were

rolled-out across the globe. The impact of these changes on the

performance of NLP models for automatic stance classification

has not been investigated before.

In this study, we describe the development, fine-tuning

and testing of a NLP machine learning model aimed at

automatically classifying the stance of vaccine related tweets

in Italian. Moreover, we analyze the impact of the change

of vaccine-related language during the pandemic on the

model performance.

The present project has been conducted by the Bambino

Gesù Children’s Hospital in the context of the European Joint

Action on Vaccination (EU-JAV) (31). EU-JAV is a European

project that aims at spurring long-lasting European cooperation

against vaccine-preventable diseases. In the context of the

EU-JAV’s Work Package 8, the Italian National Institute of

Health, in collaboration with the Bambino Gesù Children’s

Hospital, developed a web platform to monitor vaccination

discourse on the web and on social media, in particular

on Twitter.

Methods

The development of the NLP machine learning models for

vaccine-stance classification was based on an annotated database

of vaccine-related tweets in Italian, posted between November

2019 and September 2021 (see below for details). Based on a

qualitative exploration of tweets, a substantial change in the

language was observed by the researchers before and after the

COVID-19 vaccine was rolled out. Inspired by this observation,

we decided to study the impact of the change in the vaccine-

related discourse through the pandemic on the performance of

the model. Our hypothesis was that, if the model was just trained

on tweets posted before the COVID-19 vaccine roll-out, and

its performance dropped when testing on tweets posted after

the roll-out, then this might indicate a change of language and

a need for regular model training. Thus, first, we used pre-

roll-out tweets for training, validation and testing. Secondly,

we tested the model on post-roll-out tweets and the combined

datasets. Finally, we used the combined datasets for training

and validation, and we tested the model on pre-roll-out tweets,

post-roll-out tweets and the combined datasets.

Data sources

The EU-JAV platform for social media monitoring has

been collecting tweets through the Twitter API (standard

v1.1) in Italian, French and Spanish since November 2019.

Vaccine-related tweets in Italian were downloaded using the

following search filter, validated through a structured framework

(32) (Vaccino OR Vaccini OR Vaccinazione OR Vaccinazioni

OR Vaccinato OR Vaccinata OR Vaccinati OR Vaccinate

OR Immunizzazione OR Immunizzato OR Immunizzata OR

Immunizzati OR Immunizzate OR Novax).

From the platform’s database, we downloaded a random

sample of 3,000 tweets in Italian, published between November

2019 and June 2020 (dataset A). Subsequently, we extracted

an additional sample of 800 vaccine-related tweets in Italian

published between April 2021 and September 2021 (dataset B).

Transformer models and tokenization

Cognitive attention allows us to concentrate on selected

stimuli. It is not just about centering focus on one particular

thing; it also involves ignoring a great deal of competing

information and stimuli. In machine learning, attention is a

technique that mimics cognitive attention. The effect enhances

the important parts of the input data and fades out the rest.

Which part of the data is more important depends on the context

and is learned through training.
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A Transformer is a machine learning model that adopts the

technique of attention, weighing the significance of each part of

the input data. Attention is important in language since context

is essential to assigning the meaning of a word in a sentence.

BERT is a Transformer-based machine learning technique

for NLP (26). Text is analyzed as a complete sequence of words.

The Transformer weighs the importance of different parts of the

text and identifies the context that confers meaning to a word

in a sentence. Models have different sizes dependent upon the

numbers of encoder layers. BERT-base models have 12 layers

whereas BERT-large models have 24. The basic principle of deep

learning is based on mimicking the operation of neurons in the

human brain such that multiple layers are stacked up.

Training deep learning NLP models from scratch is

costly, time-consuming, and requires massive amounts of data.

Transfer learning techniques customize existing pre-trained

models to suit a specific NLP task. Relatively small amounts of

data are sufficient for such fine-tuning.

When published in late 2018, BERT demonstrated state-of-

the-art results. Since then, various BERT based models have

arrived on the scene. Different models vary slightly, but in

general, all pre-training is done in a fully unsupervised manner.

