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Microglia are important resident immune cells in the central nervous system

(CNS) and play an important role in its development, homeostasis, and disease

treatments. Activated microglia perform diverse functions in mouse models of

CNS neurodegenerative diseases or deficits. In humans, microglia have been

linked to various neurodegenerative diseases. Following brain or spinal cord

injury, microglia express pro- and anti-inflammatory phenotypes at different

stages of recovery. With the development of pharmacological and genetic

tools for microglial depletion, studies have demonstrated that microglial

depletion exerts both positive and negative effects in the treatment of CNS

diseases. Notably, microglial depletion provides an empty niche that stimulates

production of new microglia. Microglial depletion and repopulation can not

only treat diseases by eliminating dysfunctional microglia but can also provide

an indication of themolecular mechanisms of diseases. Although this approach

has shown impressive results, its use is still in its infancy. In this review, we

summarize the current pharmacological and genetic tools for microglial

depletion and highlight recent advances in microglial repopulation therapy

for the treatment and functional recovery of neurological diseases and deficits.

Finally, we briefly discuss the therapeutic challenges and prospective uses of

microglial repopulation therapy.
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Introduction

Microglia are resident macrophages in the central nervous

system (CNS), which are derived from the yolk sac progenitor

cells and migrate to the CNS between embryonic day 8.5 and time

of formation of the blood-brain barrier (BBB) (1, 2). Microglia

play different roles in the CNS according to the development and

maturation stage of the CNS. For example, synaptic pruning of

the microglia plays an important role in the formation of neural

circuits during CNS development (3) and removal of dead

cells and myelin debris in pathological conditions. Microglia

also drive neuronal programmed cell death by inducing

neuronal apoptosis, thereby eliminating excess neurons

produced during development (4). In addition, microglial

protrusions monitor the surrounding environment and directly

communicate with neurons, astrocytes, and blood vessels (5).

Based on the surveillance of surrounding information, microglia

can transduce a variety of extracellular signals to maintain a stable

environment in the brain (3). Microglia rapidly react to changes in

the CNS microenvironment (e.g., infection, trauma, and disease)

by changing from the resting state to the active state, to remove

tissue debris and restore homeostasis (6, 7).

Initially, activated microglia are divided into M1- andM2-like

phenotypes (8). M1 microglia play a key role in the host immune

response by producing pro-inflammatory cytokines (e.g., tumor

necrosis factor alpha [TNF-a] and interleukin [IL]-6), inducible

nitric oxide synthase (iNOS), and reactive oxygen species

(ROS) (9, 10). M2 microglia produce anti-inflammatory

cytokines, chemokines, and growth factors, which inhibit the

inflammatory response and promote tissue repair (11, 12).

However, it is still controversial that M1 and M2 phenotypes

exist in vivo (13). With the development of technologies such

as single-cell RNA sequencing (scRNA-seq), scholars have

gradually realized that microglia are highly heterogeneous (14),

“M1” and “M2”may not reflect microglial states precisely. Several

studies have demonstrated that microglial hyperactivation

and dysregulation lead to neurotoxicity, which are associated

with neurodegenerative diseases, including epilepsy (15),

Alzheimer’s disease (AD) (16), Parkinson’s disease (PD) (17),

and Huntington’s disease (18). The microglial response to injury

is partly regulated by interactions with other glial cells (19).

For example, in spinal cord injury (SCI) models, activated

microglia and reactive astrocytes interact to form glial scars,

which impact neuronal and functional recovery (20). Meanwhile,

TNF-a expression by activated microglia contributes to astrocyte

glutamate production and leads to neuronal excitotoxicity (21).

In the meantime, TNF-a induces activated microglia to

release glutamate and produce neurotoxicity through autocrine

manner (22). In addition, the products released by activated

microglia, including glutamate, nitric oxide (NO), IL-1b, and

TNF-a, promote oligodendrocyte death (23, 24). Microglia-

mediated inflammation is a significant contributor to the
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microenvironment after CNS injury and diseases, which persists

for a longduration andaffectsCNSrepair (25).Therefore, depleting

the hyperactivated microglia may be an effective approach to treat

CNS diseases and injury.

Microglial depletion from the CNS microenvironment has

been extensively studied as a treatment for CNS diseases, and has

dual effects on CNS diseases and deficits. In recent years,

microglial depletion and repopulation have received significant

attention. In the present review, we describe approaches for

microglial depletion and the source and dynamics of microglial

repopulation based on recent studies. In addition, we summarize

current research on microglial repopulation for the treatment of

CNS diseases or deficits, and briefly discusses the challenges and

potential uses of microglial repopulation therapy.
Microglial depletion for the
treatment of CNS injuries and
diseases

Approaches for microglial depletion

To investigate the role of microglial depletion in the

treatment of CNS diseases, various depletion methods have

been developed, including clodronate liposomes, genetic

models, and colony-stimulating factor 1 receptor (CSF1R)

inhibitors. (Figure 1).

