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Physical Education, Gangneung-Wonju National University, Gangneung, South Korea, 7School of

Physical Education, Xianyang Normal University, Xianyang, China, 8Qinghai Institute of Sports

Science Limited Company, Xining, China

Background: Emerging evidence suggests that exercise is a simple and

e�ective method for maintaining brain function.

Aims: This review evaluates the e�ects of five physical exercises, including

aerobic training (AT), high-intensity interval training (HIIT), combined training

(CT), resistance training (RT), and AT+RT, on the serum level of brain-derived

neurotrophic factor (BDNF) in healthy and non-healthy populations.

Methods: We searched CNKI, PubMed, Embase, Scopus, Medline, Web of

Science, and Cochrane Library databases to review randomized controlled

studies on exercise interventions for BDNF. Quantitative merging analysis of

the resulting data using Bayesian network meta-analysis.

Results: The screening and exclusion of the searched literature resulted

in the inclusion of 39 randomized controlled trials containing 5 exercise

interventions with a total of 2031 subjects. The AT, RT, AT+RT, HIIT, and CT

groups (intervention groups) and the CG group (conventional control group)

were assigned to 451, 236, 102, 84, 293, and 865 subjects, respectively. The

Bayesian network meta-analysis ranked the e�ect of exercise on BDNF level

improvement in healthy and non-healthy subjects as follows: RT>HIIT>CT>

AT+RT > AT > CG. Better outcomes were observed in all five intervention

groups than in the CG group, with RT having the most significant e�ect

[MD = 3.11 (0.33, 5.76), p < 0.05].

Conclusions: RT at moderate intensity is recommended for children

and older adults in the case of exercise tolerance and is e�ective

in maintaining or modulating BDNF levels for promoting brain health.
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Introduction

The central nervous system (CNS) is the primary site of

distribution for brain-derived neurotrophic factor (BDNF), the

second neurotrophic factor identified after nerve growth factor

(NGF) (Binder and Scharfman, 2004). BDNF is most abundant

in hippocampal and cortical tissues, and its ability to keep brain

cells active promotes the survival, differentiation, and growth

of brain neurons (Hans, 1995; Thoenen, 1995; Min-Wook

et al., 2005). BDNF not only maintains and promotes neuronal

development and differentiation along with nerve growth and

regeneration but also engages in a variety of mechanisms

such as regenerative repair after neuronal injury and neuronal

degeneration prevention. In children and adolescents, BDNF is

critical in supporting brain development and plasticity (Iughetti

et al., 2011; Wrigglesworth et al., 2019). Physical activity

increases the release of BDNF, insulin-like growth factor-1

(IGF-1), fibroblast growth factor 2 (FGF-2), NGF, and vascular

endothelial growth factor (VEGF) (Gómez-Pinilla et al., 1997;

Fabel et al., 2003; Griffin et al., 2011; Hong et al., 2015; Stein

et al., 2018). These promote cerebral angiogenesis and penetrate

the blood-brain barrier (BBB) and the blood-cerebrospinal fluid

(CSF) barrier, affecting brain health; in the elderly population,

reduced levels of BDNF and its receptorsmay be amajor cause of

the onset and progression of neurodegenerative diseases (Blesch,

2006; Ruiz-González et al., 2021), resulting in impaired brain

health, memory loss, and cognitive decline in the absence of

Abbreviations: CNS, central nervous system; BDNF, brain-derived

neurotrophic factor; NGF, nerve growth factor; IGF-1, insulin-like growth

factor; FGF-2, fibroblast growth factor 2; VEGF, vascular endothelial

growth factor; BBB, blood-brain barrier; CSF, cerebrospinal fluid; NSD,

nervous system disease; AT, aerobic training; RT, resistance training;

HIIT, high-intensity interval training; CT, combined training; RCT,

randomized controlled trial; NMA, network meta-analysis; PRISMA,

preferred reporting items for systematic review and meta-analyses;

MCMC, Bayesian Markov Chain Monte Carlo; PSRF, potential scaling

reduction factor; ELISA, enzyme-linked immunosorbent assay; MRI,

magnetic resonance imaging; CTSB, cathepsin B; TrkB, tropomyosin

receptor kinase B; QD, quantitative di�erence; HRR, heart rate reserve;

VO2max, maximum oxygen uptake; HRmax, maximum heart rate; THR,

target heart rate; MVP, maximum velocity performance; SNPs, single

nucleotide polymorphisms.

timely and effective interventions. In addition, BDNF is closely

associated with cognitive function, whereas physical activity

increases BDNF mRNA expression in the hippocampus, which

remains high after a short period of cessation of exercise (Neeper

et al., 1996; Shawne et al., 1996; Carl and Berchtold, 2002).

As a result, changes in BDNF concentrations in the body may

be directly linked to the mechanisms through which physical

activity reshapes the brain, boosts cognition, and improves

neurological disorders (Flöel et al., 2010; Knaepen et al., 2010;

Erickson et al., 2011; Nascimento et al., 2015).

