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Abstract: The treatment of central nervous system (CNS) diseases related to the decrease of neuro-
transmitter acetylcholine in neurons is based on compounds that prevent or disrupt the action of
acetylcholinesterase and butyrylcholinesterase. A series of thirteen quinuclidine carbamates were
designed using quinuclidine as the structural base and a carbamate group to ensure the covalent bind-
ing to the cholinesterase, which were synthesized and tested as potential human acetylcholinesterase
(AChE) and butyrylcholinesterase (BChE) inhibitors. The synthesized compounds differed in the
substituents on the amino and carbamoyl parts of the molecule. All of the prepared carbamates
displayed a time-dependent inhibition with overall inhibition rate constants in the 103 M−1 min−1

range. None of the compounds showed pronounced selectivity for any of the cholinesterases. The
in silico determined ability of compounds to cross the blood–brain barrier (BBB) revealed that six
compounds should be able to pass the BBB by passive transport. In addition, the compounds did
not show toxicity toward cells that represented the main models of individual organs. By machine
learning, the most optimal regression models for the prediction of bioactivity were established and
validated. Models for AChE and BChE described 89 and 90% of the total variations among the data,
respectively. These models facilitated the prediction and design of new and more potent inhibitors.
Altogether, our study confirmed that quinuclidinium carbamates are promising candidates for further
development as CNS-active drugs, particularly for Alzheimer’s disease treatment.

Keywords: Alzheimer’s disease; acetylcholinesterase; butyrylcholinesterase; inhibition; covalent
binding; cytotoxicity

1. Introduction

Central nervous system (CNS) diseases, particularly Alzheimer’s (AD) and Parkin-
son’s, are one of the great health-care challenges of the 21st century. According to the
World Health Organisation (WHO), AD currently affects about 47 million people, and it
is believed that this number will quadruple by 2050 [1,2]. AD is a multifactorial disease
whose initiation and development is associated with many clinical features: deficits of the
neurotransmitter acetylcholine (ACh), amyloid-β (Aβ) peptide deposits, oxidative stress,
dyshomeostasis of biometals and hyperphosphorylated tau protein [3], and it is character-
ized by a continuous mental ability decline, behavioral dysfunction, failure to maintain
daily living activities and, the most prominent feature, dementia [3–5]. Parkinson’s disease
is a CNS disorder characterized by shaking, stiffness, and difficulty with walking, balance,
and coordination, which is caused by a loss of dopaminergic neurons in certain parts of the
brain [6].

The treatment of Alzheimer’s and Parkinson’s disease is based mainly on increasing
the level of the neurotransmitter ACh by inhibiting enzymes that hydrolyze them, which
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is the most common approach in treatment [7–10]. There are two cholinesterases that can
hydrolyze ACh: acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) [11]. Both
cholinesterases share the same catalytic mechanism of hydrolysis of choline esters, but
their role in the organism is quite different. In nerve synapses, AChE terminates nerve
impulse transmission by hydrolyzing ACh, while BChE does not have a clearly defined
physiological function. The most likely function for BChE is that of a backup for AChE
and protection of synaptic AChE from various kinds of xenobiotics [11–13]. These two
enzymes share approximately 54% of their identity in the amino acid sequence [14,15], but
substitutions of some amino acids in their active sites resulted in different catalytic activity,
specificity for substrates, selectivity, and stereoselectivity of both AChE and BChE in their
interaction with various esters [13,16,17].

Due to their chemical and proteolytic stability, the ability to pass through cell mem-
branes and form favourable intra- and intermolecular interactions in drug–target interac-
tion, similarity in peptide bonds, or the ability to improve the biological activity of parent
drugs, carbamates are used as a structural scaffold in many drugs approved by the US
Food and Drug Administration (FDA) [18,19]. As esterases, cholinesterases interact with
the esters of carbamic acids by a mechanism of action similar to ACh hydrolysis that takes
place in three steps involving the formation of the Michaelis complex, the acylation of
the enzyme, and its deacylation with water. Difference in action with carbamates lies in
the rate of turnover of enzyme’s activity where the decarbamylation rate is much slower
than deacetylation [20,21]. Today, there are four carbamate-based cholinesterase inhibitors
(Figure 1) approved for the treatment of neurodegenerative diseases; two are active in the
CNS (rivastigmine and physostigmine for the treatment of AD and Parkinson disease) and
two are active in the peripheral nervous system (neostigmine and pyridostigmine for the
treatment of Myasthenia gravis) [22].
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However, current drugs for Alzheimer’s and Parkinson’s disease are single-target
drugs that can achieve only temporary amelioration of symptoms instead of slowing or
halting the disease progression and have shown various side effects depending on the drug
used, and as such, they could not meet clinical needs [23,24]. In recent years, a strategy
oriented to development of ligands that can interact with multiple disease-related targets
has been proposed [25,26]. A very promising proposition is to use molecules that are
AChE inhibitors (often using the structure of marketed AD drugs as a scaffold) with certain
additional activities depending on fragments introduced into a molecule’s structure [24,25].

