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Reproducing computational workflows in image analysis and microscopy can be a
daunting task due to different software versions and dependencies. This is especially
true for users with little specific knowledge of scientific computation. To overcome these
challenges, we introduce Singularity containers as a useful tool to run and share image
analysis workflows among many users, even years later after establishing them.
Unfortunately, containers are rarely used so far in the image analysis field. To address
this lack of use, we provide a detailed step-by-step protocol to package a state-of-the-art
segmentation algorithm into a container on a local Windows machine to run the container
on a high-performance cluster computer.

Keywords: singularity container, reproducibility, imaging facilities, software dissemination, code sharing, ease of
use, high-performance cluster computing

INTRODUCTION

The need for computational image analysis has drastically increased over the past decade. Modern
microscopes are now able to simultaneously observe multiple samples such as zebrafish or mouse
embryos over several days at single cell resolution (McDole et al., 2018; Daetwyler et al., 2019). This
leads to complex and large datasets that are often tens to hundreds of Terabytes in size. Consequently,
manual inspections and analysis of the acquired data are less and less feasible. Instead, automated image
processing and analysis workflows are becoming indispensable for handling the acquired data.

To deal with these complex and large datasets, image processing and analysis workflows are often
sophisticated and consist of multiple steps. In addition, they often require powerful computational
resources such as high-performance cluster computation (Daetwyler et al., 2019). This poses a
considerable challenge to scientists with no previous background in scientific computation. This is
particularly an issue in imaging facilities where many users with various backgrounds have access to
state-of-the-art microscopes. Ideally, such facilities would provide users with robust, yet simple
interfaces with no need to install or set up software to enable complex and thorough workflows
dedicated to specific microscopes.

Additionally, software versions and their dependencies change fast. By the time a researcher wants
to reproduce an established pipeline for their own dataset, e.g., from a published research paper, the
required software or its dependencies may have changed. Therefore, reproducing the results may be
time-consuming at best or impossible at worst. For example, if a reader is trying to recreate an
experiment that was published in 2013 with code written in Python 2.7.6 but has Python 3.8 installed
locally, they might have to revert to 2.7.6 or find another workaround to properly run the code.
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To overcome these issues, one convenient workaround is to
use containers. Containers are packaging mechanisms for
software that allow a workflow to be separated from the
original system it was created and run on. Therefore,
containers can immortalize the specific software state needed
to run an original app or pipeline. This is ideal for later
reproducibility and code sharing. From a user perspective, this
means that instead of taking and modifying many lines of code,
correctly downloading and setting dependencies, and dealing
with future updates of utilized software packages, only
downloading the container image and a few lines of code are
required to reproduce a pipeline.

Despite all these advantages, containers are rarely used in the
imaging field, as building a container may appear difficult at first
glance. To support the bioimaging community, we describe here
the advantages of containers in detail and how to establish a
container for an image analysis pipeline with a step-by-step
protocol. Ultimately, we hope that this methods paper will
increase data sharing and reproducibility with the help of
containers in advanced workflows in microscopy labs and
imaging facilities.

SINGULARITY CONTAINERS ARE WELL
SUITED FOR HIGH-PERFORMANCE
COMPUTING

To understand the concept of a container, it is important to
understand the building blocks of a Unix operating system
(Linux Information Project 2005). User interactions such as
writing in a text editor or image processing software run in the
so-called user-space. In a distinct and protected part of the system
memory, the kernel (i.e., the core of the operating system) controls
device drivers and executes processes such as Input/Output (I/O),
e.g., data transfer to and from a CPU, or to and from peripheral
devices such as a keyboard. Containers utilize the machine’s
operating system kernel and only segregate processes in user-
space (Turnbull 2014; Young 2017). This enables the coder to
have multiple isolated user-space instances on one single machine
in a “lightweight” way that avoids the overhead of virtual machines
(VMs), which are an abstraction of the physical hardware and
include a full copy of the operating system with its own kernel.