Clodronate liposomes cannot cross the BBB or blood-retina

barrier (BRB) and need to be injected directly into the CNS or

vitreous to target macrophages and trigger their apoptosis

without genetic modification (26–28). This approach is

effective with rapid but short-lived effects. A recent study

reported that clodronate liposomes cause microglial ablation in

the mouse striatum at day 1, which persists for 3 days, and is

followed by microglial reappearance after 5 days (29). However,

this approach may damage the CNS immune privilege (IP) and

lead to off-target effects (30).

Herpes simplex virus-derived thymidine kinase (HSVTK), a

suicide gene, can convert the antiviral nucleotide analog

prodrug, ganciclovir (GCV), into a monophosphate form,

which is converted to a toxic triphosphate (30, 31). CD11b-

HSVTK transgenic mice overexpress HSVTK driven by the

Cd11b promoter. HSVTK can induce apoptosis in CD11b+

myeloid cells in the presence of GCV (32). After 2 weeks of

GCV treatment, the absolute microglial number was reduced by

90%; a higher level of microglial depletion (> 95%) was achieved

after 4 weeks of GCV treatment (33, 34). However, long-term

GCV administration may lead to myelotoxicity because of the

elimination of CD11+ cells and red blood cells (30, 35). Another

novel lineage ablation system is based on the transgenic

expression of diphtheria toxin receptor (DTR) in mouse

cells and the application of diphtheria toxin (DT) (36). By
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crossing the inducible DTR (iDTR) strain with tissue-specific

Cre-expressing mouse strain, the STOP cassette that prevents

DTR expression was removed, which would lead to cell death of

DTR-expressing myeloid cells in response to DT injection (36).

Cx3cr1CreER:iDTR system ablates microglia following

injections of tamoxifen (TAM) and DT (37). This system was

associated with 80% depletion in the number of microglia 3 days

after DT injection, which was followed by normalization of

the microglia number at day 14 (37). However, this model also

produced a strong neuroinflammatory response, termed

a cytokine storm (37). Iba1-tTA::DTAtetO/tetO mice also use

the DT depletion system. DTA was selectively overexpressed

in Iba1+ microglia after withdrawal of doxycycline (DOX),

which led to a reduction in the number of retinal microglia by

about 90% (38). The new microglia Cre lines (e.g., TMEM119)

may be used to rapidly identify microglia (39). Similarly, the DT

receptor gene expressed in the Cx3cr1 promoter of the Cx3cr1-

Dtr transgenic rat model was associated with acute microglial

ablation after DT application (40). An advantage of the TAM-

induced Cre system is its selective targeting of microglia, but

not of the circulating monocytes or other short-lived myeloid

cells (37). The administration of TAM to Cx3r1CreER/+

R26DTA/+ mice resulted in loss of approximately 95% of

microglia on day 7 (41). In addition, Cre expression was lost
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over time in short-lived CX3CR1+myeloid cells compared to the

long-lived and self-renewing microglia (42, 43). However, most

of genetic tools for microglia depletion target all macrophages

and cannot accurately differentiate between microglia and

CNS border associated macrophages (CAMs or BAMs), so

CAMs or BAMs would also be affected (44). the valuable

new genetic systems (e.g., Sall1, Siglec-H, and Hexb) can

deplete microglia more accurately (45–47). In another

Cx3cr1CreERT2/+-Csf1r+/fl system, the deletion of the Csf1r

allele disrupts microglial homeostasis (48).

CSF1R is a critical regulator of microglial development and

survival (49–53), and is expressed in microglia (26–28), neural

progenitor cells (54), and several neuronal subpopulations in the

CNS (54). In rodents, CSF1R inhibition causes a significant

reduction in resident microglia. PLX3397 and PLX5622 are the

most commonly used CSF1R inhibitors for microglia depletion,

these CSF1R inhibitors can cross the BBB and deplete the

microglia in the brain, spinal cord, and retina within a few

days (49, 55, 56). The limitations of PLX3397 mainly include

relatively low penetrance and potential off target effect (49, 57),

while PLX5622 has higher CSF1R specificity and brain

penetrance (58). However, Hohsfield et al. found high dose

PLX3397 has higher microglial depletion efficiency (59). The

microglial depletion is caused by microglia death rather than
FIGURE 1

Approaches for microglial depletion and multiple sources of microglial repopulation. Robust methods for depleting microglia in vivo include
clodronate liposomes, genetic models and CSF1R inhibitors. These methods deplete microglia in the CNS effectively. After withdraw the
intervention, microglia repopulate and return to normal levels in 1–2 weeks. The repopulated microglia in the retina are not derived from
nestin-positive progenitor cells. The repopulated microglia in the center arise from the residual microglia in the optic nerve, while the
periphery-emerging microglia are from macrophages in the ciliary body/iris. Spinal microglia can reproduce rapidly after removal, which is
mainly driven by the process of self-renewal. Microglia in the brain may repopulate in one of three ways: stimulation of microglia progenitor
cells that express nestin, proliferation of residual microglia, or infiltration of peripheral mononuclear cells.
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downregulation of microglia markers (58). Currently, the CSF1R