Quinuclidines are azabicyclic systems with a bridged nitrogen atom, and quinuclidin-
3-ols and their esters can be considered bicyclic analogs of ACh, which explains their ability
to act in cholinergic systems. Some quinuclidin-3-ol oximes were found to possess promis-
ing antidotal activity in poisoning by organophosphorus compounds; 3-oxoquinuclidinium
derivatives [27] and bisquarternary pyridinium-containing quinuclidinium oximes [28]
were shown to protect mice in poisoning by the organophosphorus compound soman.
Recently, it was found that mono-oxime quinuclidinium-based compounds in combination
with BChE have the potential to be used as bioscavengers of cyclosarin poisoning [29]. A
protective effect against soman poisoning was determined for carbamate-based quinucli-
dine oximes 3-carbamyl-N-allylquinuclidinium bromide [30] and carbamoyl pyridinium
ether [28]. Moreover, human AChE and BChE hydrolyze qunuclidinium acetates, ben-
zoates, isonicotinate, and phthalates with the hydrolytic rates depending on its carboxy
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part of the molecules, where isoniconitate was the best AChE substrate [31,32]. Quater-
nized quinuclidine-3-ols [32] and their conjugates with imidazolium and pyridinium were
determined to reversibly inhibit AChE [27,33]. Additionally, Cinchona-based alkaloids
cinchonines and cinchonidines, quaternized with groups diverse in size, displayed anti-
cholinesterase potency, pointing those compounds out as very potent human cholinesterase
reversible inhibitors [34]. Two quinuclidinium-based carbamates were determined to be
weak carbamylating agents of AChE [33].

Due to the vital role of AChE inhibition in the treatment of AD and on its positive
effect on cognitive symptoms, this study tested the inhibition potency of a series of new
compounds with the aim to detect new structural scaffolds of AChE inhibitors to which
additional pharmacophores may be added. As a continuation of our previous research, we
synthesized thirteen compounds combining carbamate and quinuclidine moieties in one
molecule and tested their inhibition potency toward human AChE and BChE (Figure 2).
The obtained kinetic results were analyzed by multi-way analyses. To assess the ability
of the tested compounds to be active in the CNS, their ability to cross the blood–brain
barrier and their cytotoxicity on cells that represent the main models of individual organs
were evaluated.
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2. Materials and Methods
2.1. Chemicals

All chemicals, reagents, and solvents for the synthesis of quinuclidinium carbamates
were purchased from commercial sources and used without further purification. Enzyme
substrates acetylthiocholine iodide (ATCh) and propionylthiocholine iodide (PTCh) were
purchased from Sigma-Aldrich, Steinheim, Germany, and thiole reagent 5,5′-dithiobis-
2-nitrobenzoic acid (DTNB) from Sigma-Aldrich, St. Louis, MO, USA. All cell growth
and cell culture supplements: RPMI-1640, Eagle’s Minimum Essential Medium (EMEM),
Dulbecco’s Modified Eagle’s Medium/Nutrient Mixture F-12 Ham medium (DMEM F12),
fetal bovine serum (FBS), penicillin/streptomycin (PenStrep), glutamine and non-essential
amino acids (NEAA)) were purchased from Sigma-Aldrich, Steinheim, Germany.

2.1.1. Enzyme Sources

Sources of AChE and BChE were native human erythrocytes and native human
plasma, respectively. Blood from healthy individuals was collected and prepared as
described previously [35]. Briefly, blood was collected in a heparinized tube and centrifuged
at 2.5 rpm for 20 min at 4 ◦C to separate plasma from the erythrocytes. Erythrocytes
were washed twice and diluted with phosphate buffer to the original blood volume. For
measuring the AChE activity, erythrocytes hemolyzed by freezing were used.

2.1.2. Cell Culture

All cell lines were obtained from the European Collection of Authenticated Cell
Cultures cell-bank (ECACC). A549 cells (ECACC 86012804) were grown in RPMI-1640
medium supplemented with 10% (v/v) FBS, and 1% (v/v) PenStrep. HEK293 cells (ECACC
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85120602) were grown in EMEM supplemented with 10% (v/v) FBS, 2 mM glutamine,
1% (v/v) PenStrep, and 1% (v/v) NEAA. SH-SY5Y cells (ECACC 94030304) were grown
in DMEM F12 supplemented with 15% (v/v) FBS, 2 mM glutamine, 1% (v/v) PenStrep,
and 1% (v/v) NEAA. All cells were grown at 37 ◦C in 5% CO2 atmosphere, the medium
was changed every few days, and passages were done according to standard protocol [36].
Phosphate-buffered saline (PBS, pH 7.4) was prepared according to a standard recipe [37]
and used for washing the cells when needed in the assays.

2.2. Synthesis of Compounds

Thin-layer chromatography was performed on aluminum oxide 60 F254 plates (Sigma-
Aldrich, St. Louis, MO, USA) and visualized under UV light (254 nm) or by iodine fumes.
Elemental analysis (CHN) was performed on a Perkin Elmer 2400 Series II CHNS analyzer
(PerkinElmer, Inc., Waltham, MA, USA), and the purity of all compounds was ≥99%. Melt-
ing points were determined on a Melting Point B-540 apparatus (Büchi Labortechnik GmbH,
Essen, Germany) and are uncorrected. FTIR (Fourier Transform Infrared Spectroscopy)
spectra were recorded as KBr pellets on a Perkin-Elmer Spectrum Two (PerkinElmer, Inc.,
Waltham, MA, USA). NMR spectra were recorded on a Bruker Avance III HD 400 MHz/54
mm Ascend spectrometer (Bruker Corporation, Billerica, MA, USA) at 22 ◦C in CDCl3
and DMSO-d6. Chemical shifts are given in ppm downfield from tetramethylsilane as the
internal standard. Coupling constants (J) are given in Hz. Splitting patterns are labeled
as s (singlet), d (doublet), dd (doublet of doublets), t (triplet), q (quartet), or m (multiplet).
Compounds 1, 6, and 11 were synthesized from quinuclidin-3-ol hydrochloride (≥98.0%,
Fluka, Honeywell Research Chemicals, Charlotte, NC, USA) following published proce-
dures [33,38], and the other compounds were prepared in a reaction of the appropriate
carbamate with halides [39]. All halides were obtained from Sigma-Aldrich Co., St. Louis,
MO, USA and used without further purification.