One of the most widely used container virtualization tools is
called Docker, with a community of over 11 million developers

(Docker, Inc. 2021a). Docker is very robust in its ability to create
and run containers and is easily used on local systems and shared
with other users through their online hub (https://hub.docker.
com/). However, Docker containers, as well as most other
container solutions, traditionally require root privileges to be
built and run. This presents an issue on High-Performance
Computing (HPC) clusters required for advanced image
analysis workflows as most users do not have root access.
Although Docker now offers a rootless mode, several
limitations currently exist for the rootless mode in Docker,
including a limited amount of supported storage drivers
(Docker, Inc. 2021b). To offer a suitable alternative for HPC
clusters, Singularity containers were developed (Kurtzer, Sochat,
and Bauer 2017). Importantly, Singularity containers do not need
root access to the host system to run and are therefore widely
adopted on HPC clusters. Moreover, to interact with the huge
Docker community and pre-built containers, Singularity is able to
build most Docker images pulled from Docker Hub. In
conclusion, Singularity is a great tool to package complex
image analysis workflows into one container for HPC clusters.

WORKFLOW FOR IMAGE ANALYSIS USING
CONTAINERS

Singularity containers are particularly useful if many users in a
microscopy lab or imaging facility require the same workflow
repeatedly. This is often the case as the samemicroscopes are used
for acquisitions, requiring the same workflow for image
processing and further analysis tasks. In an ideal scenario
(Figure 1), one dedicated imaging specialist, who is familiar
with programming, develops a container containing the
required processing workflow for one or several microscopes.
The established container image is then shared with the many
end-users of the microscope or other users outside of the facility.
The end-users then only need a few lines of code to start running
the container. This enables the end-user to not have to deal with
dependencies or similar issues to be confident that the
appropriate workflow is applied to the acquired data.
Moreover, by saving the container, the applied analysis can be
repeated by other users years later, which is expected to
significantly improve reproducibility in image processing.

To exemplify the usefulness of a container, we have
containerized a workflow that includes a recently published

FIGURE 1 | Schematic of a two-step workflow for the usage of containers: “build once, apply forever.”
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segmentation tool, Cellpose (Stringer et al., 2021). Cellpose has
shown great promise across many biological applications and
might therefore be a valuable tool for many microscopists. In our
exemplary container, we have built a container that consists of a
workflow of first segmenting images from a selected folder, and
saving them into a new, user-defined folder in a second step. To
set the parameters for a successful segmentation, our container
can directly receive inputs from the command line after the run
container call (Code 18).

MATERIAL AND EQUIPMENT

An end user in an imaging facility only requires a container and a
Linux operating system (e.g., on the HPC cluster) with Singularity
installed to run it (Code 1, Code 18). Singularity is likely already
available on your HPC cluster. Alternatively, contact the HPC
administrators or follow the description on https://sylabs.io/
guides/3.7/admin-guide/installation.html# to install Singularity.
With Singularity installed, any user can directly run a compiled
Singularity Image File (SIF) indicated with a “.sif” file extension
with (Code 1):

To establish a container, an image analysis specialist is
required. To build a Singularity container locally (c.f.
Supplementary Note S1 for building a container on the
cluster), you either need to have a Linux system or create a
Linux virtual machine. As most microscopy labs and imaging
facilities rely onWindows on their local workstations, we provide
a step-by-step protocol to set up a virtual machine and build a
Singularity container for the use on a HPC cluster on Windows
below. For this, the following software is needed:

1) Install git with default settings: https://gitforwindows.org/(for
the Git Bash), which provides a terminal to build the
container.

2) Install a VirtualBox with default settings (https://www.
virtualbox.org/wiki/Downloads), which provides a virtual
machine in which Linux will run to build the container.

3) Install Vagrant (https://www.vagrantup.com/downloads.
html), which automates the VM setup and makes a
Virtual-Box with pre-installed Singularity available for use.