Unsupervised learning uses unlabeled data, the model decides

for itself the patterns within the data. This process generates

a general language model that is used as input for supervised

fine-tuning of specific language processing tasks. Supervised

fine-tuning requires labeled data.

Twitter is a popular microblogging platform where people

often express their opinions implicitly or explicitly. Twitter data

(tweets) is a rich source of information on a large set of topics.

Data can be extracted related to specific keywords, to study

trends in the social conversation. Annotating, or labeling data,

is a very time consuming task, thus it is difficult to acquire a

large dataset of labeled data. Well labeled data is key to the

performance of themachine learningmodel. Labeled data allows

a model to be trained to understand the nuances of the subject

and the language used in a specific use-case. The more data

available, the more examples the model has to understand which

category to place a tweet.

Machine learning models cannot work directly on text. Text

needs to be separated into smaller units (tokens), then converted

to numbers (vectors). This important processing step is carried

out by a tool called a “tokenizer”. For example, “coronavirus:

modern testing” could be tokenized as “‘_corona’, ‘virus’, ‘:’,

‘_modern’, ‘_testing”’, which is then converted to numbers: [0,

109728, 76912, 12, 5744, 134234, 63, 2]. When text is tokenized,

links and usernames can become so split up that they are not

useful to the model and can even impair the performance of the

model. For example, the link https://t.co/Ub5NJddOYm could

be tokenized as “_https”, “://”, “t”, “.”, “co”, “/”, “U”, “b”, “5”,

“NJ”, “dd”, “OY”, “m” which is not very useful. A token within

a link or username might inadvertently be a token the model

associates with a certain stance, even though a link or username

does not in itself confer a stance (see Supplementary Table 1 for

definitions of Machine learning terminology).

Data cleaning

Prior to the use of the data by the machine learning models:

• Non-relevant tweets were removed (i.e., Tweets not

in Italian, or those using the word “vaccine” in a

figurative way).

• Tweets that were replies, and thus not clear in their

stance without following the conversation, were identified

and removed.

Subsequently, a Python script cleaned the data:

• The “RT” retweet tag was removed.

• Duplicates were identified using a Levenshtein distance

<22. The Levenshtein distance is the minimum number

of single-character edits (insertions, deletions or

substitutions) required to change one sequence of

text into another. For shorter tweets, of <130 characters,

this distance was scaled, since more edits per character

could result in falsely identifying duplicates. The distance

was tuned using the data, to ensure correct identification

of duplicates.

• Tweets with <5 words were removed since, in most

cases, it was not possible to discern stance from such

limited information.

• Text was converted to lowercase.

• All usernames and links were replaced with a common tag

(“user” or “link,” respectively).

The cleaned datasets included 1,378 (dataset A) and 526

(dataset B) tweets. The number of tweets remaining after each

cleaning step are shown in Supplementary Table 2.

Manual labeling

Each tweet was analyzed by 3 independent human

annotators and labeled as promotional, neutral, discouraging,

ambiguous or indiscernible, based on the stance toward

vaccines expressed by the tweet’s author, as in Martin 2020

and Kummervold 2021. In case of discrepancies, a univocal

classification, upon which all coders agreed, was reached after

collegial discussion among the coders. The 4 stance categories

are defined in Table 1.

In addition, we labeled as indiscernible those tweets in

which the stance could not be understood, e.g., tweets including

sarcasm or using an ambiguous language.
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TABLE 1 Stance categories.

Category Description Twitter example—Italian (original) Twitter example—English

translation

Promotional Communicate public health benefits or safety of

vaccinations, encourage vaccination, describe

risks of not vaccinating or refute claims that

vaccines are dangerous. Include tweets clearly

criticizing anti-vax persons.

I miei figli sono vaccinati per la #varicella.C’è

stata una bella epidemia e loro stanno bene,

felici e senza aver preso nulla. Davide è del 2012

e abbiamo pagato il vaccino perché era a

pagamento. Rinunciate a qualsiasi cosa ma

#vaccinate per i vostri figli e per gli altri.