inhibitors are widely used in mouse models of various CNS

diseases or injuries (55, 58, 60–64). In general, most microglia

were depleted 1–2 weeks after CSF1R inhibitors application, and

microglia returned to the baseline level about 2 weeks after

discontinuation of the CSF1R inhibitors. Notably, CSF1R

inhibitors lead to continuous microglial depletion. However,

the inhibitors are not specific for CSF1R and also inhibit other

kinases (65, 66). In addition, treatment with CSF1R inhibitors

may lead to broad myelosuppression (67), and microglial

progenitors in bone marrow and tissue macrophages may be

similarly affected (68, 69).
Effects of microglial depletion on CNS
injuries and diseases

Microglial depletion may have dual effects on CNS

degenerative and traumatic diseases. For example, in AD mouse

models, microglial inhibition prevents motor neuron

degeneration and improves the function and cognition in mice

(55, 70). In PD mouse models, CSF1R inhibition can attenuate

cognitive deficits, neuronal damage, astroglial activation,

proinflammatory factor production, and oxidative stress (71).

Microglial inhibition enhances central remyelination and

prevents demyelination in multiple sclerosis mice by modulating

neuroinflammation (72). Transient microglial inhibition after

SCI and traumatic brain injury (TBI) promotes motor and

neurological recovery, improves depression-like behavior,

prevents tissue damage, and downregulates the levels of

proliferation-associated transcripts and inflammation-associated

genes (73–77). CSF1R inhibitors plays a neuroprotective role

in cerebral ischemic stroke mice by inhibiting microglial

polarization and inflammatory pathway activation (78). In

addition, microglial inhibiting reduces age-associated

neuroinflammation in aging mouse brains (79). However,

microglial inhibition may be detrimental to disease recovery in

some cases. In animal models of CNS degenerative diseases,

microglial depletion exacerbates the severity of KA-induced

acute/chronic seizures (80), significantly increases inflammation,

demyelination, and axonal degeneration in mice with

experimental autoimmune encephalomyelitis (EAE) (81), and

leads to increased plaque size over 1 week in AD mice (82). In

contrast to the short-term microglial inhibition after SCI,

prolonged microglial inhibition do not improve motor recovery

(83), and even aggravates damage, reduces neuronal numbers,

exacerbates axonal dieback, and hinders motor recovery (60).

Moreover, microglial depletion reduces the clearance of

degenerating neurons after TBI in pediatric rats (84) and leads

to a significant increase in infarct size in post-stroke brain injury

(64). Microglial depletion also affects retinal regeneration in

zebrafish following retinal injury (85). Therefore, the outcomes

of microglial depletion in the treatment of CNS diseases or deficits
Frontiers in Immunology 04
remains controversial, and the duration of depletion may

influence the treatment results.
Source and dynamics of
repopulating microglia

Multiple sources of microglial
repopulation

In the normal adult mouse and human brain, microglia have

long lives at the population level (86) and, at the individual cell

level, they maintain dynamic stability by temporally and

spatially coupling proliferation and apoptosis (87). After

removal of the depleting tools, microglia may repopulate in

one of three ways to return rapidly to the normal levels within 1–

2 weeks: proliferation of residual microglia (87), stimulation of

microglial progenitor cells in the adult brain (49), and

infiltration by peripheral mononuclear cells (88).

PLX3397 treatment of CX3CR1-GFP+/− mouse model for 7

days demonstrated that the repopulated microglia were strongly

nestin+, and Western blotting of whole brain homogenates showed

a significant increase in nestin levels at day 3 of recovery. The

repopulated microglia expressed nestin immunoreactivity and

rapidly differentiated into branched microglia within 7–14 days.

Importantly, the repopulated brain microglia induce proliferation of

nestin-expressing cells throughout the CNS (49). Thus, Elmore et al.

(49) suggested that the repopulating microglia are mainly derived

from brain microglial progenitor cells that express nestin. However,

a study based on fate mapping found that all the regenerated

microglia originated from residual microglia, rather than nestin+

cells (89). Microglia transiently express nestin during regeneration

and development, which may be a feature of microglial

proliferation. Microglial regeneration demonstrates rapid

proliferation kinetics and, after removal of CSF1R inhibition, the

residual microglia proliferate rapidly and supplement the whole

brain (56). Under physiological circumstances, microglia are

separated from the peripheral circulatory system through the BBB

and maintain their number through local proliferation without

supplementation by blood monocytes (87, 90). Based on the

macrophage niche theory (91), administration of selective CSF1R

inhibitors may consume most microglia to deplete the microglial

niche, which may trigger microglial reproliferation to return the

microglial number to the baseline level (49, 92). Blood-derived

monocytes have the potential to occupy the microglial niche in the

adult CNS and repopulate the brain within 2 weeks. The newly

engrafted myeloid cells have analogous functions to microglia (37).