4) (Optionally) Install Vagrant Manager (https://www.
vagrantmanager.com/downloads/), which centralizes the
VMs for easier handling, particularly when building several
containers in parallel.

STEP-BY-STEP PROTOCOL

To successfully build the above described container containing
our workflow based on Cellpose (Stringer et al., 2021) (1), we
provide a step-by-step protocol here (Figure 2, Table 1). For this,
first, a virtual environment on Windows has to be set up
containing all required files (2–8), before building the
container (9–11) and disseminating and applying it (12–13,
Figure 2B). All files to successfully build the container are
available as supplementary or on github: https://github.com/
DaetwylerStephan/Containerize_ImageAnalysis/.

1) Create/design your workflow for image analysis. For
demonstration purposes, we wrote a Python file
“python_main.py” (c.f. Supplementary Files, github) that
contains the relevant commands for a simple segmentation
workflow using Cellpose (Stringer et al., 2021), a state-of-the
art segmentation algorithm.

FIGURE 2 | (A) Overview of a step-by-step protocol to establish a Singularity container. While an image analysis specialist of a facility is required to follow all steps
(blue), an end user only needs to run the container (brown) and therefore does not have to deal with setting up the software and its dependencies correctly. (B–D)
Resulting segmentation from applying the here described container: (B) Still image of red blood cells (magenta) labelled with Tg (Gata1a:dsRed) (Traver et al., 2003) in a
zebrafish embryo with a vascular marker (cyan) Tg (kdrl:eGFP) (Jin et al., 2005). (C)Grey scale image of the labelled red blood cells (D)Resulting segmentation (red)
overlayed on the grey scale image (C). Scalebar: 50 um.
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TABLE 1 |Code used in the step-by-step protocol for establishing a container using a definition file. Please note that copying some code directly from the table might induce
errors due to formatting. Hence, we suggest to type the commands newly in case of errors, and refer to the files on github: https://github.com/DaetwylerStephan/
Containerize_ImageAnalysis or in the Supplementary Material.

Code Project title

Code 2 > mkdir container_example/
> cd container_example/

Code 3 > vagrant init sylabs/singularity-3.7-ubuntu-bionic64
Code 4 > vim Vagrantfile
Code 5a config.vm.synced_folder "C:/your/local/cellimages/filepath", "/home/vagrant/cellpose_testdata"
Code 5b config.vm.provider "virtualbox" do |vb|

#Customize the amount of memory on the VM:
vb.memory � "9000"

end
Code 6 > vagrant up
Code 7 > vagrant ssh-config
Code 8 > scp -P 2222 python_main.py vagrant@127.0.0.1:.
Code 9 > vagrant ssh
Code 10 vagrant@vagrant> sudo apt-get update

vagrant@vagrant> sudo apt-get install vim
vagrant@vagrant> vim cellpose_container.recipe

Code 11 Bootstrap: docker
From: ubuntu:18.04

Code 12 %labels
AUTHOR: Shilpita Mitra-Behura, Reto Fiolka, Stephan Daetwyler

Code 13 %files
/home/vagrant/python_main.py /mnt

Code 14 %post
#Downloads the latest package lists.
apt-get update -y

#Install python and other tools.
#Non-interactive is used to ensure prompts are not needed.
DEBIAN_FRONTEND�noninteractive apt-get install -y --no-install-recommends \
python3 python3-pip\
python3-setuptools

#Update pip

python3 -m pip install --upgrade pip��21.2.4
#Install python libraries needed for Cellpose to run
python3 -m pip install wheel��0.37
python3 -m pip install --no-cache-dir torch��1.8.1
python3 -m pip install opencv-python-headless��4.5.3.56
python3 -m pip install cellpose��0.6.5

Code 15 %runscript
exec /usr/bin/python3 /mnt/python_main.py “$@”