My children are vaccinated against #chickenpox.

There’s been an epidemic in their school and

they’ve been fine, happy, did not have any

symptom. Davide was born in 2012, we payed

for the vaccine because it was not free for his

age. Renounce everything but #vaccinate, for

your children and for the others.

Neutral Often statements, including factual

recommendations about vaccines. Contain no

elements of uncertainty, promotional or

negative content regarding vaccines. Doubts

about political decisions regarding vaccination

programs may be expressed, but vaccines are

referred to in a neutral way.

Coronavirus, Oms: Per vaccino dovremo

attendere almeno 18 mesi

Coronavirus, WHO: For the vaccine we’ll have

to wait at least for 18 months.

Discouraging Contain negative attitudes/arguments against

vaccines. Contain questions regarding

effectiveness/safety or possibility of adverse

reactions that may or may not be proven.

Discourage the use of recommended vaccines.

#vaccini INVALIDA per colpa di un vaccino

#antinfluenzale. Il ministero della Salute

condannato a risarcirla. I vaccini sono

FARMACI. Diffidate da tutti quelli che vi dicono

che sono sicuri e che non hanno

#effetticollaterali. Indietro non si torna.

#vaccines DISABLED for a #fluvaccine. Ministry

of Health condemned to pay. Vaccines are

DRUGS. Be wary of all those that say that

vaccines are safe and do not have #sideffects.

You can’t go back.

Ambiguous Contain indecision or uncertainty on the risks

or benefits of vaccination.

Raga io devo ancora decidere ed ho paura...se mi

vaccino non so gli effetti collaterali....se non mi

vaccino e mi prendo il Covid?poi x quanto sarò

in pericolo?se mi vaccino x quanto

funzionera’?ho paura...consigli???

I still have to decide and I’m scared. . . if I get the

vaccine, I don’t know side effects. . . but what if I

don’t get the vaccine and I get covid? for how

long will I be in danger? If I get vaccinated, how

long is the vaccine going to work? I’m

scared. . . any advice?

Given the very low proportion of ambiguous and

indiscernible tweets (see Figure 1), and the inconsistent

nature of the texts, the tweets belonging to these two categories

were removed and the data was reduced to just 3 categories:

promotional, neutral and discouraging. This action was also

justified by running the model over the full dataset with

5 categories: the model then classified the majority of the

ambiguous or indiscernible tweets as promotional, neutral or

ambiguous, thus indicating that just three categories was more

appropriate (Supplementary Figure 1). Three categories also

gives the advantage of similar numbers of data within each

category, which is helpful for the machine learning models. The

final dataset consisted of 1,736 unique tweets, with dataset A

containing 1,301 tweets and dataset B containing 435 tweets, as

shown in Table 2.

Considering just 3 categories (promotional, neutral,

discouraging), the accuracies for the individual annotators

compared to the final agreed score were 79.2, 83.9 and 88.1%.

Of this data, 62.6% of the tweets were coded identically, with a

Fleiss agreement score of kappa = 0.642. This Fleiss agreement

score is moderate, demonstrating the difficulty of the labeling

task. Table 3 shows accuracy and F-scores for the annotators,

to evaluate their performance. F-scores take into account both

false positives and false negatives, and so can be a more realistic

measure than accuracy.

Cohen Kappa scores indicate the agreement between

two annotators. The Cohen Kappa scores were 0.640

(Annotator 1-2), 0.586 (Annotator 1-3) and 0.611 (Annotator

2-3). Moderate agreement is seen between each pair

of annotators.
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FIGURE 1

Dataset stance labels after cleaning.

TABLE 2 Dataset after cleaning, 3 categories.

Stance Dataset A Dataset Dataset B Dataset Total number of Percentage of

Number of tweets A % Number of tweets B % unique tweets total tweets (%)

Promotional 421 32.4 137 31.5 558 31.5

Neutral 382 29.3 158 36.3 540 30.5

Discouraging 498 38.3 140 32,2 638 38.0

Total 1,301 74.9 435 25.1 1,736 100

Machine learning model training

The datasets were split: 60% training, 20% validation and

20% testing.