Similar to brain microglia, spinal microglia can reproduce

rapidly after being removed, which is mainly driven by the

process of self-renewal. Although circulating monocyte

infiltration was observed, the infiltration was part of the acute

inflammatory response caused by cell death, which depends on
frontiersin.org

https://doi.org/10.3389/fimmu.2022.969127
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shi et al. 10.3389/fimmu.2022.969127
MCP-1/CCR2 signal transduction (93). One of the main

strategies of spinal cord microglial regeneration is similar to

that for brain microglia, which proliferate by triggering the

division of remaining cells (37, 56, 94), known as

compensatory proliferation. Another strategy of spinal cord

microglial regeneration is through compensatory cell

hypertrophy (CCH), which is regulated by the insulin/insulin-

like growth factor (IGF) signaling pathway (95). Notably, during

spinal microglial regeneration, CCH occurs before cell

proliferation (93).

Although blood cells in the diseased retina can differentiate

into microglia (96, 97), the repopulated microglia in the center

are only derived from the residual microglia in the optic nerve,

while the peripheral microglia are produced by the macrophages

in the ciliary body/iris. Microglia remaining in the optic nerve

migrate to the retina along the center-to-periphery axis to

repopulate the retina. Macrophages in the ciliary body relocate

to the peripheral retina and migrate toward the central retina,

whereas macrophages in the iris migrate to the peripheral retina

through the ciliary body (56). However, the physiological and

pathological roles of microglial radial migration are unknown. A

previous study provided novel evidence that CX3CL1-CX3CR1

signaling regulates microglial regeneration kinetics in the retina

by enhancing the proliferation and morphological maturation of

regenerated cells (98). In addition, although the loss of P2Y12

affected microglial branching (99), P2Y12 receptor did not

regulate the maturation of the newly produced microglia or

affect doublet formation and repopulation. P2Y12 deletion

impacted microglial morphology during repopulation but

played a minor role in microglial division (99).(Figure 1)
Mechanism of microglial regeneration

Microglia restore homeostasis during repopulation through

self-renewal, proximity clonal expansion, and activation of

maturation programs (100). As described previously, microglia

can be regenerated almost entirely by self-renewal (37, 56); the

microglial transformation of nestin+ progenitor cells were not

detected under steady-state conditions (87). Similar to the clonal

expansion of microglia in response to facial nerve injury (101),

microglia proliferate through clonal expansion after ablation.

Newborn microglia recolonize the parenchyma from the

proximal clonal expansion to form unique spatial clusters and

maintain a stable territorial boundary over time. Once microglial

colonies are formed, they remain stable in the CNS (100). Recent

studies have shown that inflammatory signals are vital for the

regulation of microglial maturation and function (102, 103).

Newborn microglia undergo a series of transcriptional changes

and eventually transform from an immature state to a stable

mature phenotype. The maturation process involves several

steps, including the activation of nuclear factor kappa-light-

chain-enhancer of activated B cells (NF-kB). NF-kB signaling
Frontiers in Immunology 05
enhances the early stages of microglia reproliferation (100). In

addition, TGF-b signaling is important for microglial

development and homeostasis (104) The microglial density

in the brain is extremely stable (87), and microglia can return

to the original homeostatic density through steady turnover

even after acute ablation. Contact inhibition is one of the

methods by which the microglia memorize their homeostatic

density (100) Residual microglia repopulate freely by losing

contact inhibition. For example, Syndecan4, a regulator of

contact inhibition (105), is expressed at low levels 1 month

after microglial repopulation (98). Moreover, in the CD11b-

HSVTK transgenic mice model, blood-derived monocytes

infiltrate and engraft in the brain of microglia-depleted mice,

and maintain the myeloid component in the mature brain

through homeostasis (88). A recently published paper of CNS

myeloid cells under PLX3397 inhibition found that the MAC2+

microglial subpopulation in residual microglia is similar to

microglial progenitors during development and could promote

repopulation of microglia in the brain (106). In addition,

multiple microglia subtypes, including white matter-associated

microglia (WAM), have been identified by scRNA-seq (107).