Code 16 %help
This is a Singularity container to segment images using Cellpose.
To run this container, use, for example, ’singularity run cellpose_container.sif --filedir
/folder/where/files/to/segment/are --savedir /folder/where/segmented/files/should/be/saved --pretrained_model cyto
--chan 2 --save_tif’

The user must put the folder where the files to be segmented are after the flag “--filedir.” The directory where the user wants
to save their files is optional, with the tag “--savedir.”
The flag “--pretrained_model” is required and must have either the input “cyto” or “nuclei.” The flags “--chan” and “--chan2”
are optional and allude to the channels of the image that will be segmented.
The flag “--diameter” is optional and can be added for the user to specify the diameter of the nuclei in image.
The flags “--flow_threshold”, “--cellprob_threshold” are further optional flags to specify cellpose parameters.
The flags “--save_png” and “--save_tif” are used to denote what file type the segmented files are saved as. The default is to
save as a Tiff.

Code 17 vagrant@vagrant> sudo singularity build cellpose_container.sif cellpose_container.recipe
Code 18 vagrant@vagrant> singularity run cellpose_container.sif

--filedir /home/vagrant/cellpose_testdata --savedir /home/vagrant/cellpose_testdata/save_segmentedimages --pretrained_model nuclei
--chan 1 --flow_threshold 0 --cellprob_threshold −1 --diameter 19 --save_tif

Code 19 > scp -P 2222 vagrant@127.0.0.1:/home/vagrant/cellpose_container.sif .
Code 20 > sbatch run_on_cluster.sh

Frontiers in Bioinformatics | www.frontiersin.org January 2022 | Volume 1 | Article 7572914

Mitra-Behura et al. Image Analysis With Singularity Containers

https://github.com/DaetwylerStephan/Containerize_ImageAnalysis
https://github.com/DaetwylerStephan/Containerize_ImageAnalysis
mailto:vagrant@127.0.0.1:
mailto:vagrant@127.0.0.1:/home/vagrant/cellpose_container.sif
https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


2) Next, open Git Bash and go to or make the directory (Code 2)
in which you want to build your container. The directory that
is being used for this demonstration is called
“container_example.” Copy the python_main.py file into
the container_example folder.

3) After creating this working folder, initialize a Vagrant virtual
machine established for Singularity in Git Bash (Code 3). This
sets up a Linux based virtual machine with Singularity already
installed. To confirm that a Vagrant virtual machine has been set
up successfully, check whether a “Vagrantfile” was placed in the
working directory by typing “ls”.

4) To establish a container that runs Cellpose on a set of images,
mount a folder with test images directly to Vagrant for easier
troubleshooting. To do so, use vim to open the Vagrantfile for
editing (Code 4).

In the Vagrant file, un-comment the “config.vm.synced_folder”
line and add the path to your test images. Thereby, the first
argument of “config.vm.synced_folder” is the path to the test
images on the host system and the second argument is the path
in the Vagrant/guest system (Code 5a). If the path you designate
in the Vagrant system does not exist, it will be created for you.
Note: If you are usingWindows and copy your file path directly
from your system, you must change backward slashes to
forward slashes (as shown in Code 5a), or your Vagrant
system will not compile.

Additionally, modify the Vagrantfile memory setting
“vb.memory” to ensure that there is enough RAM, by
uncommenting the lines ‘config.vm.provider “virtualbox” do
|vb|’, ‘vb.memory�”1024”’, and “end”. Cellpose requires at
least 8 GB of memory allocation, so provide at least that much
memory (Code 5b). A screenshot of a modified Vagrantfile can
be found in the Supplementary Note S2.

5) After saving this Vagrantfile, run “vagrant up” to build the virtual
machine (Code 6). If your workstation is behind a corporate
firewall, proxy issues might occur. In that case, download the
vagrant box directly (Supplementary Note S3A).

6) The Python file must be moved into the Vagrant system so
that Singularity can access it when building the container.

To copy the Python file into Vagrant, obtain the HostName
and port of the Vagrant machine (Code 7).