Exercise is frequently used in complementary and alternative

medicine as a non-pharmacological treatment with hardly any

side effects. Exercise therapy has been used extensively in recent

years to intervene in nervous system diseases (NSDs), such

as cognitive impairment, multiple sclerosis, and Parkinson’s

disease. There is research evidence indicating that exercise can

increase serum BDNF levels, and BDNF is a protective factor

for depression and NSDs (Guo et al., 2020). Some studies have

shown that aerobic training (AT), resistance training (RT), high-

intensity interval training (HIIT), and combined training (CT)

do not, however, increase serum BDNF levels (Goekint et al.,

2010; Krogh et al., 2014; Nicolini et al., 2019; Abbaspoor et al.,

2020). BDNF levels are an important indicator of human brain

health, and the overall findings on the effects of exercise therapy

on BDNF levels in healthy subjects and patients with NSDs

are worthy of further investigation for application in clinical

practice. This study collected past RCTs and analyzed the effects

of five different exercise interventions on serum BDNF levels in

healthy and non-healthy populations using the Bayesian NMA

method, yielding comprehensive comparative results (Lumley,

2002). Compared with traditional Meta-analysis, Network

meta-analysis (NMA) allows the quantitative comparisons of

different interventions for similar health problems to be pooled

to integrate direct and indirect comparisons and produce

better mixed estimates; provides advantages and disadvantages

of the results of different interventions and ranks them,

providing an “action guide” for the development of exercise

prescriptions. The objective of our study was to understand

the effectiveness of exercise in maintaining and promoting

brain health in patients with degenerative neurological diseases

vs. healthy populations and to provide more comprehensive

and effective non-pharmacological evidence for subsequent

clinical decisions.
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TABLE 1 Selection criteria.

Category Inclusion criteria Exclusion criteria

Population All healthy and non-healthy people, irrespective of sex. Incomplete data or data literature not available after email contact to

the authors

Interventions Supervised or unsupervised exercise interventions such as AT, RT,

AT+RT, HIIT, CT, and other exercise therapies.

Lack of primary outcome indicators; non-English and non-Chinese

literature

Comparison The control group was no exercise intervention or a different modality

of exercise than the observation group

Only one study with complete data was retained for duplicate

publications or studies with highly consistent overall data

Outcomes BDNF variation level Exercise intervention duration ≤2 weeks

Study design RCTs with two or more arms Animal trials and non-RCTs

TABLE 2 Definition of exercise intervention.

Intervention measures Explanations

AT This is the type of exercise where the blood carries enough oxygen to the working muscles and is often characterized by low

intensity and prolonged activity (Mersy, 1991).

RT Applied using various types of equipment (e.g., free weights, elastic bands/tubing, weight machines), or simply by using the weight

of a body segment or segments against gravity to provide resistance to training methods, for improving muscle strength or muscle

endurance (Busch et al., 2013).

AT+RT The total duration of the exercise intervention remained the same, with strength training and aerobic training performed separately

to improve cardiorespiratory endurance and muscle strength/endurance.

HIIT Bursts of exercise are performed in short periods of time, maximize exercise intensity (Gibala et al., 2012).

CT Also known as multimodal training, refers to combined strength, flexibility, balance, and endurance exercises included in one

program (Chaabene et al., 2021).

Materials and methods

The preferred reporting items for systematic reviews

and meta-analyses (PRISMA) were used to conduct the

NMA (Hutton et al., 2016). This study was registered with

the International Platform of Registered Systematic Review

and Meta-analysis Protocols (INLASY) under the unique

identification number INPLASY202250164.

Data sources and search strategy

CNKI, PubMed, Embase, Scopus, Medline, Web of Science,

and the Cochrane Library were among the databases searched.

In addition, ongoing and completed trials published between

January 1990 and May 2022 were obtained from the American

Clinical Trial Registry and the Chinese Clinical Trial Register.

A combination of subject terms and free terms were used in

the search for comprehensiveness and accuracy, and they were

linked using Boolean logic operators. Supplementary material 1

provides a detailed search strategy using the PubMed database

as an example.

Literature inclusion and exclusion criteria

The inclusion criteria for the study were determined

according to the PICOS criteria (Liberati et al., 2009). The

detailed inclusion/exclusion criteria are reported in Tables 1, 2.

Literature screening and data extraction

Two researchers (BJ-Z and ZS-W) read the titles and

abstracts to initially screen the literature and reviewed the

remaining literature to select studies that met the inclusion

criteria. Subsequently, the screening results of the two

researchers were exchanged and compared to confirm whether

their results were consistent. Disagreements were discussed and

addressed by the research team. Corresponding authors were

contacted by email for data not published in the literature.

In addition, data presented in graph form were extracted

using GetDate software. The extracted information comprised

basic information about the included studies (first author and

year of publication), subject characteristics (age and sample

size), and information on the exercise interventions (means
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FIGURE 1

Study flow diagram.

of intervention for the test and control groups, number of

interventions, intervention duration, and conclusions).

Methodological assessment

Two researchers (BJ-Z and ZS-W) independently evaluated

the methodology of a single RCT using the Cochrane

Collaboration tool (Cumpston et al., 2019). They were evaluated

based on random sequence generation, allocation concealment,

participant personnel blinding, outcome assessment blinding,

incomplete outcome data, selection bias, and other biases.