The recent study revealed a subpopulation of myeloid cells

which derive from the subventricular zone and white matter,

the population reconstitute microglia in the brain through a

dynamic wave and exhibit similar the transcriptional profiles

similar to disease-associated microglia (DAM) (59).
Microglial repopulation therapy: A
new treatment option for
neurological diseases and deficits

After pharmacological or genetically targeted depletion in

healthy adult mice, microglia can repopulate in a short period of

time by self-renewal (29, 49, 88) to restore to the baseline level

and re-establish typical spine density (49, 100, 108). In addition,

inflammation-related genes of repopulated microglia remained

stable during the repopulation processes, without significant up-

or down-regulation (56). Compared to the resident microglia,

repopulated microglia exhibit distinct morphological features,

with larger cell bodies and less complex branches formed in

response to inhibitor removal; the morphological characteristics

and synaptic function of the repopulated microglia gradually

return to those of typical microglia after 4 weeks (50). Although

the repopulated microglia are numerically and morphologically

different from the resident microglia, they have similar mRNA

levels, perform similar functions, do not affect behavior,

cognition, or motor function, and do not have any side effects

(50, 56, 88). Furthermore, microglial elimination and

repopulation at a young age may have a more significant

impact on behavior and cognition than in adults (50)

Therefore, microglial repopulation therapy may be a
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potentially effective treatment for neurological diseases and

deficits (Figure 2, Table 1).
Microglial repopulation therapy for
neurodegenerative diseases

Regeneratedmicroglia are beneficial for CNSneurodegenerative

diseases, including AD and PD. AD is characterized by extracellular

amyloid-b (Ab) plaques and neurofibrillary tangles (NFT)

containing hyperphosphorylated tau protein (109). In a microglia-

depletedADmodel, diffuse-like plaques increased, and compact-like

plaques decreased, leading to enhanced neuritic dystrophy (110).

However, repopulated microglia reverse this phenomenon and

promote the transition from diffuse- to compact-like plaques,

thereby causing compact-like plaques to dominate the microglia-

repopulated regions, consequently limiting neuritic dystrophy (110).

Of note, cortical microglia did not fully repopulate, possibly because

of the marked heterogeneity in the microglial gene expression

profile (111, 112). In addition, another study showed that

microglial repopulation can limit the growth of amyloid

plaques and significantly reduce the dendritic abnormalities caused

by Ab deposition (82). PD is characterized by loss of dopaminergic

neurons and accumulation of intraneural Lewy bodies (113).
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The role of repopulated microglia in PD has recently attracted

attention. In a mouse model with completely repopulated

microglia followed by PLX3397 removal and 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP) challenge, the repopulated

microglia protect dopaminergic neurons and improve motility.

However, among PLX3397-fed mice with drug cessation at the

time of MPTP challenge, the loss of dopaminergic neurons was not

significantly different between the repopulated microglia group and

control group, indicating that the effects of repopulated microglia

dependon the timepoint ofPLX3397cessation. Interestingly, inboth

models, the expression of neurotrophic factors and phagocytosis-

related molecules was increased in the repopulated microglia group,

but the expression of inflammation-related molecules was not

affected (114). In brief, microglial replenishment is neuroprotective

in PD mice and the currently available sparse information suggests

potential use of repopulated microglia for PD treatment.

However, some studies have failed to show the positive effects

of repopulated microglia. For example, Gratuze et al. (115)

showed that although the repopulated microglia cluster around

the plaque, similar to normal microglia, repopulated microglia

significantly increased the homeostatic gene expression and failed

to switch to the DAM phenotype, resulting in a marked increase

in the seeding and spread of NP-tau. Thus, the repopulated

microglia may not effectively reduce plaque-related toxicity.
FIGURE 2

Different functions of activated and repopulated microglia in CNS diseases. Microglial activation leads to cognitive deficits through excessive
synaptic pruning and inhibition of synaptic transmission. At the same time, these cells promote the release of inflammatory factors, stimulate
plaque formation, and directly damage neurons, which leads to CNS diseases. Repopulated microglia not only suppress the inflammatory
response, but also limit neuritic dystrophy by promoting the transition from diffuse to compact-like plaques. These cells can restore cognitive
function by promoting synaptic transmission and inhibiting excessive synaptic pruning. Furthermore, repopulated microglia mediate
neuroprotective effects by inducing IL-6 within neurons.
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TABLE 1 The outcomes of microglial repopulation in different CNS disease and deficits.

Depletion ways Diseases or
disorders

Outcomes References

CX3CR1-iDTR+DT AD Repopulated microglia are associated with the stabilization of
plaque size during the second week.

Microglia limit the expansion of b-amyloid plaques in a
mouse model of Alzheimer’s disease (2017).

PLX5622 AD Repopulated microglia result in more compact plaques
predominating microglia-repopulated regions and execute
disease-mitigating functions.

Microglia depletion rapidly and reversibly alters amyloid
pathology by modification of plaque compaction and
morphologies (2020)

PLX3397 AD Repopulated microglia cluster around plaques, they have a
reduction in disease-associated microglia (DAM) gene
expression and elevate tau seeding/spreading.

Activated microglia mitigate Ab-associated tau seeding
and spreading (2021)

PLX3397 PD Microglial repopulation could bring about apparent resistance to
MPTP intoxication, and microglial replenishment elicits
neuroprotection in PD mice.