Next, securely copy (scp) the Python file into Vagrant (Code 8),
in our casewithHostName:127.0.0.1, port: 2,222. The password for
Vagrant is “vagrant”.

7) Now run “vagrant ssh” to connect to the virtual machine (Code 9).
Once the virtual machine has started, check that the folder with test
images has been bound properly and that the python_main file is
available. If you enter the command “ls”, “python_main.py” and
the folder “cellpose_testdata”with your test images should be listed.

8) Next, install vim (Code 10) in the Vagrant environment to be
able to write the definition file (also known as build recipe) to
build a Singularity container. Make sure to enter “Y” when
prompted by the terminal.

9) Now use vim to write the definition file “cellpose_container.recipe”
for building the container, or copy a definition file into Vagrant the
same way as the “python_main.py” file. If you copy the example
definition file provided into your vagrant box, exit the vagrant box
first by typing “exit”. The complete definition file for our Cellpose
container is available in the Supplementary Files or on github. In our
example, the definition file was composed of the following sections:

9a) The Singularity definition file contains a bootstrap specification
header (Code 11). This header indicates which Singularity module
is used to set up the core components of the container (Kurtzer,
Sochat, and Bauer 2017). Thereby, we can benefit from already
established images, and hence use an established Docker image as
an underlying template which contains important container
settings. In addition, we specify a version of the Unix operating
system which is run in the container.

9b) Next, write labels (%labels) in the definition file to annotate your
container. For example, specify the author names. (Code 12)

9c) Next, write the %files section in the container to specify which
files have to be copied into the container.We specified that the
python_main.py file, saved in the Vagrant Box, is moved into
the /mnt folder of the container so that it can be called from
within the container. (Code 13)

9d) Next, write the %post section (Code 14). This section is executed
once while the container is built and run from inside the
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container. This means that all required software to run the
imaging pipeline has be installed here. As Cellpose is a Python
library, provide the commands to install Python, all required
Python dependencies of Cellpose, and Cellpose itself here. It is
good practice to provide version numbers, e.g., cellpose��0.6.5,
for later reproducibility.

9e) Next, write the runscript (Code 15). This is the part that is run
when the container is executed by the user.

9f) Next, provide a help section (Code 16). This section is
important for users to understand how to use the
container and can be called by entering “singularity run-
help cellpose_container.sif”:

9g) Save the file and exit vim.
10) With the complete definition file “cellpose_container.recipe”, it

is time to build the container (Code 17), where the first

argument is the name of the Singularity image that is built
and the second argument is the container definition file.
Building the container, especially in a Vagrant system with
limited RAM, is time-consuming and can take several minutes.
In case of proxy issues (e.g., “conveyor failed to get”—error
message), the Vagrantfile should be modified before building
the container (Supplementary Note S3B).

11) Test the newly built container on the images mounted to
the Vagrant directory (Code 18). When running this
code, Cellpose will download the available models first
before segmenting. Pay attention to the Cellpose
documentation to ensure that the arguments you
supply to the container make sense for your data
(i.e., pay attention to which channels are used in your
input images). Note: Currently, the workflow does not
overwrite older files, so make sure to delete older files if
you are running the code on the same files and saving
into the same directory twice. Note 2: Copying Code 18
from Table 1 to the command line might introduce
errors due to the hyphens. Therefore, we suggest
typing it newly.

12) Next, type “exit” in the vagrant prompt to exit the Vagrant
virtual machine. Using Code 7, find the port information
(e.g. HostName:127.0.0.1, port: 2,222) to copy the Singularity
container file to your local host computer folder “.” (Code
19). The password is “vagrant”. From there copy the
container to your HPC or distribute it.

13) Now, apply the Singularity container containing Cellpose on
available images on a high-performance cluster computer

TABLE 2 | Code used for establishing a sandbox container. Please note that copying text from the table might introduce some errors, particularly for the hyphens. In case of
errors, we suggest typing the code newly in the command line.