N-Benzyl-3-(N,N-dimethylcarbamoyloxy)quinuclidinium bromide (3) Yield: 78%; mp: 111.5–
115.1 ◦C; IR (KBr) νν/cm−1: 3439; 3357; 3222; 2991; 2960; 2886; 1706; 1616; 1499; 1464;
1388; 1265; 1185; 1068; 984; 892; 770; 711; 711. 1H NMR (400 MHz, DMSO-d6) δ/ppm:
1.79–2.13 (m, H5, H7); 2.23–2.29 (m, H4); 2.84 (s, CH3); 2.89 (s, CH3); 3.31–3.35 (m, H2; H6);
3.46–3.50 (m, H6, H8); 3.71–3.79 (m, H2); 4.53 (m, CH2bnz); 4.85–4.92 (m, H3); 7.49–7.56
(m, Hbnz). 13C NMR (DMSO-d6) δ/ppm: 18.55 (C8); 20.89 (C5); 24.30 (C4); 36.06 (CH3);
36.48 (CH3); 52.51(C7); 54.29 (C6); 60.85(C2); 66.30 (C11); 68.08 (C3); 127.91 (C12); 129.48
(C15); 130.69 (C14, C16); 133.52 (C13, C17); 155.16 (C=O). CHN analysis/%: Anal. calcd.
for (C17H25BrN2O2)/%: C 55.29; H 6.82; Br 21.64; N 7.59; O 8.66; Found: C 55.32; H 6.81;
N 7.57.

N-(4-Nitrobenzyl)-3-(N,N-dimethylcarbamoyloxy)quinuclidinium bromide (4) Yield: 95%; mp:
200.5–204.7 ◦C; IR (KBr) ν/cm−1: 3107; 2962; 2886; 1706; 1607; 1524; 1491; 1392; 1349; 1272;
1188; 1096; 1048; 999; 940; 857; 767. 1H NMR (400 MHz, DMSO-d6) δ/ppm: 1.82–2.09 (m,
H5, H7); 2.24–2.30 (m, H4); 2.84 (s, CH3); 2.90 (s, CH3); 3.34–3.43 (m, H2); 3.45–3.62 (m,
H6, H8); 3.75–3.82 (m, H2); 4.71 (q, CH2bnz); 4.84–4.90 (m, H3); 7.81–7.84 (m, H13, H17);
8.35–8.39 (m, H14, H16). 13C NMR (DMSO-d6) δ/ppm: 18.51 (C8); 20.93 (C5); 24.68 (C4);
36.08 (CH3); 36.49 (CH3); 52.7 (C7); 54.6 (C6); 61.01 (C2); 68.02 (C11); 68.62 (C3); 124.33;
135.04;135.11; 149.04 (C12, C13,C14,C15,C16,C17); 155.14 (C=O). CHN analysis/%: Anal.
calcd. for (C17H24BrN3O4)/%: C 49.28; H 5.84; Br 19.29; N 10.14; O 15.45; Found: C 49.20;
H 5.86; N 10.15.

N-(4-Chlorobenzyl)-3-(N,N-dimethylcarbamoyloxy)quinuclidinium bromide (5) Yield: 75%; mp:
193.3–195.6 ◦C; IR (KBr) ν/cm−1: 3085; 2966; 2884; 1705; 1598; 1494; 1391; 1340; 1272;
1190; 1095; 1067; 999; 927; 898; 861; 766. 1H NMR (400 MHz, DMSO-d6) δ/ppm: 1.75–
2.14 (m, H5, H7); 2.21–2.32 (m, H4); 2.84 (s, CH3); 2.90 (s, CH3); 3.27–3.43 (m, H6, H2);
3.40–3.58 (m, H6, H8); 3.69–3.79 (m, H2); 4.53 (q, CH2bnz); 4.84–4.90 (m, H3); 7.49–7.66
(m, H13, H14, H16, H17). 13C NMR (DMSO-d6) δ/ppm: 18.48 (C8); 20.9 (C5); 24.78 (C4);
36.06 (CH3); 36.48 (CH3); 52.43 (C7); 54.33 (C6); 60.82 (C2); 65.30 (C11); 68.07 (C3); 126.89;
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129.53; 135.34; 135.71 (C13,C14,C17,C16); 155.144 (C=O). CHN analysis/%: Anal. calcd. for
(C17H24BrClN2O2)/%: C 50.57; H 5.99; Br 19.79; Cl 8.78; N 6.94; O 7.93; Found: C 50.48; H
6.01; N 6.94.

3-(N,N-diethylcarbamoyloxy)quinuclidine (6) Yield: 64%; oil; IR (NaCl) ν/cm−1: 3676-3120;
2938; 2870; 1696; 1473; 1426; 1274; 1173; 1018; 979; 770. 1H NMR (400 MHz, DMSO-d6)
δ/ppm: 1.06 (s, CH3); 1.32–1.79 (m, H5, H7); 1.90–1.98 (m, H4); 2.55–2.82 (m, H6, H8;
H2); 3.09–3.25 (m, CH2); 4.56–4.63 (m, H3). 13C NMR (DMSO-d6) δ/ppm: 14.58; 13.93
(CH3); 19.72;24.17 (C5, C8); 25.56 (C4); 47.26 (C6, C7); 46.23 (CH2N); 55.76 (C2); 70.98 (C3);
155.144 (C=O).