Partial depletion and repopulation of microglia have
different effects in the acute MPTP mouse model of
Parkinson’s disease (2021)

PLX5622 Brain trauma Repopulated microglia could resolve the proinflammatory
response, promote functional recovery after brain injury,
downregulate the expression of reactive microglial markers and
reduce the levels of inflammatory-related genes.

Rice Rachel A,Pham Jason,Lee Rafael J et al. Microglial
repopulation resolves inflammation and promotes brain
recovery after injury.[J].Glia, 2017, 65: 931-944.

PLX5622 TBI Repopulated microglia could improve neurological function,
suppress neuroinflammatory and oxidative stress pathways, and
reduce persistent neurodegenerative processes

Henry Rebecca J,Ritzel Rodney M,Barrett James P et al.
Microglial Depletion with CSF1R Inhibitor During
Chronic Phase of Experimental Traumatic Brain Injury
Reduces Neurodegeneration and Neurological Deficits.[J].J
Neurosci, 2020, 40: 2960-2974.

PLX5562/
CX3CR1cre

ERT2xiDTR
TBI Repopulating microglia can attenuate learning deficits and

stimulate neurogenesis, positively modulate the
microenvironment of the injured brain and induce IL-6 in
neurons and mediate neuroprotection.

Willis Emily F,MacDonald Kelli P A,Nguyen Quan H
et al. Repopulating Microglia Promote Brain Repair in an
IL-6-Dependent Manner.[J].Cell, 2020, 180: 833-846.e16.

PLX5622 Brain trauma Microglial depletion and repopulation prevent radiation
−induced hippocampal−dependent memory deficits, radiation
−induced loss of hippocampal PSD−95 and eliminates radiation
−induced transcriptome signatures

Feng Xi,Frias Elma S,Paladini Maria S et al. Functional
role of brain-engrafted macrophages against brain
injuries.[J].J Neuroinflammation, 2021, 18: 232.

PLX3397 SCI Microglial/macrophage depletion and repopulation in
combination with gelatin hydrogel transplantation resolves acute
and chronic pro-inflammation, promotes endogenous neural
stem/progenitor cell migration and neurogenesis and improves
electrophysiological and functional recovery.

Ma Dezun,Zhao Yannan,Huang Lei et al. A novel
hydrogel-based treatment for complete transection spinal
cord injury repair is driven by microglia/macrophages
repopulation.[J].Biomaterials, 2020, 237: 119830.

PLX5622 Aging Repopulated microglia could reverse cognitive, synaptic, and
neuronal deficits in the aged brain.

Elmore Monica R P,Hohsfield Lindsay A,Kramár Enikö A
et al. Replacement of microglia in the aged brain reverses
cognitive, synaptic, and neuronal deficits in mice.[J].Aging
Cell, 2018, 17: e12832.

PLX5622 Aging Microglial repopulation reduced CD68 expression, cleared
lipofuscin, and partially restored the microglial RNA signature.
However, priming and immune reactivity in the microglia of
aged mice was not reversed by forcing microglial turnover.

O’Neil Shane M,Witcher Kristina G,McKim Daniel B
et al. Forced turnover of aged microglia induces an
intermediate phenotype but does not rebalance CNS
environmental cues driving priming to immune
challenge.[J].Acta Neuropathol Commun, 2018, 6: 129.

PLX3397 Aging Microglial repopulation is associated with recovery of synaptic
transmission and memory; however, repopulation do not
rejuvenate synaptic transmission or cognitive function of aged
animals to mirror a “younger” phenotype.

Yegla Brittney,Boles Jake,Kumar Ashok et al. Partial
microglial depletion is associated with impaired
hippocampal synaptic and cognitive function in young
and aged rats.[J].Glia, 2021, 69: 1494-1514.

Cx3cr1-Dtr Short-term
memory

Microglia repopulate the brain after depletion, learning and
memory performance is improved

De Luca Simone N,Soch Alita,Sominsky Luba et al. Glial
remodeling enhances short-term memory performance in
Wistar rats.[J].J Neuroinflammation, 2020, 17: 52.

PLX5622 Cognitive deficits Repopulated microglia can improve cognitive deficits caused by
cosmic radiation exposure

Krukowski Karen,Feng Xi,Paladini Maria Serena et al.
Temporary microglia-depletion after cosmic radiation
modifies phagocytic activity and prevents cognitive
deficits.[J].Sci Rep, 2018, 8: 7857.

PLX5622 Repeated social
defeat (RSD)

Microglial depletion and repopulation in RSD-sensitized mice
do not affect hyperactivity under acute stress, but it effectively
turnovers microglial reactivity to LPS challenge.

Weber Michael D,McKim Daniel B,Niraula Anzela et al.
The Influence of Microglial Elimination and Repopulation
on Stress Sensitization Induced by Repeated Social
Defeat.[J].Biol Psychiatry, 2019, 85: 667-678.