Training data is used to construct a predictive relationship

between the data and its label. Validation data is used to build the

model, assessing the performance of the model during training.

Validation and testing data is used to calculate the accuracy of

the model: the model labels the data, then uses the human labels

to assess the accuracy of the categorization.

In this blind study, the test data was only used after the

model had been selected according to performance on the

validation datasets.

A number of Transformer-basedmachining learningmodels

were chosen and run with the data. The relevant tokenizer was

applied in each case.

Models were selected from the open source AI (Artificial

Intelligence) library, Hugging Face (33).

Distributed computing was performed using Google CoLab

GPU (34).

To get a baseline score for the Transformer-based machine

learning models to achieve, a well-established classification

model was used, Logistic Regression. Logistic Regressionmodels

the probability of an outcome using the statistical method,

maximum likelihood estimation. The tokenizer used in this

case, to transform text into numbers, was TfidfVectorizer.

Term-frequency inverse document frequency (Tfidf), is a

measure that is intended to reflect how important a word is

to a document. Logistic Regression (35) and TfidfVectorizer

(36) achieved an accuracy of 63.22% (F-score of 0.625)

(Supplementary Presentation 1).

The Transformer models were trained for a maximum of

13 epochs, where an epoch is a pass of the model over the full

training dataset. The performance of the model was evaluated

throughout the training procedure using accuracy and loss,

where accuracy is the fraction of correct predictions and loss is
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TABLE 3 Annotator accuracy and F-scores.

Annotator Dataset A Dataset A Dataset B Dataset B Dataset A+ B Dataset A+ B

Accuracy F-score Accuracy F-score Accuracy F-score

1 85.2 83.5 80.0 75.1 83.9 81.4

2 88.2 86.8 87.6 85.8 88.1 86.5

3 78.9 76.4 80.2 79.6 79.2 77.2

Data after cleaning, 3 categories (promotional, neutral, discouraging).

TABLE 4 Accuracy and F-scores for annotators and ML models over

full dataset (dataset A + B).

Data with 3 categories Accuracy (%) F-score

Annotator average 83.7 0.817

Annotator 1 83.9 0.814

Annotator 2 88.1 0.865

Annotator 3 79.2 0.772

Logistic regression+ TfidfVectorizer 63.2 0.625

Support vector machine (LinearSVC) 64.7 0.645

Finetuned XLM-RoBERTa-large 72.4 0.720

The bold values indicate annotator average (the baseline result against which ML model

results are to be compared) and the XLM-RoBERTa model results.

the mean error of the predictions. If the model’s prediction is

perfect, the loss is zero; otherwise, the loss is greater than zero.

Early stopping was used tomonitor accuracy and stop overfitting

of the model. Overfitting a model to the training data reduces its

ability to generalize and thus predict using other data.

The various Transformer models were tuned with different

hyperparameters for best performance on the task datasets.With

each hyperparameter combination, the models were run five

times, to note the best and range of performance. Through

this method, the XLM-RoBERTa-large model was selected for

this task.

The XLM-RoBERTa-large model was fine-tuned 5 times

with dataset A training data and 5 times with the combined

dataset A plus dataset B training data. The best performing

model was chosen in each case out of the 5 runs according to

F-score from the validation datasets (Supplementary Figure 2).

Selecting the model using F-score from the validation data,

ensured a blind selection of themodel, not biased by results from

the test datasets. The accuracy and F-scores are shown for the

test datasets.

Results

The best performing machine learning model was XLM-

RoBERTa-large. RoBERTa (A Robustly Optimized BERT

Pretraining Approach) is based on BERT. The term XLM

indicates it is a cross-lingual (i.e., multi-lingual) model, and

TABLE 5 Accuracy and F-scores by training dataset and testing

dataset using the fine-tuned XLM-RoBERTa-large model.