N-Methyl-3-(N,N-diethylcarbamoyloxy)quinuclidinium iodide (7) Yield: 80%; mp: 142.1–144.7 ◦C;
IR (KBr) ν/cm−1: 2966; 2881; 1698; 1531; 1476; 1428; 1379; 1275; 1170; 1105; 1081; 1008;
961; 766. 1H NMR (400 MHz, DMSO-d6) δ/ppm: 0.97–1.18 (m, CH3); 1.78–2.08 (m, H5,
H8); 2.25–2.35(m, H4); 2.87–3.05(m, NCH3); 3.15–3.31 (m, CH2, H7, H6); 3.44–3.5 (m, H2,
H6); 3.78–3.86 (m, H2); 4.86–4.92 (m, H3). 13C NMR (DMSO-d6) δ/ppm: 13.84 (CH3);
14.61 (CH3);18.65 (C8); 21.21 (C5); 24.07(C4); 41.47; 41.82 (CH2N); 51.21 (NCH3); 55.46;
56.09 (C7, C6); 62.76 (C2); 68.01(C3); 154.49 (C=O). CHN analysis/%: Anal. calcd. for
(C13H25IN2O2)/%: C 42.40; H 6.84; I 34.46; N 7.61; O 8.69; Found: C 42.47; H 6.85; N 7.59.

N-Benzyl-3-(N,N-diethylcarbamoyloxy)quinuclidinium bromide (8) Yield: 86%; mp: 106.7–107.1 ◦C;
IR (KBr) ν/cm−1: 3483; 3237; 2967; 2890; 1695; 1478; 1430; 1395; 1274; 1221; 1171; 1084; 1000;
940; 891; 767; 709. 1H NMR (400 MHz, DMSO-d6) δ/ppm: 0.97–1.73 (m, Me); 1.76–2.14
(m, H5,H8); 2.22–2.36 (m, H4); 3.12–3.31 (m, H6, H7); 3.3–3.39 (m, CH2); 3.40–3.54 (m,
CH2, H2); 3.73–3.82 (m, H2); 4.48–4.62 (m, CH2bnz); 4.87–4.96 (m, H3); 7.52 (s, CHbnz).
13C NMR (DMSO-d6) δ/ppm: 14.59; 13.83 (CH3 Et); 20.91; 18.56 (C5, C8); 24.85 (C4);
41.45; 41.83 (CH2 Et); 54.27; 52.52 (C6, C7); 60.97 (C2); 66.28 (CH2bnz); 67.87 (C3); 127.93
(C1bnz);129.66; 130.68; 133.62 (CHbnz); 154.40 (C=O). CHN analysis/%: Anal. calcd. for
(C19H29BrN2O2)/%: C 57.43; H 7.36; Br 20.11; N 7.05; O 8.05; Found: C 57.47; H 7.38;
N 7.05.

N-(3-Bromobenzyl)-3-(N,N-diethylcarbamoyloxy)quinuclidinium bromide (9) Yield: 83%; mp:
144.3–147.5 ◦C; IR (KBr) ν/cm−1: 3429; 3370; 3243; 2974; 2882; 1684; 1631; 1569; 1438; 1393;
1277; 1216; 1168; 1076; 1002; 942; 891; 829; 797; 768; 717; 669; 617; 567; 447. 1H NMR (400
MHz, DMSO-d6) δ/ppm: 0.96–1.17 (m, Me); 1.72–2.13 (m, H5, H7); 2.21–2.36 (m, H4); 3.14–
3.4 (m, H6, H8); 3.3–3.39 (m, CH2); 3.40–3.58 (m, CH2, H2); 3.74–3.85 (m, H2); 4.46–4.62 (m,
CH2bnz); 4.87–4.96 (m, H3); 7.45–7.79 (m, CHbnz). 13C NMR (DMSO-d6) δ/ppm: 13.83;
14.61 (CH3 Et); 18.60; 20.91 (C5, C7); 24.85 (C4); 41.46; 41.84 (CH2 Et); 52.55; 54.51(C6, C8);
61.11 (C2); 65.26 (CH2bnz); 67.83 (C3); 122.53 (C14);130.51; 131.56; 132.68; 133.59; 135.94
(C15, 16, 17, 18, 19); 154.44 (C=O). CHN analysis/%: Anal. calcd. for (C19H28Br2N2O2)/%:
C 47.92; H 5.93; Br 33.56; N 5.88; O 6.72; Found: C 47.96; H 5.93; N 5.89.

N-(4-Chlorobenzyl)-3-(N,N-diethylcarbamoyloxy)quinuclidinium bromide (10) Yield: 77%; mp:
92.6–94.1 ◦C; IR (KBr) ν/cm−1: 3421; 3368; 2970; 2932; 1698; 1475; 1430; 1393; 1317; 1277;
1225; 1171; 1091; 1020; 942; 890; 829; 767; 734; 590; 529; 487; 443. 1H NMR (400 MHz,
DMSO-d6) δ/ppm: 0.91–1.25 (m, Me); 1.69–2.13 (m, H5,H7); 2.19–2.39 (m, H4); 3.16–3.42
(m, H6, H8); 3.3–3.39 (m, CH2); 3.43–3.53 (m, CH2, H2); 3.72–3.85 (m, H2); 4.49–4.62 (m,
CH2bnz); 4.87–4.94 (m, H3); 7.52–7.64 (m, CHbnz). 13C NMR (DMSO-d6) δ/ppm: 13.83;
14.60 (CH3 Et); 18.59; 20.90 (C5, C7); 24.85 (C4); 41.46; 41.83 (CH2 Et); 52.38; 54.31(C6, C8);
60.95 (C2); 65.25 (CH2bnz); 67.84 (C3); 126.91 (C14);129.50; 135.36; 135.70 (Cbnz); 154.44
(C=O). CHN analysis/%: Anal. calcd. for (C19H28BrClN2O2)/%: C 52.85; H 6.54; Br 18.51;
Cl 8.21; N 6.49; O 7.41; Found: C 52.84; H 6.53; N 6.48.