Statistical methods

The effects of the five interventions were statistically

analyzed using the R-Studio 4.1 and Addis 1.16.5 softwares,

and the network diagram and sequence diagram of various

interventions were plotted. NMA was started by R language

programming, and Bayesian Markov Chain Monte Carlo

(MCMC) algorithm was invoked by relevant instructions to

analyze and map the results of random-effects model data

(van Valkenhoef et al., 2013; Lin et al., 2014). The iterative

convergence was evaluated using the potential scaling reduction

factor (PSRF), and the statistical requirement was met when

PSRF approached 1 (Van Valkenhoef et al., 2012). The results

of the random-effects model data were previously evaluated

and processed by the Bayesian MCMC algorithm invoked

by relevant ADDIS statistical software instructions; P < 0.05

and 95% confidence intervals (95% CI) were used as the

criteria for statistical difference. Due to the inclusion of less

than 7 items of resistance training, and some studies did not

report single load intensities and durations (Fragala et al.,

2014; Deus et al., 2021), therefore no dose effect analysis

was performed.

Results

Literature search results

According to the search strategy, 6,914 publications

were initially obtained. After deleting duplicate studies using

EndnoteX8, 39 publications were included. The specific search

process is shown in Figure 1.
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Basic characteristics of the included
literature

This study comprised 39 RCTs with a total of 2031 subjects

ranging in age from 15.60 to 92.3 years. The AT, RT, AT+RT,

HIIT, and CT groups (intervention groups) and CG group

(conventional control group) were assigned to 451, 236, 102, 84,

293, and 865 subjects, respectively. The primary interventions

were (1) AT, which included treadmill training, cycling, and

aerobic gymnastics; (2) RT, which included large muscle group

training, leg press, leg curl, leg extension, vertical traction,

arm curl, and chest press; (3) AT+RT; (4) HIIT; and (5) CT,

integrating RT, AT, balance training, and agility training. There

was a wide variation in the interventions included in the study.

The duration of interventions ranged from 15 to 75min, with

the majority lasting between 30 and 60min. In addition, the

frequency of training ranged from 2 to 7 times per week,

with the minimum and maximum intervention durations of 3

weeks and 6 months, respectively. In addition, forearm venous

blood samples were collected from each subject before and

after the exercise intervention, and finally, BDNF concentrations

were determined using enzyme-linked immunosorbent assay

(ELISA); 36 studies examined serum samples from subjects and

3 studies examined plasma samples from subjects (Seifert et al.,

2010; Vaughan et al., 2014; Nascimento et al., 2015). The detailed

inclusion characteristics are shown in Table 3.

Methodological quality assessment

Of the 39 RCTs included, 16 trials reported a random

sequence (random number table, random envelope, and

computer), while the remaining 23 did not specify the random

assignment method; 13 trials reported the random assignment

concealment method: 10 trials were double-blinded, six trials

were single-blinded, and one trial did not implement the

blinding procedure. In addition, the remaining 22 trials did

not report the blinding method. All trials reported the primary

outcome indicators completely, with no selective reporting.

Furthermore, all trials did not report other biases. The

Cochrane Risk of Bias Assessment Tool was used to conduct

a methodological assessment of the included trials, and the

detailed results are shown in Figure 2.

Network meta-analysis

Reticulated evidence map for the NMA

The five physical activities constructed a CG-centered mesh

evidence map (Figure 3) with a total of six intervention nodes

and two closed loops: CG–AT–RT–AT+RT and CG–AT–HIIT

(Figure 3). The nodal analysis suggested that the P-values

were all greater than 0.05 (Table 4), indicating good agreement

between direct and indirect comparisons among the 39 included

trials. Therefore, the result data for the consistency test was used

in this study.

Results of NMA

Total BDNF scores were reported in 39 trials. We compared

the intervention outcomes between various intervention groups

and the control group using MD (as the effect size) and 95%

CI. Subjects in the RT [MD = 3.11 (0.33, 5.76), P < 0.05] and

CT groups [MD = 1.68 (0.13, 3.29), P < 0.05] had significantly

better outcomes than those in the control group. In addition,

all exercise treatments significantly improved BDNF. However,

other two-by-two comparisons between intervention groups did

not show statistically significant differences (P > 0.05, Table 6).

NMA-derived probability ranking

To investigate which exercise strategy had the greatest effect

on serum BDNF levels in healthy and non-healthy populations,

the intervention effects of the five non-pharmacological

treatments were subjected to probability ranking. Statistical

evidence revealed that the effect of exercise on BDNF level

improvement in healthy and non-healthy people was ranked as

follows: RT > HIIT > CT > AT+RT > AT > CG (Figure 4 and

Tables 5, 6).

Publication bias

In addition to direct comparisons, some of the trials

included in NMA involved indirect comparisons and subjects

that had not yet undergone a comparison. Therefore, relevant

adjustments were required for control groups with different

publication biases. In the funnel plot, studies with small sample

sizes have low precision and are scattered all over the bottom

of the funnel plot; studies with large sample sizes have high

precision and are concentrated at the top of the funnel plot

(Galbraith, 1988). The results suggested that the distribution of

trials on both sides of the vertical line at X = 0 is symmetrical,

and the balance line exhibits a slight inclination pattern (low

on the left and high on the right) (Figure 5). The scatter of

interventions was concentrated at the top of the funnel plot, with

only one point at the bottom of the funnel plot, suggesting a low

likelihood of publication bias in the included studies.