Train dataset Test dataset Accuracy (%) F-score

Dataset A Dataset A 72.8 0.713

Dataset A Dataset B 62.1 0.617

Dataset A Dataset A+B 70.1 0.689

Dataset A+B Dataset A 72.8 0.721

Dataset A+B Dataset B 71.3 0.713

Dataset A+B Dataset A+B 72.4 0.720

the term large indicates the number of encoder layers. The

hyperparameters chosen were batch size 16, learning rate 2e-5

and warm-up proportion 0.15. The sequence length was limited

to 96 tokens, to ensure that not even the longest tweet in

the data was truncated. Token sequence length was checked

using XLMRobertaTokenizer (Supplementary Figure 3).

The best performing model was trained using the EU-JAV

training data and selected according to F-score performance

with the EU-JAV validation data. Table 4 shows results

for annotators and machine learning models over the

full dataset; Table 5 shows results by training dataset and

testing dataset.

Training on dataset A and testing on dataset A resulted in

an accuracy of 72.8% (F-score 0.713). Testing the same model

on dataset B, the accuracy dropped to 62.1% (F-score 0.617)—a

drop of about 10%.

When the model was retrained with the full dataset

(dataset A+B), then the accuracy of the predictions for

dataset A remained at 72.8% (F-score increased slightly

to 0.721) and the accuracy for dataset B increased to

71.3% (F-score 0.713).

The dataset B was too small to be used for independent

training. However, combining the two datasets dramatically

improved the model performance for dataset B, bringing the

accuracy for the smaller more recent dataset into line with that

over the larger original dataset.

This indicates that model retraining with not just more

data, but also more recent data, proves advantageous and helps

the model keep up-to-date with the natural change in task-

specific language.
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FIGURE 2

Normalized confusion matrices for the final selected fine-tuned model. Top row: XLM-Roberta-large model trained on dataset A. Bottom row:

XLM-Roberta-large model trained on the combined datasets (dataset A+B). On the left, the matrices when the model is tested on dataset A. In

the centre, the matrices when the model is tested on dataset B. On the right, the matrices when the model is tested on the combined datasets.

The accuracy of the model trained and tested on the

combined datasets was 72.4% (F-score= 0.720).

Confusion matrices aid evaluation of the classification

accuracy. The diagonal in a confusionmatrix shows howwell the

predicted label matches the human annotator label, i.e., where

the tweet has been “correctly” identified by the model. The off-

diagonal elements are those that are mislabeled by the model.

Normalization results in each row of the matrix adding up to

1, thus percentages of correctly or wrongly identified elements

are shown.

Figure 2 shows normalized confusion matrices. The top row

is for the XLM-Roberta-large model trained on dataset A, the

bottom row for the XLM-Roberta-large model trained on the

combined datasets (dataset A+B). On the left, thematrices when

the model is tested on dataset A, in the center, the matrices

when the model is tested on dataset B, and on the right, the

matrices when the model is tested on the combined datasets.

The confusion matrices show that discouraging tweets are the

easiest out of the three categories to identify. Training on the

combined datasets helps the model differentiate between the

three categories in dataset A, even if it does not increase the

overall accuracy of the model: the confusion matrices when

testing on dataset A show a marked increase in correctly

identifying neutral tweets (56–66%) with a slight decrease in

correctly identifying promotional and discouraging tweets (70–

69% and 88–82%, respectively). The confusion matrices when

testing on dataset B show the benefits of retraining on more

recent data: an increase from 59 to 70% for correctly identifying

promotional tweets, and an increase from 45 to 71% for correctly

identifying neutral tweets. A slight reduction in performance

for correctly identifying discouraging tweets is noted (from

83 to 72%), balanced by an increase in mislabeled neutral

tweets (0.03–0.14%). These results support the suggestion that

model retraining with more recent data helps the model in

the classification task, which is likely not just due to the

increased dataset size, but also familiarity with more recent

task-specific language.

Discussion

We present a NLP machine learning Transformer-

based model aimed at automatically classifying the stance

of Italian vaccine-related tweets with a level of accuracy

of 72.4% and with an F-score of 0.720. We show a

reduction of the model’s accuracy when tested on more

recent data compared to that used for training the model,

and an improvement when including more recent data in

the training.