N-Benzyl-3-(N-phenylcarbamoyloxy)quinuclidinium bromide (12) Yield: 54%; mp: 65.3–67.9 ◦C;
IR (KBr) ν/cm−1: 2887-3752; 1726; 1600; 1544; 1498; 1445; 1317; 1225; 1093; 1064; 895; 764;
706; 619; 509. 1H NMR (400 MHz, CDCl3) δ/ppm: 1.4–1.7 (m, H8); 1.85–1.87(m, H5); 1.9–2.1
(m, H4); 2.7–3.2 (m, H2, H7, H6); 3.2–3.4 (m, H2); 4.7–4.9 (m, H3); 7.0–7.1 (m, CHbnz);
7.2–7.5 (m, CHbnz). 13C NMR (CDCl3) δ/ppm:19.56 (C5); 24.63 (C8); 25.43 (C4); 47.44;
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45.54 (C7, C6); 55.54 (C2); 72.18 (C3); 118.68; 123.45; 129.08; (CHbnz); 138.02 (Cbnz); 152.66
(C=O). CHN analysis/%: Anal. calcd. for (C21H25BrN2O2)/%: C 60.44; H 6.04; Br 19.15; N
6.71; O 7.67; Found: C 60.46; H 6.04; N 6.73.

N-(3-Chlorobenzyl)-3-(N-phenylcarbamoyloxy)quinuclidinium bromide (13) Yield: 76%; mp:
85.8–89.3 ◦C; IR (KBr) ν/cm−1: 3535-3261; 3183; 3049; 2966; 1727; 1600; 1544; 1491; 1445;
1317; 1225; 1092; 1064; 880; 832; 798; 748; 694; 567; 509; 436. 1H NMR (400 MHz, DMSO-d6):
1.8–2.0 (m, H8, H5); 2.1–2.2 (m, H5); 2.2–2.3 (m, H4); 3.2–3.6 (m, H2, H7, H6); 3.8–3.9 (m,
H2); 4.4–4.6 (m, CH2bnz); 5.0–5.1 (m, H3); 7.0–7.8 (m, CHbnz); 9.9 (s, NH). 13C NMR
(CDCl3) δ/ppm:18.42 (C5); 20.95 (C8); 24.71 (C4); 52.91; 54.46 (C7, C6); 60.79 (C2); 65.38
(CH2bnz); 67.76 (C3); 118.77; 123.25; 129.30; 130.75; 131.35; 132.36; 133.15 (CHbnz); 130.22;
133.98; (Cbnz); 153.1 (C=O). CHN analysis/%: Anal. calcd. for (C22H27BrN2O2)/%: C
61.26; H 6.31; Br 18.52; N 6.49; O 7.42; Found: C 61.39; H 6.32; N 6.48.

2.3. Cholinesterase Inhibition
2.3.1. Enzyme Activity Measurement

Enzyme activities were determined using the Ellman spectrophotometric method [40]
at 25 ◦C in 0.1 M phosphate buffer (pH = 7.4) with 0.3 mM DTNB as the thiol reagent.
Substrate stock solutions, ATCh (10 mM), and PTCh (40 mM), and carbamates (50–100 mM),
as well as their further dilutions, were prepared in water. Final concentrations of carbamates
were in the range of 0.5–200 µM, while substrates were 1.0 mM and 4.0 mM for ATCh and
PTCh, respectively. Final dilution of AChE and BChE was 500 and 300 times, respectably.

The extend of inhibition was determined by measuring the time dependence of
cholinesterases inhibition by carbamates [16]. An inhibitor was added to the reaction mix-
ture containing DTNB, buffer, and enzyme, and after a given incubation time, a substrate
was added followed by measurement of the residual activity of the enzyme. Enzyme activ-
ity at “zero” time was measured after adding the enzyme to a reaction mixture containing
DTNB, buffer, inhibitor, and substrate immediately before the start of the measurement.
With the inhibited probes, the activities of the control probes, which did not contain an
inhibitor, were measured.

The increase in absorbance was recorded at 436 nm for AChE or 412 nm for BChE [40,41],
on a Cary 300 spectrophotometer (Varian, Inc., Mulgrave, Australia).

2.3.2. Inhibition Constants Determination

Enzyme inhibition proceeds according to the Scheme 1:
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Where E, QC, [E] [QC], EC, and Q stands for free enzyme, inhibitor, Michaelis-type
complex between enzyme and inhibitor, carbamylated enzyme, and leaving group, respec-
tively. The first-order rate constants (kobs) were calculated by the linear regression analyses
at any given inhibitor concentration ([QC]):

ln
v0

vi
= kobs·t (1)

where v0 and vi stand for the enzyme activity in the absence and in the presence of inhibitor
at time t. When the kobs was a linear function of [QC], the second-order inhibition rate
constant (ki) was calculated from:

ki =
kobs

t
(2)
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when dependence of kobs vs. [QC] was not linear, indicating the presence of a reversible
enzyme–inhibitor complex, the maximum first-order inhibition rate constant (kmax) and
the dissociation constants of enzyme–inhibitor complex (Ka) were determined from:

kobs =
kmax·[QC]
Ka + [QC]]

(3)

Then, the ki constant was the ratio:

ki =
kmax

Ka
(4)

All kinetic parameters were calculated using the statistical package GraphPadPrism 8
(Graph Pad Inc., San Diego, CA, USA).