Discussion

According to the retrieved information, this is the first RCT

Bayesian Network Meta-analysis using a multiple comparison

approach to study the effect of physical activity interventions

on BDNF levels in healthy vs. non-healthy populations.
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TABLE 3 Characteristics of the included studies.

References Sample

size

Age(year) Health

Status

Session

time

Frequency Intensity Interventions Intervention

duration

Control Changes in BDNF

concentration

Vaughan et al.

(2014)

CG= 23 CG= 68.8± 3.5 Health 60min Weekly/2 times NA Cardiorespiratory fitness, RT,

and coordination and agility

training, with instructor

supervision and guidance

during the intervention

period.

16 weeks Regular

activities

CTpre = 4.5

CT= 25 CT= 69± 3.1 CTpost = 5.2

Arrieta et al.

(2020)

CG= 45 CG= 84.70± 6.1 Health 30min Weekly/7 times 40–70% 1-RM Exercises including strength,

balance, and walking

recommendations.

6 months Routine

activities

CTpre = 34.2 (ng/ml)

CT= 43 CT= 85.10± 7.6 CTpost = 33.5 (ng/ml)

Goldfield et al.

(2018)

CG= 69 CG= 15.60± 1.3 Health 20–45min Weekly/4 times AT: 65–85% HRmax ; AT: exercising on a treadmill

or indoor bicycle.

22 weeks Diet control ATpre = 24.6 (ng/ml)

AT= 69 AT= 15.50± 1.3 RT: moderate

intensity to 8 times

(8-RM)

RT: seven exercises using

weight machines or free

weights.

ATpost = 26.4 (ng/ml)

RT= 70 RT= 15.80± 1.5 AT+RT: NA AT+RT: complete AT and RT

in each session.

RTpre = 29.7 (ng/ml)

AT+RT= 74 AT+RT= 15.5±

1.3

RTpost = 27.7 (ng/ml)

AT+RTpre = 27.9

(ng/ml)

AT+RTpost = 26.2

(ng/ml)

Ledreux et al.

(2019)

CG= 39 NA Health 35min Weekly/5 times NA 18 aerobic exercise routines. 5 weeks Cognitive

training

ATpre = 24.5 (ng/ml)

AT= 29 ATpost = 24.8 (ng/ml)

Ghafori et al.

(2018)

CG= 20 CG= 10.2± 3.4 Health 30–45min Weekly/3 times NA Perform 3 different types of

exercise,included exercises

comprising fine, gross and

motor exercises.

12 weeks Regular

activities

CTpre = 542.47 (pg/ml)

CT= 20 CT= 10.4± 3.5 CTpost = 642.80 (pg/ml)

Heisz et al.

(2017)

CG= 32 CG= 20.5± 2.8 Health 20min Weekly/3 times 90–95% peak HR 20min of high-intensity

interval training

6weeks Sedentary

control

HIITpre = 33.5 (ng/ml)

HIIT= 34 HIIT= 20± 2.7 HIITpost = 31.3 (ng/ml)

(Continued)
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TABLE 3 (Continued)

References Sample

size

Age(year) Health

Status

Session

time

Frequency Intensity Interventions Intervention

duration

Control Changes in BDNF

concentration

Wagner et al.

(2015)

CG= 17 CG= 23.7± 1.7 Health 60min Weekly/3 times 68–86% VO2max Indoor cycling training 6 weeks Regular

exercise

ATpre = 12.4 (ng/ml)

AT= 17 AT= 25± 3.3 ATpost = 16.7 (ng/ml)

Cho and Roh

(2016)

CG= 8 CG= 22.3± 2.1 Health 40min Weekly/3 times 70% HRR NA 8 weeks Dietary

counseling

ATpre = 24.8 (ng/ml)

AT= 8 AT= 22.9± 2.5 ATpost = 29.9 (ng/ml)

Erickson et al.

(2011)

CG= 60 CG= 65.5± 5.44 Health NA Weekly/3 times NA moderate intensity aerobic

exercise

6 months Regular

stretching.

ATpre = 21.32 (pg/ml)

AT= 60 AT= 67.6± 5.81 ATpost = 23.77 (pg/ml)

Jeon and Ha

(2017)

CG= 10 CG= 15.05± 0.41 Health NA Weekly/4 times 70 % VO2max 200 kcal consumption per

aerobic exercise

12 weeks Stretching

exercises

ATpre = 25.24 (ng/ml)

AT= 10 AT= 15.15± 0.33 ATpost = 30.09 (ng/ml)

Byun and

Kang (2016)

CG= 11 CG= 70.46± 2.85 Health 50min Weekly/4 times 9-14-point on the

Borg Scale (RPEs)

13 exercise movements to

improve upper and lower

body strength and aerobic

endurance

12 weeks No

intervention

AT+RTpre = 19.07

(ng/ml)

AT+RT= 13 AT+RT= 70.45±

4.18

AT+RTpost = 20.1

(ng/ml)

Seifert et al.

(2010)

CG= 5 CG= 31± 7 Health 45min Weekly/3 times 70% HR or 65%

VO2max

Included mainly cycling, but

the subjects were also allowed

to run, swim, or use a rowing

3 months NA ATpre = 2.5 (ng/ml)

AT= 7 AT= 29± 6 ATpost = 5.5 (ng/ml)

Ruiz et al.