Dataset A was collected between November 2019 and June

2020. Dataset B was collected between April 2021 and September

2021. The annotators noticed that the language and focus within

the social discourse about vaccination evolved over the time of

study—new words entered the conversation, such as COVID-19

vaccine brand names or words referring to political initiatives,

e.g., “green pass”.
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We saw a decrease of the accuracy and of the F-score for

the model trained on the 2019–2020 data, when we tested it on

the 2021 data. The performance of the model increased when

testing on the 2021 data (both for accuracy and F-score) when

we included 2021 data in the training set.

The selected machine learning Transformer-based model,

XLM-RoBERTa-large (37), was published in November 2019.

It was pre-trained on 2.5TB of filtered CommonCrawl data

(38) containing 100 languages. However, SARS-CoV-2 was first

confirmed to have spread to Italy on January 31, 2020, thus the

model had not seen any COVID-19 related conversations or

COVID-19 specific language. Pre-training the XLM-RoBERTa-

large model on unlabeled 2020 Twitter data may well increase its

performance on this task.

Different tokenizers have different vocabularies. The model

we selected for this task, XLM-RoBERTa-large, uses a tokenizer

with a vocabulary size of 250,002. For comparison, another

popular multilingual model [bert-base-multilingual-uncased

(39)] uses a vocabulary size of 105,879, just under half that of

the XLM-RoBERTa-large. A mono-lingual model pre-trained

specifically for the task of the COVID-19 discussion on Twitter,

covid-twitter-bert-v2 (40), uses vocabulary from English BERT

with a size of 30,522. Words such as “mask,” “confinement,” and

“vaccine” are in its vocabulary whereas they are not present in

the XLM-RoBERTa vocabulary. Thus, a limitation of the XLM-

RoBERTa tokenizer, despite its size, is that it was released in 2019

and so COVID-19 specific words and their COVID-19 context-

specific meanings are not in its vocabulary. However, words

such as “isolation” and “virus” are in its vocabulary and perhaps

explain its reasonable performance on this task.

Manual stance coding is very time consuming and is

subjective in nature. One of the strengths of this study was the

precision of the data labeling phase, which was carried out by

a multidisciplinary group including physicians with experience

in vaccines and social scientists with experience in internet

studies. The labeling process followed a structured protocol,

training sessions were carried out before the labeling started

and weekly discussions were held to fine-tune the classification

process among the researchers involved. We decided to focus

on data quality rather than quantity. Thus, a corpus size of

1,736 unique tweets, carefully labeled, was considered sufficient

to make a meaningful study. Subjectivity was addressed by using

three independent coders and discussing discrepancies.

As previously discussed, sentiment analysis is not sufficiently

nuanced to have a meaningful description of vaccine confidence

on social media data (see Supplementary Figure 4). Other

studies have addressed vaccine stance classification in Italian, as

well as in other languages. D’Andrea et al. (41) trained a model

for vaccine stance classification on Twitter with reference to the

vaccination topic in Italy. To this aim, the research group used a

set of 693 tweets published between September 2016 and January

2017. Accuracy, achieved by classical ML methods, namely Bag

Of Words text representation (vectorization) and a Support

Vector Machine (SVM) classifier, was 64.84%. The researchers

pointed out the risk of deterioration of the classification models,

given the potential changes of the vaccine conversation over

time, possibly due to the occurrence of specific social context-

related events.

In order to understand how a model similar to the one

used by D’Andrea et al. would perform on our data, we used a

SVM model to classify the EU-JAV data and achieved 63.51%

accuracy. Classical ML models achieved lower accuracy than the

Transformer models on the EU-JAV data, confirming the recent

improvements in NLP using Transformer models. BERT was

created and published by Google in 2018 and is now ubiquitous

in NLP (26).