Code Project title

Code 21 vagrant@vagrant>sudo singularity build --sandbox nameofdir/ docker://ubuntu:18.04
Code 22 vagrant@vagrant> sudo singularity exec --writable nameofdir/ /bin/bash
Code 23 (alternatively) vagrant@vagrant> sudo singularity shell --writable nameofdir/
Code 24 Singularity>
Code 25 Singularity> apt-get update -y
Code 26 Singularity> apt-get install -y python3
Code 27 Singularity> apt-get install python3-pip
Code 28 Singularity> python3 -m pip install --upgrade pip��21.2.4
Code 29 Singularity> pip install cellpose��0.6.5
Code 30 vagrant@vagrant> sudo cp python_main.py nameofdir/mnt/
Code 31 vagrant@vagrant> singularity exec nameofdir/ python3 /mnt/python_main.py --filedir /home/vagrant/cellpose_testdata

--pretrained_model nuclei --chan 1 --save_tif
Code 32 vagrant@vagrant> sudo singularity build containername.sif nameofdir/
Code 33 vagrant@vagrant> singularity exec containername.sif python3 /mnt/python_main.py --filedir /home/vagrant/

cellpose_testdata --savedir /home/vagrant/cellposedata/masks --pretrained_model nuclei --chan 1 --save_tif
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(Figure 2). For this, you need a SLURM file to submit a job to
the cluster. This file should contain all required SLURM
parameters, including parameters for job name, number of
nodes, memory requirements and time limit. In addition, the
SLURM file should load Singularity and run the container on
selected images (c.f. Supplementary Files, github). Copy the
SLURM file and the container to a folder on the cluster and
go to this folder on the cluster. Now, run the container by
calling the SLURM file (Code 20).

SANDBOX CONTAINER AS TOOL TO
TROUBLE-SHOOT CONTAINER
DEVELOPMENT
Using definition files to build Singularity containers can be
limiting. To check the functionality of your container, you must
rebuild the container after every edit of the definition file. To
address this issue, Singularity offers a convenient mode to build
your container interactively and iteratively. This mode is known as
sandbox mode. It creates a container within a writable directory.
The directory thereby will act as a Singularity image file, and is
mutable, unlike normal Singularity images (i.e., sif files). After you
are satisfied with the setup of your directory (that is, your
container), you can build a .sif file, which is immutable, for ease
of use. Below we will briefly illustrate how to build and edit this
writable directory to fulfill the same functions as the container we
built in the previous section (Table 2).

A. First, follow steps 1–8 from above to establish a virtual Linux
environment with Singularity on Windows. Please note that
installing vim as part of step 8 is not necessary here.

B. Next, instead ofwriting a definitionfile, generate awritable directory,
the sandbox container (Code 21). Here, we initialize an Ubuntu
version 18.04 as basis for the sandbox container. Be aware that this
code will overwrite other directories with the same name.

C. After building this sandbox container, shell into the directory
to edit it. You can use either Code 22 or Code 23. The prompt
should look like Code 24 after shelling into the directory.

D. Now, update the repository package to get the information on the
newest versions of packages and their dependencies (Code 25).

E. Next, we need a functional Python version. In our definition file
above, we used the Python version 3.6.9 that comes with
Ubuntu18.04 by default. Also, for the sandbox, install the

default Python 3.6.9 (Code 26). Test whether it has been
successfully installed with typing “python3 --version”.

F. Then, install pip (Code 27) to install Python packages, and
update pip (Code 28). The importance of updating pip is nicely
explained in this blog post: https://pythonspeed.com/articles/
upgrade-pip. In short, code builders can generate a compiled
version of their code (“wheels”) and provide it for download in
the Python Package Index. The pip inUbuntu 18.04 is too old to
recognize new wheel variants and thus will yield errors.

G. Use the upgraded pip to install Cellpose (Code 29).

H. Exit the shell by typing “exit.” Copy python_main.py into the
writable directory (Code 30). You can put it into whichever
directory you like aside from root—we put ours in “/mnt.”