(2015)

CG= 20 CG= 92.1± 2.3 Health 45min Weekly/3 times 30–70%(1-RM) Mainly with the machine on

the lower limb muscle

strength training, also

included 1 set of 8-10

repetitions of biceps curls,

arm extensions, arm side lifts,

shoulder elevations, seated

bench press and leg calf rise,

using dumbbells (1-3 kg per

exercise) or low-to-medium

resistance bands.

8 weeks Stretching RTpre = 14.02 (ng/ml)

RT= 20 RT= 92.3± 2.3 RTpost = 12.00 (ng/ml)

(Continued)
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TABLE 3 (Continued)

References Sample

size

Age(year) Health

Status

Session

time

Frequency Intensity Interventions Intervention

duration

Control Changes in BDNF

concentration

Kim et al.

(2015)

CG= 32 CG= 81.8± 2.8 Health 60min Weekly/3 times NA Lower body exercises

consisted of leg extensions,

hip flexions, and more. Upper

body exercises included

double arm pull downs, bicep

curls, and others balance and

gait training

3 months Placebo

administration

CTpre = 6.37 (ng/ml)

CT= 33 CT= 80.3± 3.3 CTpost = 7.70 (ng/ml)

Fragala et al.

(2014)

CG= 12 CG= 70.6± 6.1 Health NA Weekly/2 times NA Exercises included leg

extensions, leg curls, seated

rows, lat pull-downs, modified

squats, modified split squats,

modified stiff-legged

dead-lifts, biceps curls, chest

presses, shoulder presses,

tricep extensions, abdominal

exercises, and calf raises; 3 sets

of 8–15 repetitions of each

movement exercise

6 weeks NA RTpre = 30.8 (ng/ml)

RT= 13 RT= 70.6± 6.1 RTpost = 28.6 (ng/ml)

Maass et al.

(2016)

CG= 19 CG= 68.4± 4.3 Health 40min Weekly/3 times 65% THR Interval training on a

stationary treadmill

3 months Stretching

training

ATpre = 17.64 (ng/ml)

AT= 21 AT= 68.4± 4.3 ATpost = 16.91 (ng/ml)

Hvid et al.

(2017)

CG= 25 CG= 82.2± 4.5 Health NA Weekly/2 times 1–7 weekly: 70%

RM, 8–12 weekly:

80% RM

The specific power training

involved the following

exercises: horizontal leg press,

knee raises, plantar flexion,

sitting Olympic lifts with

dumbbells, lateral pull-down,

lower back and abdominal

exercises using elastic bands.

12 weeks No

intervention

RTpre = 28.53 (ng/ml)

RT= 22 RT= 82.7± 5.4 RTpost = 28.39 (ng/ml)

Matura et al.

(2017)

CG= 24 >65 Health 30min Weekly/3 times 55–73% VO2max Supervised bike riding

training

12 weeks No

intervention

ATpre = 3.718 (ng/ml)

AT= 29 ATpost = 3.807 (ng/ml)

(Continued)
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TABLE 3 (Continued)

References Sample

size

Age(year) Health

Status

Session

time

Frequency Intensity Interventions Intervention

duration

Control Changes in BDNF

concentration

De Lima et al.

(2022)

AT= 12 AT= 40.5± 5.63 Health NA Weekly/3 times AT: 60–75% MVP;

HIIT: 85−100%

MVP

AT: running at a constant

speed on a 300m long track;

HIIT: repeated 200m sprints

(10×20m) interspersed with

1-min bouts of passive

recovery.

8 weeks NA ATpre = 1121.99

(pg/ml)

HIIT= 13 HIIT= 39.46±

5.44

ATpost = 1852.41

(pg/ml)

HIITpre = 1204.82

(pg/ml)

HIITpost = 2010.54

(pg/ml)

Rezola-Pardo

et al. (2020)

CG= 35 ≥70 Health 60min Weekly/2 times 40–70% (1-RM) Personalized upper and lower

body exercises, balance

training and final stretching

3 months Walking CTpre = 25.88 (ng/ml)

CT= 32 CTpost = 26.94 (ng/ml)

Yin et al.

(2022)

CG= 15 CG= 74.77± 6.04 Health 40–70min Weekly/3 times 45–75% THR Perform moderate-intensity

comprehensive training,

exercise content includes

jogging, stretching, resistance

training of large muscle

groups, balance and

coordination training.

20 weeks Maintain past

habits

CTpre = 7.61 (ng/ml)

CT= 15 CT= 73.83± 7.51 CTpost = 14.45 (ng/ml)

Wens et al.

(2016)

CG= 7 CG= 44± 5.29 MS 45–75min 2 weeks/5 times 12-14-point on the

Borg Scale (RPEs)

The first part of the training

session is cycling and

treadmill running, exercise

intensity gradually increased,

the second part is strength

training (leg press, leg curl, leg

extension, vertical traction,

arm curl and chest press), the

number of intervention

groups and the number of

times gradually increased.

24 weeks Sedentary

control

AT+RTpre = 11092

(ng/ml)

(Continued)
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TABLE 3 (Continued)

References Sample

size

Age(year) Health

Status

Session

time

Frequency Intensity Interventions Intervention

duration

Control Changes in BDNF

concentration

AT+RT= 15 AT+RT= 42±

11.62

AT+RTpost = 12020

(ng/ml)

Deus et al.