(Continued)
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Microglial repopulation therapy for
CNS trauma

Microglial activation is an essential innate immune response

that protects the brain after trauma; however, a dysregulated

immune response can lead to secondary damage (116). With

the use of CSF1R inhibitors to treat brain trauma, repopulated

microglia appear 3 days after drug withdrawal and, by 7 days, the

number of microglia is higher than that in control mice. By 21

days, the number and morphology of the repopulated microglia

were similar to the control group, albeit with smaller somas and

longer and finer processes. Brain trauma leads to elevated levels of

inflammatory factors. The repopulated microglia suppress lesion-

induced inflammation, but do not possess the activation state of

the original microglia, thereby making them less reactive. These

results suggest that chronic inflammation is inherent with the

microglia and not completely dependent on the environment (92).

Therefore, the repopulated microglia can replace the activated

microglia to prevent microglia-mediated chronic inflammation,

which is an effective strategy to repair CNS trauma. Rice et al. (92)

treated brain-injured mice with PLX3397 for 14 days followed by

PLX3397 withdrawal, and found that the microglia repopulated

the whole brain; the newly produced repopulated microglia had a

naïve state morphology. Importantly, protracted inflammation

was resolved by the microglial depletion and repopulation
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treatment. Ma et al. (25) also found that microglial depletion

and repopulation in combination with gelatin hydrogel

transplantation resolved acute and chronic inflammation,

promoted endogenous neural stem/progenitor cell migration

and neurogenesis, and improved the electrophysiological and

functional recovery in mice with complete transection SCI.

Notably, the repopulated microglia had no significant effect on

trauma-induced astrocyte expression and reactivity (74, 92).

Microglial depletion and repopulation also prevent radiation-

induced hippocampal-dependent memory defects and loss of

hippocampal PSD-95 (117). The increase in PSD-95 and

synaptophysin puncta suggest that the repopulated microglia

determine and regulate the synaptic landscape (92, 118). In a

mouse model of brain injury, repopulated microglia attenuate

learning deficits, stimulate neurogenesis, induce IL-6 production

from neurons, and mediate neuroprotection. These

neuroprotective and pro-regenerative microglia have a unique

transcriptional profile and modulate the microenvironment, in

particular, suppressing neurotoxic A1 astrocyte formation (118).

In addition, the reactivity of repopulated microglia is reduced, the

proliferative state is enhanced, and the gene expression levels of

wound healing and repair are increased. Remarkably, the

neuroprotective effect of repopulated microglia depends on the

appropriate timing of treatment, and these cells are effective for

the acute rather than post-acute phase of injury (118).
TABLE 1 Continued

Depletion ways Diseases or
disorders

Outcomes References

PLX5622 Chronic social
defeat (CSD)

Microglial repopulation of the brain post-CSD reintroduces
adverse stress effects and leads to behavioral deficits.

Lehmann Michael L,Weigel Thaddeus K,Poffenberger
Chelsie N et al. The Behavioral Sequelae of Social Defeat
Require Microglia and Are Driven by Oxidative Stress in
Mice.[J].J Neurosci, 2019, 39: 5594-5605.

PLX3397 Alcohol use
disorders (AUDs)

Microglial depletion and repopulation can reverse chronic
neuroimmune activation by normalizing proinflammatory
cytokine levels and increasing protective trophic factors

Coleman Leon G,Zou Jian,Crews Fulton T,Microglial
depletion and repopulation in brain slice culture
normalizes sensitized proinflammatory signaling.[J].J
Neuroinflammation, 2020, 17: 27.

CX3CR1-CreERT2+/–

iDTR+/–
Experimental
autoimmune
encephalomyelitis
(EAE)

Depletion and repopulation of microglia did not affect EAE
neuropathology or CNS T-cell responses.

Rubino Stephen J,Mayo Lior,Wimmer Isabella et al. Acute
microglia ablation induces neurodegeneration in the
somatosensory system.[J].Nat Commun, 2018, 9: 4578.

BLZ945 Auditory
brainstem deficits

Repopulated microglia can rectify anatomic defects and partially
restore auditory function.

Milinkeviciute Giedre,Chokr Sima M,Cramer Karina S,
Auditory Brainstem Deficits from Early Treatment with a
CSF1R Inhibitor Largely Recover with Microglial
Repopulation.[J].eNeuro, 2021, 8: undefined.

PLX3397 Fear-related
disorders

Repopulated microglia contribute to eradicate fear memory in
the mice of fear conditioning.

Cui Xiaoyu,Zhou Songhua,Xia Guang et al. A multispecies
probiotic accelerates fear extinction and inhibits relapse in
mice: Role of microglia.[J].Neuropharmacology, 2021, 193:
108613.

PLX3397 Intracerebral
hemorrhage
(ICH)

Repopulated microglia can reduce neuroinflammation,
neurological deficits and brain edema following ICH in the aged
brain.