2.4. Multivariate Analysis

Multivariate analyses of sampled molecular dynamics data were performed using the
second-order tensor analysis tool principal component analysis (PCA). In PCA, the data
matrix (or two-way array) X of rank r (usually not known) with mean centred columns
that consists of i rows (compounds) and j variables (energy values) was decomposed as a
sum of total of r matrices tipτ

i with rank 1:

X =
r

∑
i=1

tipτ
i (5)

where ti stands for score and pτ
i stands for loading vectors. PCA finds the best linear

projections for a high-dimensional set of data in the least squares sense. Scores represent
projections of the original points on the principal component direction and can be used for
classification, whereas loadings represent eigenvectors of data covariance (or correlation)
matrix and can be used for the identification of variability among the data.

2.5. Machine Learning Procedure

Multivariate linear regression models using a linear combination of variables as
well as the higher-order polynomial terms (up to the degree of 5) were constructed and
validated. Matrices of coefficients B were calculated by singular value decomposition using
the expression:

B = (XτX)−1XτY. (6)

Each model was extensively tested by using the leave-one-out cross-validation proce-
dure (LOO) and the coefficient of determination, standard error of regression, average R2

in LOO, and cross-validation mean squared error were computed. Based on these values,
the most optimal representation model was selected.

2.6. In Silico Prediction of Blood–Brain Barrier (BBB) Penetration

The ability of synthesised quinuclidine carbamates to cross the blood–brain barrier
(BBB) was estimated by calculating the molecular descriptors important for passive trans-
port [42,43]: the logarithm of the octanol/water partition coefficient (logP), the molecular
weight (MW), the polar surface area (PSA), the number of hydrogen bond donors (HBD),
the number of hydrogen bond acceptors (HBA), and molecular flexibility characterized by
the number of rotable bonds (RB). Parameters were determined in silico using the Chemi-
calize 2018 platform [44]. The obtained results were compared to the recommendations of
physicochemical properties for successful central nervous system drugs [45].

2.7. Cytotoxicity of Carbamates

The cytotoxic profiles of tested carbamates were determined by measuring the suc-
cinate dehydrogenase mitochondrial activity of cells exposed to them [46]. We used the
commercially available MTS detection reagent assay (CellTiter 96® AQueous One Solution
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Cell Proliferation Assay, Promega, Madison, WI, USA). The procedure followed a previ-
ously described protocol [29]. All cell types were seeded at a density of 20,000 cells/well
in 96-well plates one day before the experiment. On the day of the experiment, cells were
exposed to the carbamates in a concentration range of 6.25–400 µM for 24 h. After a set
time of incubation at 37 ◦C in a 5% CO2 atmosphere, cells were washed once with PBS
buffer and 100 µL of corresponding medium, 20 µL of MTS reagent was added to each well,
and after 3 h of incubation, the absorbance was read at 492 nm on an Infinite M200PRO
plate reader (Tecan Austria GmbH, Salzburg, Austria). Data were evaluated from at least
two separate experiments (each treatment in duplicate) by a nonlinear fit equation pre-
defined in GraphPadPrism 8 software (GraphPad Inc., San Diego, CA, USA). The results
were expressed as a percentage of a cell death in carbamate-treated cells compared to the
untreated cells.

3. Results and Discussion
3.1. Synthesis of Compounds

Thirteen quinuclidine carbamates differing in substituents at the quinuclidinium
nitrogen atom and carbamoyl nitrogen atom were synthesized. We prepared a series of dis-
ubstituted (N,N-dimethyl, compounds 1–5 and N,N-diethyl, compounds 6–10) and mono-
substituted carbamates (N-phenyl, compounds 11–13), as shown in Figure 2. The syntheses
of quinuclidinium carbamates started from the commercially available quinuclidine-3-ol.
Carbamates were prepared by the reaction of alcohol and differently substituted carbamoyl
chlorides [33] or isocyanate [38]. To prepare quaternary compounds, a Menshutkin reac-
tion was employed. Compounds 1, 6, and 11 were converted to quaternary ammonium
salts by a reaction with the appropriate alkyl/aryl halide [39]. The best conditions were
obtained in the reaction of carbamates with 1 eq. of appropriate alkyl/aryl halide in dry
tetrahydrofurane at reflux temperature and under a nitrogen atmosphere. The products
were obtained in 54–95% yield as solids that precipitated from the reaction mixture using
diethyl ether. Structures of prepared compounds were deduced from IR, one-, and two-
dimensional NMR spectra. Compounds 3–10, 12, and 13 are new compounds and have not
been previously described in the literature.