(2021)

CG= 76 CG= 66.33± 3.88 HP 60min Weekly/3 times NA Each exercise needs to

complete 7

movements(unilateral chest

press ‘squat ‘ bilateral knee

extension ‘ hip thrust ‘biceps

curl ‘ unilateral elbow

extension ‘ seated calf raise),

supervised by a professional

fitness trainer.

6 months Routine care RTpre = 11.66 (ng/ml)

RT= 81 RT= 67.27± 3.24 RTpost = 19.60 (ng/ml)

Imboden et al.

(2021)

CG= 20 CG= 38.3± 13.4 Depression 40–50min Weekly/3 times 60–75% HRmax Indoor aerobic cycling under

the supervision of a trainer.

6 weeks Stretching

exercise.

ATpre = 23.0 (ng/ml)

AT= 22 AT= 41.3± 9.2 ATpost = 30.3 (ng/ml)

Nascimento

et al. (2015)

CG= 21 CG= 67.45± 4.9 CI 60min Weekly/4 times 70–80% HRmax Including RT for large muscle

groups, AT, and balance

training at an exercise.

16 weeks Routine care CTpre = 2.44 (pg/dl)

CT= 24 CT= 67.6± 6.1 CTpost = 3.07 (pg/dl)

Kohanpour

et al. (2017)

CG= 10 CG= 67.85± 3.89 CI 40min Weekly/3 times 75–85% HRmax Aerobic run 12 weeks No

intervention

ATpre = 110.25 (pg/ml)

AT= 10 AT= 67.85± 3.89 ATpost = 192.84 (pg/ml)

Zimmer et al.

(2018)

CG= 30 CG= 48± 12.1 MS 20min Weekly/3 times 85–90% HRmax High-intensity intervals of

cycling

3 weeks Routine care HIITpre = 20.965

(ng/ml)

HIIT= 27 HIIT= 51± 9.9 HIITpost = 24.663

(ng/ml)

Kerling et al.

(2017)

CG= 20 CG= 40.9± 11.9 Depression 45min Weekly/3 times 50% of the

maximum

workload

Cycling 25min, remaining

20min according to personal

preference independent

choice of exercise.

6 weeks Conventional

treatment

CTpre = 415.20 (pg/ml)

CT= 22 CT= 44.2± 8.5 CTpost = 472.50 (pg/ml)

Ozkul et al.

(2018)

CG= 18 CG= 34± 8.7 MS 90min Weekly/4 times 60–80% HRR 30min of aerobic exercise and

60min of Pilates training

exercise

8 weeks Balance

training

CTpre = 696.23 (pg/ml)

CT= 18 CT= 34.5± 12.78 CTpost = 891.15 (pg/ml)
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TABLE 3 (Continued)

References Sample

size

Age(year) Health

Status

Session

time

Frequency Intensity Interventions Intervention

duration

Control Changes in BDNF

concentration

Abbaspoor

et al. (2020)

CG= 8 CG= 36.75± 6.8 MS 15–20min Weekly/3 times 55–70% HRR Including static/dynamic

stretching, aerobic running,

RT, and balance training

8 weeks No

intervention

CTpre = 1.96 (ng/ml)

CT= 8 CT= 33.5± 6.37 CTpost = 1.79 (ng/ml)

Krogh et al.

(2014)

CG= 38 CG= 43.8± 12.2 Depression 45min Weekly/3 times 80% HRR Participants exercised on

stationary bikes at

approximately 80% of their

maximal heart rate

3 months Stretching

exercises

ATpre = 25.347 (ng/ml)

AT= 41 AT= 38.9± 11.7 ATpost = 26.006 (ng/ml)

Elham and

Masoud (2018)

CG= 12 CG= 31.41± 8.89 MS 30−40min Weekly/3 times NA The main exercises included

Hundred, Roll-Up,

Roll-Down, and Single Leg

Circle movements, Increase

the number of repetitions

after the second month

(which started with three to

four repetations and gradually

increased reached up to 10)

8 weeks Maintain the

previous habits

CTpre = 10.68 (ng/ml)

CT= 12 CT= 34.46± 7.29 CTpost = 11.55 (ng/ml)

Szymura et al.

(2020)

CG= 13 CG= 65.23± 7.4 PD 30–60min Weekly/3 times NA Balance training with

moderate-intensity exercise

12 weeks NA ATpre = 21.19 (ng/ml)

AT= 16 AT= 66± 2.59 ATpost = 30.37 (ng/ml)

Schulz et al.

(2004)

CG= 12 CG= 39± 9 MS 30min Weekly/2 times 60% VO2max Indoor cycling training 8 weeks NA ATpre = 4353 (pg/ml)

AT= 13 AT= 40± 11 ATpost = 5930 (pg/ml)

Liu et al.