Kummervold et al. (29) studied the stance of tweets

on maternal vaccination using Transformer-based machine

learning models and showed that machine learning models can

achieve similar accuracy to a single annotator. Their best model

achieved an accuracy of 81.8% (F-score = 0.776) compared to

the agreed score between three annotators, and the accuracies

of the individual annotators compared to the final score were

83.3, 77.9, and 77.5%. Their data was collected over 6 months,

between November 2018 and April 2019, and, after cleaning,

consisted of 2,722 tweets. In our study, data after cleaning

consisted of 1,736 tweets (64% of the size of the Kummervold

dataset), collected over a total time period of 22 months. Our

annotators demonstrated very similar accuracy, which seems

reasonable considering the similarity in task (79.2, 83.9, and

88.1%). However, our fine tuned model did not achieve the same

level of accuracy as Kummervold’s, 72.4% (F-score = 0.720) cf

81.8% (F-score= 0.776). The lower accuracy of our model might

be in part due to the reduced dataset size, or to the drift in

stance over the extended time period of data collection. The

Kummervold study was carried out in English (non-English

tweets were translated into English using a Google Translate

script), whereas our study was carried out in Italian. NLPmodels

have seen more work in English (42). This is highlighted by

the models available on Hugging Face, an open source library

of NLP models, where there are around 15,000 mono-lingual

models in English and just 10,000 mono-lingual models in all

other languages. This may be due in part to the availability

of data and financial resources. Other language models and

multilingual models are seeing advances but still seem to be

behind in development and performance.

Another possible explanation of the difference in the

accuracies between Kummervold’s and our model could

be that Twitter in Italy is used mainly by professional

people, e.g., experts, journalists and public institutions,

participating in public conversations (43). Most of the

conversations are intellectual and often both language

and content are quite sophisticated and rhetorical.

This could make both the annotators’ and the model’s

classification task harder than that for other languages.

This language complexity is the reason why it was decided
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to keep the tweets in Italian and not to translate them

into English.

Kumar et al. (44) used COVID-Twitter-BERT, a model

pretrained on COVID Twitter data, achieving an F1-score of

0.532 and an accuracy of 0.532, demonstrating that stance

classification is not straightforward. The dataset contained 1,010

tweets of neutral, 991 tweets of ProVax, and 791 tweets of

AntiVax classes. The COVID-Twitter-BERT model is in English

and so not appropriate for our study.

Cotfas et al. (45) studied a dataset of 3,249 tweets selected

from 5,030,866 tweets in English collected from Twitter between

December 8, 2020 and January 7, 2021. The best performing

classical machine learning classifier was a Support Vector

Machine with accuracy 72.19%. The best performing deep

learning classifier was RoBERTa with accuracy 78.63%. The

accuracy in this study is slightly better than we achieve, as would

be expected from a larger dataset (about twice the size). Again,

the model used was pre-trained for the English language.

Lemmens et al. (46) describes development of CoNTACT,

a Dutch language model adapted to the domain of COVID-

19 tweets. The model was pre-trained on 2.8M dutch tweets

related to COVID-19. CoNTACT achieved an F1-score of 77.1

improving on its basemodel RobBERT, a Dutch RoBERTamodel

(F1-score 75.1). Models that are pre-trained on a specific target

domain show improved performance. This could be considered

for future Italian activities to develop better models focused on

Italian text.

An important issue that emerges from our results is the

need for retraining of the model through time. This has been

already suggested by other authors, but our results clearly

support this recommendation. The COVID-19 vaccine roll-out

disrupted the characteristics of the language and content of the

social media conversation on vaccines, and this is reflected in

the performance of our model when tested on newer data. A

continuous process of model re-training is needed to keep up

with the evolving characteristics of the vaccine discourse.

The use of non-conventional data streams can have a crucial

impact on public health activities. Google search data, combined

with historical surveillance data and data from electronic health

records, have been used to forecast influenza epidemic trends

(47), and prediction models based on Google search data have

been developed for dengue (48) and Ebola (49). Information

spontaneously provided by users on social media could be used

to complement pharmacovigilance activities (50) and syndromic

surveillance activities (51). Twitter reactions have been found to

be correlated with COVID-19 epidemic waves in Japan (52).