3.2. Inhibition of Cholinesterases

All of the tested quinuclidine carbamates displayed a time-dependent inhibition of
both cholinesterases, AChE and BChE. Inhibition followed first-order kinetics at any given
inhibitor concentration (Figure 3 panel A).
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For AChE, eleven out of thirteen quinuclidine carbamates displayed a nonlinear de-
pendence of the first-order rate constant (kobs) on carbamate concentration (Figure 3 panel
B) allowing for the determination of the maximal first-order rate constant of carbamylation,
kmax, and dissociation constant of the enzyme–carbamate Michaelis type of complex, Ka
(Table 1). For compounds 8 and 11, kobs was a linear function of carbamate concentration.
The overall inhibition rate constant ki, which represents the first step in carbamates hydrol-
ysis, i.e., the carbamylation rate constant, expresses the measure of inhibition potency of
quinuclidinium carbamates. The ki constants for the tested quinuclidinium carbamates
and AChE were in range of (1.0–15) 103 M−1 min−1, (median 3.5·103 M−1 min−1). The
most potent AChE inhibitor was diethyl-carbamate quaternized with a benzyl group,
compound 8, while the least potent was the non-quaternized phenyl carbamate 11, being
15 times less potent than 8. Interestingly, for both carbamates, the first-order rate constant,
k[QC], displayed linear dependence on the carbamate concentration pointing to the fact
that the concentration of the reversible enzyme–inhibitor complex during inhibition is
negligible. Generally, the derived ki constants corresponded very well to that determined
for rivastigmine, the carbamate currently in use in AD treatment, having constants in
range of 1.13–4.54 103 M−1 min−1 [47–51]. However, compared to the inhibition potency
of physostigmine, in use for Parkinson’s disease treatment, quinuclidinium carbamates are
about three orders of magnitude less potent AChE inhibitors (Table 2) [52]. Although the ki
constants of all of the tested carbamates did not differ much, a certain trend was noticed. If
the carbamates are grouped with respect to the amine part of the carbamate group, it can be
observed that the quaternization of the quinuclidinium nitrogen leads to a slight increase
of the overall rate of carbamylation. This observation is most evident by carbamates with a
phenyl group in the amino part of the molecule where quaternization of quinuclidinium
nitrogen increased the carbamylation rate by about 3.5 times. It is known that the rate
of cholinesterase carbamylation is determined by the entrance of the carbamate and its
orientation into the active site of the enzyme [53]. It seems that these two activities in
the case of tested quinuclidinium carbamates were dictated primarily by the quinuclidine
part of the carbamates. Although the overall inhibition rate constants of AChE were very
similar, the intrinsic carbamylation constants differed; AChE had the highest kmax and Ka
for compound 3, but consequently, its corresponding ki was close to the median.

Table 1. Inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) by quinuclidinium carbamates 1–13.

Compound
AChE BChE

ki(BChE)/ki(AChEki·103

[M−1min−1]
Ka

[µM]
kmax

[min−1]
ki·103

[M−1min−1]
Ka

[µM]
kmax

[min−1]

1 2.6 ± 0.6 72 ± 15 0.19 ± 0.02 3.1 ± 0.7 60 ± 9 0.20 ± 0.02 1.3
2 5.5 ± 1.4 22 ± 5 0.12 ± 0.01 5.4 ± 1.5 18 ± 4 0.095 ± 0.007 0.98
3 3.4 ± 1.3 124 ± 63 0.34 ± 0.11 4.9 ± 0.7 32 ± 4 0.16 ± 0.01 1.4
4 5.9 ± 2.5 25 ± 10 0.15 ± 0.03 7.5 ± 1.9 15 ± 4 0.13 ± 0.01 1.3
5 5.5 ± 1.4 29 ± 7 0.16 ± 0.01 3.6 ± 0.8 80 ± 17 0.29 ± 0.03 0.65
6 2.9 ± 0.9 76 ± 19 0.22 ± 0.03 3.8 ± 0.9 41 ± 9 0.16 ± 0.01 1.3
7 3.5 ± 1.1 46 ± 13 0.16 ± 0.02 1.5 ± 0.0 - - 0.42
8 15 ± 1 - - 24 ± 6 7.9 ± 1.9 0.19 ± 0.02 1.6
9 6.8 ± 1.5 40 ± 8 0.27 ± 0.03 7.3 ± 2.1 32 ± 9 0.23 ± 0.03 1.0

10 3.2 ± 0.7 61 ± 13 0.20 ± 0.02 3.4 ± 2.0 46 ± 4 0.16 ± 0.05 1.0
11 1.0 ± 0.2 - - 3.0 ± 0.9 65 ± 18 0.20 ± 0.03 3.0
12 3.7 ± 0.8 25 ± 5 0.09 ± 0.01 3.1 ± 1.1 103 ± 31 0.32 ± 0.05 0.83
13 3.2 ± 0.5 88 ± 13 0.28 ± 0.02 3.1 ± 1.0 89 ± 22 0.28 ± 0.04 0.98

Rivastigmine [48] 4.54 333 73
Physostigmine 4900 ± 380 66 ± 27 0.32 ± 0.22 2800 ± 940 250 ± 24 0.61 ± 0.22 1.8

Inhibition of BChE displayed a nonlinear dependence of the first-order rate constant
and carbamates concentration for all tested quinuclidine carbamates, with ki constants
in the range (1.5–24) × 103 M−1 min−1 (Table 1). An exception was compound 7, where
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kobs was a linear function of the carbamate concentration. The most potent inhibitor was
compound 8, which was an BChE inhibitor that was about 6 times more potent than the
other tested carbamates.

The ratio of overall inhibition rate constants for BChE and AChE describes the inhi-
bition selectivity of the tested carbamates (Table 1). Generally, the tested quinuclidinium
carbamates did not displayed pronounced selectivity either of the cholinesterase; the ra-
tio of the overall inhibition rate constants ranged from 0.42 to 1.8. Only in the case of
compound 11 was a three times higher preference to BChE determined, which can be
attributed to the low inhibition potency to AChE. This is not a downfall or disadvantage,
since currently used cholinesterase inhibitor physostigmine is also non-selective.

Table 2. Total variance represented by principal components calculated for a set of compound
energies from the molecular dynamics simulations.

Principal Component Variance/% Total/%

PC01 72.28 72.28
PC02 2.79 75.07
PC03 2.66 77.74
PC04 2.60 80.34
PC05 2.56 82.90

3.3. Multivariate Analysis and Activity Models

A relationship between the structure of compounds and the bioactivity is crucial for
understanding the mechanism of action and establishing prediction models. Dissociation
constants of enzyme–inhibitor complex Ka were used as dependent variables for the
estimation of quinuclidine carbamates activities. These constants were regressed on the
theoretically computed energy fingerprints of all compounds whose principal components
were calculated by the second-order tensor decomposition tool PCA. Energies collected
during molecular dynamics trajectories were arranged in a data matrix, and the PCA on
the covariance matrix was carried out using our multivariate analysis code [54] based on
the NIPALS algorithm [55].