(2020)

AT= 31 AT= 84.68± 6.74 CI 30min Weekly /5 times RT:

40–50%(1–RM);

AT: 5–6 on a scale

of perceived force

RT: exercise large muscle

groups with the help of

equipment; AT: indoor

cycling training

4 weeks NA ATpre = 19.25 (ng/ml)

RT= 30 RT= 86.77± 6.99 ATpost = 21.20 (ng/ml)

RTpre = 23.46 (ng/ml)

RTpost = 25.41 (ng/ml)
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TABLE 3 (Continued)

References Sample

size

Age(year) Health

Status

Session

time

Frequency Intensity Interventions Intervention

duration

Control Changes in BDNF

concentration

Hsu et al.

(2021)

HIIT= 10 HIIT= 58.5±

20.06

SP 30–45min Weekly/3 times HIIT: 80% VO2max HIIT: Indoor cycling training 12 weeks NA HIITpre = 6.06 (ng/ml)

AT= 13 AT= 53.1± 15.91 AT: NA AT: moderate-intensity

continuous training

HIITpost = 7.91 (ng/ml)

ATpre = 7.3 (ng/ml)

ATpost = 5.88 (ng/ml)

Frazzitta et al.

(2014)

CG= 10 CG= 65± 4 PD 90min Weekly/5 times NA The main exercises include

muscle stretching, balance

and gait exercises, treadmill

training

4 weeks NA CTpre = 21.64 (ng/ml)

CT= 14 CT= 67± 5 CTpost = 24.77 (ng/ml)

Briken et al.

(2016)

CG= 10 CG= 50.4± 7.6 MS 20min Weekly/3 times NA Bicycle riding training, with

stepwise progression in

intensity and duration over a

time of 9 weeks.

9 weeks NA ATpre = 5.11 (ng/ml)

AT= 32 AT= 49.9± 7.5 ATpost = 5.75 (ng/ml)

Damirchi et al.

(2014)

CG= 10 CG= 55.37± 3.45 MD 60min Weekly/3 times 60% VO2max Supervised running and

aerobic exercise

12 weeks Remain

sedentary

ATpre = 1112.91

(pg/ml)

AT= 11 AT= 54.12± 2.77 ATpost = 1033.85

(pg/ml)

Yin et al.

(2022)

CG= 14 CG= 70.73± 5.15 CI 40–70min Weekly/3 times 45–75% THR Perform moderate-intensity

comprehensive training,

exercise content includes

jogging, stretching, resistance

training of large muscle

groups, balance and

coordination training.

20 weeks Maintain past

habits

CTpre = 5.17 (ng/ml)

CT= 12 CT= 69.08± 4.68 CTpost = 14.46 (ng/ml)
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FIGURE 2

Risk of bias assessment diagram.

FIGURE 3

Reticulated evidence map of the e�ect of di�erent exercise

modalities on serum BDNF levels. Each node (solid circle)

represents only one type of rehabilitation treatment. The size of

the nodes is proportional to the number of subjects involved in

the particular treatment intervention (i.e., sample size). The solid

line connects the treatment with a direct comparison whose

thickness is proportional to the number of trials.

TABLE 4 The consistency of nodal analysis direct and indirect

comparisons.

Name OR(95% CI)/SMD(95% CI)* P-value

Direct

effect

Indirect effect Overall

AT,RT −0.57

(−7.37, 6.43)

−0.56

(−4.84, 3.75)

−0.66

(−4.11, 2.79)

0.98

AT,HIIT −1.25

(−2.87, 0.28)

0.05

(−3.98, 4.01)

−1.11

(−2.61, 0.32)

0.55

AT,AT+RT 0.99

(−2.94, 4.88)

−1.01

(−6.23, 4.24)

0.32

(−2.79, 3.39)

0.53

AT,CG 2.57

(−2.11, 7.25)

1.81

(−2.01, 5.56)

2.00

(−0.95, 4.86)

0.80

RT,AT+RT 1.24

(−5.81, 8.22)

3.27

(−1.26, 7.77)

2.65

(−1.43, 6.69)

0.61

RT,CG 0.25

(−4.89, 5.39)

2.29

(−1.86, 6.54)

1.45

(−1.79, 4.56)

0.53

HIIT,CG 2.54

(−0.66, 5.53)

5.37

(−1.31, 11.92)

3.10

(0.38, 5.81)*

0.43

*Effectiveness rate was OR (95% CI) and the remaining indicators were SMD (95% CI).
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Compared to traditional Meta-analysis (Marinus et al., 2019;

Ruiz-González et al., 2021), the current study gives a more

definitive answer—resistance training is the best exercise to

increase peripheral BDNF in both older and younger individuals

(healthy or diseased individuals) (see Supplementary material 2

for statistical results). Statistical evidence suggests that exercise

is effective in improving peripheral BDNF levels in adolescents

and older adults (healthy and diseased individuals) for all types

of exercise, and our findings are consistent with those of the

Ruiz-González et al. (2021) study. The current study explains

the controversy that exists regarding the effects of different

exercise interventions and provides more convincing evidence

that physical activity promotes brain health.

The hippocampus, the body’s memory switch, regulates

storage conversion and long-term memory orientation.