I. You should now be able to run a Singularity container using the
directory as your container (Code 31). Note, a sandbox container
has no defined %runscript, and thus “singularity exec” is
preferred instead of “singularity run”. With “singularity exec”
we can run a program from within the container; in our case, we
run the file python_main.py with python3.

J. If you are satisfied with the functionality of your container and
want to build a .sif file for distribution, you can easily do so
with a sandbox container (Code 32).

K. You can now use “singularity exec” on the built .sif file to run
Cellpose (Code 33).

Note 1: Sandbox containers have their advantage to iteratively
build and test, but definition files are preferred overall to
document and share a container.

Note 2: To use a different Python version than the default
Python version installed with your Ubuntu version (e.g., Python3.6.9
for Ubuntu18.04, or Python3.8 for Ubuntu20.04), first install
“software-properties-common” (apt install software-properties-
common) to help manage the repositories, then PPA “deadsnakes”
which contains different Python versions packaged for Ubuntu (add-
apt-repository ppa:deadsnakes/ppa). Next, install the preferred Python
version, e.g., “apt install python3.8”. You can test the successful
installation by typing “python3.8 --version”. Also, updating pip is
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important, e.g., “python3.8 -m pip install --upgrade pip”. As there are
now two Python versions in the container (one for the operating
system and one for the application), consider setting up virtual
environments (https://docs.python.org/3/tutorial/venv.html).

Note 3: Specific package versions can be installed by specifying
the version after the package name. The package version required is
often indicated by the code you want to run. Different versions and
their release history can be found on the Python Package Index
(PyPI) website. For example, if you want to install numpy version
1.20, find it in the release history of PyPI (https://pypi.org/project/
numpy/1.20.0/), and write: “pip install numpy��1.20”.

DISCUSSION

In this paper, we have introduced containers as a powerful tool to
make image processing and analysis more reproducible and easily
used by users in microscopy labs and imaging facilities with little
specific background in scientific computation. As containers are
currently hardly used in the imaging field, we have provided a
step-by-step protocol for establishing a Singularity container with
an exemplary workflow using a state-of-the art segmentation
software, Cellpose (Stringer et al., 2021).

Our container example demonstrates how easy it is to run an
advancedworkflowwithout installing dependencies. This is particularly
useful to quickly test a workflow on images and could be a great way to
test published work on your own dataset. Containers could thus satisfy
the increasing demand of journals and peer-reviewers to provide easy
access to complex image processing and analysis workflows for
reproducibility and validation (Lee and Kitaoka 2018; Jost and
Waters 2019), Beyond the here provided examples, the provided
Singularity definition file easily allows for extension of the capacity
of the container to improve the workflow. Should the user want to
implement other Python packages or integrate additional software, they
can easily install those in the%post section or inwritable directories. For
more advanced operations such as signing a container or interactive
sessions, several comprehensive tutorials exist such as https://
singularity-tutorial.github.io/, https://hpc.nih.gov/apps/singularity.html.

In our step-by-step protocol, we relied on aVagrant Box to build the
container on Windows (step 1–12) and the cluster computer
(Supplementary Note S1). The Vagrant Box offers the advantage
to provide an operating system with a pre-installed Singularity
framework that makes establishing containers straight-forward. This
might become even easier in the future with Windows Subsystem for
Linux (WSL1 and WSL2). Particularly interesting is the feature that
WSL2 offers a full Linux kernel onWindows. Thismightmake the step
of installing aVagrant Box obsolete andmight provide opportunities to
build and run Singularity containers on a Windows operating system.

In conclusion, we envision that Singularity containers will help
to overcome the problem of uncertainty in recreating bioimage

analysis results. Eventually, all experimental code may be
containerized by the scientists running the experiment so that
years after publication of the manuscript readers can verify the
results easily and test workflows on their own dataset.
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