As pointed out by Aiello et al. (17) in an analysis of the way

digital data could improve public health, “improving population

health depends on effective communication and interventions”.

Constant monitoring of vaccine stance on social media through

NLP can enable public health agencies to have a real-time

understanding of the favorability toward vaccines among social

media users. We acknowledge that social media users are not

a representative sample of the whole population. Though, as

the use of social media is constantly rising, and this rise has

been even more consistent during the COVID-19 pandemic,

social media users represent a wide part of the population and a

potential target for health communication initiatives. Moreover,

the importance of social media is not limited to its users, as

stories and news circulating on social media affect the way

health-related themes are discussed also on mainstream media

(53, 54), which still remains the most used information source

(55), especially for age groups typically not familiar with social

media channels.

Through vaccine stance analysis, popular narratives and

misinformation/disinformation circulating in discouraging

posts could be quickly identified, thus triggering actions

by institutions to counteract the dangers posed by fake

news. Moreover, automatic vaccine-stance analysis could

be used for monitoring the effect of important events

(e.g., rollout of a new vaccine) or the impact of vaccine

promotion campaigns on vaccine acceptance in almost

real time. Finally, real-time data on vaccine stance could

be combined with traditional data on vaccine acceptance

(e.g., obtained through national surveys) and with vaccine

coverage figures to better understand the relationship

between opinions expressed online and the actual behavior of

the population.

NLP is constantly evolving. GPT-3 (Generative Pre-trained

Transformer 3) (56) can perform reading comprehension

and writing tasks at a near-human level. Such powerful

models with critical thinking and logic skills promise

applications in many areas (57) including translation and

multilingualism (58). Work is on-going regards sarcasm

detection (59–61) and understanding complex opinions

(62) (e.g., positive stance toward vaccines but negative

stance toward institutions or policies) with the aim of more

nuanced interpretation of people’s opinion. Future models

will focus on zero-shot, one-shot and few-shot learning,

where models will classify objects from zero, one, or very few,

samples (63, 64).

Our study has a number of limitations. First, our data

was limited by what could be exported from Twitter. The

number of tweets per week or per month is not constant

(shown in Supplementary Figure 5) and we have no control

over the selection of data over the time period. Moreover,

Twitter users in Italy only represent a small percentage of

the population (5–13%) (43), and have their own language

characteristics, therefore the applicability of the model to other

kinds of text should be investigated before being used. Three

annotators labeled the data. However, one of the annotators

was leading the analysis, so when there was disagreement

and hence discussion of how to label a tweet, their point of

view may have been weighted unconsciously. The annotator

agreements with the final label indicate a slight bias toward

the lead annotator. In any group this weighting is likely
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to occur and would be difficult to remove. The tweets that

the model labeled differently to the annotators were studied.

In some instances, after further consideration, the model

label was thought more correct than the annotator label. In

future research, one could consider removing such “difficult

to label” tweets from the dataset or use the model as a

fourth annotator.

Conclusion

Our results on selecting and fine tuning a NLP machine

learning model to classify vaccine-related tweets according to

their stance show that retraining a model on recent social

media discourse data improves the model’s performance on

that data. This is likely not just due to the increased dataset

size, but also to familiarity with the evolved terminology

and public stance. It is advisable therefore to periodically

fine-tune NLP social media monitoring models to keep in

step with the natural change of language within a subject

over time.

Understanding public stance toward vaccines is crucial for

governments and public health agencies to help guide them

in the development of educational campaigns and targeted

communication. Machine learning enabled social media analysis

should be considered alongside conventional methods of

assessing public attitude, for its potential to obtain a close to

real-time assessment of public confidence. Machine learning

based vaccine stance monitoring could help institutions to

address the concerns of vaccine skeptics, to develop more

effective policies and communication strategies, and to monitor

their impact, with the aim of maximizing trust in and uptake

of vaccines. Future research should focus on studying the

performance of the most recent NLP models, which will allow

for a more accurate and nuanced description of vaccine stance

on social media.
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