Li Xiuping,Gao Xiaolin,Zhang Wenyan et al. Microglial
replacement in the aged brain restricts neuroinflammation
following intracerebral hemorrhage.[J].Cell Death Dis,
2022, 13: 33.
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Microglial repopulation therapy for
aging brain

Compared to the adult brain, microglia in the aging brain are

dysfunctional, with increased numbers, became “dystrophy”,

decreased motility, altered signaling, impaired phagocytosis and

proteostasis, and a greater pro-inflammatory profile (119, 120).

Aging is characterized by increased expression of CD68+ and

deposition of lipofuscin (121). With microglial regeneration, the

expression of CD68+ in aged microglia is normalized to the adult

level and the lipofuscin level is reduced (122). In addition,

the densities and morphologies of repopulated microglia are

restored to the adult levels, and these cells improve cognition in

aged mice, increase the neuronal regeneration rates, alter the

dendritic spine densities and neuronal complexities, and restore

the neuronal physiological processes in the aging brain (123).

However, a recent study reported that microglial repopulation

does not improve synaptic transmission or cognitive function in

aged animals (124). Furthermore, the repopulated microglia only

partially affect the age-related mRNA signaling and do not

sufficiently modify the neuroinflammatory immune responses,

suggesting that responses to the inflammatory stimuli depend on

the aging microenvironment rather than microglial state (122).

Taken together, the aforementioned findings suggest that

microglial replacement may be potentially useful to normalize

changes in the aging brain. However, additional methods to treat

neuroinflammation in the aging brain need to be explored.
Microglial repopulation therapy
for short-term memory and
cognitive deficits

Microglia play integral roles in regulating neuronal activity and

synaptic transmission (125), and microglia-neuron communication

is critical for learning and memory in the adult brain (126). In

addition, repopulated microglia after microglial depletion enhance

short-term memory, which may be related to increased astrocyte

density (127). The possible mechanisms underlying astrocyte

involvement in memory formation include regulation of synaptic

formation, transmission, and plasticity (127). Galactic cosmic ray

(GCR) exposure can affect neuronal and microglial functions (128),

and microglial depletion can improve radiation-induced memory

deficits and cognitive dysfunction (129, 130). Following CSF1R

inhibitors treatment, the repopulated microglia reduce lysosome-

associated membrane protein 1 (LAMP-1) level, limit the GRC-

induced phagocytic phenotype, and thus ameliorate cognitive

deficits and synaptic loss. In addition, inflammatory chemokines,

cytokines, and complement component 5a receptor (C5aR)

expression levels are also reduced (128, 131). In line with

this, previous studies have reported that C5aR antagonist
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treatment can improve cognitive performance in animal models

of different diseases (132, 133).
Microglial repopulation therapy for other
diseases and deficits

Microglial repopulation therapy has also been used for the

treatment of other diseases or deficits. For example, repopulated

microglia did not prevent repeated social defeat (RSD)-induced

stress sensitization and excessive immune and behavioral

responses in mice, probably because multiple CNS cell types

contribute to RSD sensitization, among which microglial

priming is only partly involved. However, repopulated microglia

effectively attenuated the immune and neuroinflammatory

responses caused by LPS challenge following acute RSD (134).

In a chronic neuroinflammation model (e.g., alcohol

use disorders, AUDs), microglial depletion and repopulation

can reverse chronic neuroimmune activation by normalizing

proinflammatory cytokine levels and increasing protective

trophic factors (135). Microglial depletion and repopulation

did not affect the neuropathology of EAE or CNS T-cell

responses (136). The repopulated microglia correct the

anatomical defects, partially restore the auditory function (137),

and eradicate fear memory inmice after fear conditioning (138). A

recent study showed that repopulated microglia can reduce

neuroinflammation, neurological deficits, and brain edema

following intracerebral hemorrhage in the aged brain (139).

These observations suggest that microglial repopulation therapy

may be promising in the treatment of neurological diseases

and deficits.
Conclusions

However, several important problems need to be addressed

in the future. First, CSF1R inhibitors not only depletes microglia

but also affects peripheral myeloid cells, for example, PLX3397

reduces the specific subsets of circulating monocytes in a mouse

AD model (140). Furthermore, off-target effects may occur with

peripheral administration in genetic models (141). Therefore,

approaches to deplete microglia alone need to be developed in

the future. Second, the optimal timing of microglial depletion

and repopulation in specific disease models need to be

determined. As we mentioned previously, the initial 3 days

after TBI are critical, during which microglial regeneration

may play a neuroprotective role (141). The optimal treatment

window period for other neurological diseases and deficits needs

to be determined in future studies. Third, the current results are

mainly based on rodent models, and the effects of microglial

repopulation therapy in primates and humans are not clear. In

the future, patients with CNS diseases or deficits may be treated
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with microglial repopulation therapy to promote functional

recovery; however, currently, there are significant challenges to

the use of this therapy.
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