The first two principal components of compound energies described more than 75%
of the total variance (Table 2). Inspection of the scree plot revealed that these two prin-
cipal components will be sufficient as independent variables for multivariate regression
(Figure 4).
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leave-one-out cross-validation technique (LOO). For every computed model, coefficient
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of determination and standard error of regression as well as the mean squared errors of
prediction were computed, and the optimal model was selected. The mean squared errors
of prediction determined by the LOO method were the lowest in the case of the third-order
polynomial models. These models for AChE and BChE are presented in Figure 5.
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LOO was bigger than for the model itself ensuring that there is no overfitting. The
equivalent model for BChE described 90% of the variations in the data. The average R2 in
the latter case was 92%, verifying again the validity of the model. These models can be used
for predicting the bioactivity of new compounds and for the design of better inhibitors.

3.4. The BBB Penetration Ability of Tested Quinuclidinium Carbamates

The ability of quinuclidinium carbamates to cross the BBB was assessed by comparing
the calculated values of six physicochemical descriptors of compounds with the recom-
mended values obtained for known CNS-active drugs [41]. CNS-active drugs generally
have a molecular weight lower than 450 g moL−1, moderate hydrophobicity (logP < 5),
less than three hydrogen bonds donors (HBS) and less than seven hydrogen bond accep-
tors (HBA), less than eight rotatable bonds (RB) and are less polar (polar surface area
(PSA) < 70 Å2) than drugs that are not active in the CNS. A comparison of the obtained val-
ues for molecular descriptors for the tested carbamates and recommended values [45,56,57],
for known CNS-active drugs, is shown at a radar plot in Figure 6.

Values of all molecular descriptors of tested carbamates were favorable and in the
range of the upper recommended values of “Rule of 5” molecular descriptors values [56].
The only exception was the polar surface area of compound 4 that was outside of the
recommended range. Regarding the lower recommended values for molecular descriptors,
five (1, 6, 11, 12 and 13) were favorable for all quinuclidinium carbamates. The hydropho-
bicity of carbamates 2, 3, 4, 5, 7, 8, 9 and 10 was below the lower recommended value,
which reduces the possibility of those carbamates to cross the BBB. The values of the tested
carbamates were compared to those calculated for carbamates currently in use for the
treatment of neurodegenerative diseases: rivastigmine, physostigmine, pyridostigmine,
and neostigmine (Figure 6). For five carbamates, compounds 1, 6, 11, 12, and 13, the molec-
ular descriptors were within the recommended range, close to that of CNS-active drugs
rivastigmine and physostigmine. Compounds 1, 6, and 11 are the only non-quaternized
compounds; i.e., they do not have a permanent positive charge known to prevent passive
diffusion through the BBB. Compounds 12 and 13 do have a permanent charge, but it seems
that it is counterbalanced by their additional aromatic rings. The hydrophobicity of the rest
of the quinuclidinium compounds was close to that determined for pyridostigmine and
neostigmine, the carbamates that target cholinesterases in the peripheral nervous system.
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Figure 6. Radar plot of physicochemical properties (molecular weight, MW; lipophilicity coefficient,
logP; number of hydrogen bonds donors, HBD, and acceptors HBA; rotatable bonds, RB; polar
surface area, PSA) of the tested carbamates. The recommended values for the CNS-active drugs are
presented by a dashed red line [56,57].

3.5. Cytotoxicity

The cytotoxic effect of quinuclidinium carbamates was evaluated on A549, HEK293,
and SH-SY5Y in a 24 h exposure period. The concentration range was selected to correspond
to the one used in vitro kinetic experiments of their cholinesterase inhibition potency
testing. The obtained results are given in Figure 7. As the results indicate, none of the
tested compounds induced a significant cytotoxic effect on either of the cell lines in the
concentration range tested (up to 400 µM).
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4. Conclusions

A series of thirteen quinuclidine-based carbamates, ten of which were new com-
pounds, were synthesized and evaluated as potential CNS active substances. All of the
synthesized compounds proved to be potent dual inhibitors of both AChE and BChE
displaying a time-dependent inhibition of both cholinesterases and demonstrating the
formation of a covalent bond with the active site serine. In silico prediction of BBB passive
transport has showed that non-quaternized and quaternized phenyl-carbamates could
cross the BBB and be therefore CNS active. Furthermore, cytotoxicity assays showed that
all of the tested compounds were non-toxic on all cell lines. Based on our results, it can
be concluded that non-quaternized dimethyl-, diethyl-, and phenyl quinuclidine carba-
mates, as well as quaternized phenyl carbamates can be considered potential candidates
for further evaluation as potential cholinesterase-based drugs, or as a good starting point
in the design and synthesis in terms of developing new CNS-active drugs with improved
inhibition potency toward cholinesterases. The quaternized dimethyl- and diethyl- quinu-
clidine carbamates, regarding their dual inhibition potency and non-cytotoxicity, could be
candidates for targeting cholinesterases in the peripheral nervous system. Based on these
data, the regression models for the prediction of bioactivity were established and validated.
In both cases, the average R2 in the LOO procedure was higher than 90%, as well as these
values were higher than for the model itself, ensuring that there was no overfitting. An
equivalent model for BChE described 90% of the variations in the data. The average R2 in
the latter case was 92%, again verifying the validity of the model. These models present a
sound tool that can be used for the prediction and design of new and better inhibitors.
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