Magnetic resonance imaging (MRI) suggests that the

hippocampus in the brain decreases in size with age or

the progression of depression and other NSDs in adulthood

(Driscoll et al., 2003; Von Bohlen und Halbach, 2010), resulting

in a reduction in learning, memory, and emotional control. In

addition, the reduction in hippocampal volume causes a range

of adverse events, such as a decrease in the number of brain

neurons (Issa et al., 1990) and synaptic connections (Geinisman

et al., 1995), as well as a decrease in BDNF levels (Lommatzsch

et al., 2005). Studies in adolescents have confirmed that children

with intellectual deficits and learning disabilities have a positive

correlation between their learning ability and BDNF levels;

BDNF mediates neurogenesis, and exercise improves BDNF

levels to improve learning ability (Ghafori et al., 2018), which

is one of the reasons for improved executive and cognitive

abilities in the elderly. Numerous animal studies have indicated

that exercise increases serum BDNF and IGF-1 levels in vivo,

and the structural, functional, and cognitive effects of these

factors on the hippocampal region are beneficial (Bechara

and Kelly, 2013; Cetinkaya et al., 2013). Active athletes had

higher BDNF levels than sedentary individuals (Correia

et al., 2011). This confirms that sport is medicine. There

is a long-standing consensus on the efficacy of exercise to

enhance cardiorespiratory fitness, promote brain health, and

prevent and mitigate a range of neurodegenerative diseases,

such as Alzheimer’s disease and Parkinson’s disease (Bangsbo

et al., 2019; Mintzer et al., 2019). However, determining

which exercise has the best effect on people’s BDNF levels

is the focus of this study. Statistical results suggested that

RT has the best effect on BDNF levels (Figure 4). RT has

great potential to increase BDNF levels; in addition, BDNF

released during skeletal muscle contraction flows to the brain

and activates multiple signaling pathways (Deus et al., 2021).

Cathepsin B (CTSB) levels are elevated in the gastrocnemius

muscle and plasma following exercise stimulation; this type of

muscle-secreted factor can cross the BBB to modulate BDNF

concentrations, promoting brain plasticity and ultimately

improving cognitive and memory function (Moon et al., 2016).

Furthermore, CTSB has neuroprotective effects, and brain

atrophy was present in mice whose CTSB genes were knocked

out (Felbor et al., 2002). Therefore, exercise-induced increase in

CTSB levels is a crucial protective factor. Several studies have

also found a correlation between a decrease in muscle mass

or an increase in body fat percentage and memory loss and

cognitive decline (Beeri et al., 2021; Anand et al., 2022; De Las

Heras et al., 2022). RT prevents muscle atrophy and increases

the expression of muscle secretory factors, exerting a better

effect on brain health than other forms of physical activity.

In peripheral cells and organs BDNF is mainly expressed in

muscle tissue (Huang et al., 2014), it is also found in the spinal

cord and lymphocyte tissues (Gómez-Pinilla et al., 2001; Casoli

et al., 2014). BDNF binds specifically to tropomyosin receptor

kinase B (TrkB) to regulate the development, survival, and

differentiation of brain neurons and stimulates neurogenesis in

the hippocampal region (Gray et al., 2006; Araya et al., 2013;

Figure 6). In summary, bones and muscles are important tissues

for peripheral BDNF secretion, and resistance training causes

more intense stress in bones and muscles, which stimulates

BDNF expression in peripheral tissues, transport to the brain

via blood circulation, and effects on the brain after crossing

the BBB.

In addition to BDNF, IGF-1 plays a vital role in maintaining

brain health by actively regulating brain function through the

BBB (Lewitt and Boyd, 2019). Changes in IGF-1 levels are

positively correlated with changes in hippocampal volume (Hvid

et al., 2017), which provides nutritional support to neurons

and reverses brain aging (Sonntag et al., 1999). Furthermore,

beneficial secreted factors, such as IGF-1, are widely expressed

during human growth and development but their levels are

decreased in adulthood. IGF-1 is predominantly expressed in

the liver but is also found in other tissues such as the bone and

skeletal muscle. Exercise stimulation increases IGF-1 secretion

(Ye et al., 2020). A systematic review by Ye et al. (2020) reported

a significant increase in serum IGF-1 levels in subjects older than

60 years who engaged in RT. Similarly, a 12-year longitudinal

study suggested that loss of skeletal muscle mass with age was

associated with a decrease in serum IGF-1 levels (Frontera et al.,

2000). Skeletal muscle is the primary tissue source for systemic

IGF-1 production during high-intensity physical activity (Ye

et al., 2020). Therefore, physical activity is extremely essential

in maintaining brain health.

Research on the effects of BDNF on brain function has

greatly benefited from the identification of single nucleotide

polymorphisms (SNPs) in the gene encoding human BDNF,

which converts valine to methionine at codon 66 (Val66Met),

and from in vitro incubation experiments demonstrating that

altered amino acid polymorphisms at codon 66 in the BDNF

gene affect the intracellular distribution, packaging and release

of BDNF protein in vitro. packaging and release in vitro (Egan

et al., 2003; Lu et al., 2013). In addition, the BDNF Val66Met

polymorphism may affect plasma BDNF concentrations and
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FIGURE 4

Probability ranking chart of the e�ect of five types of exercise on BDNF.

TABLE 5 Results of NMA.

BDNF Score

RT Certainty of evidence

1.67

(−2.48, 5.61)

HIIT High

Moderate

Low

Very low

1.43

(−1.82, 4.53)

−0.26

(−3.77, 3.28)

CT

3.11

(0.33, 5.76)*

1.43

(−1.70, 4.66)

1.68

(0.13, 3.29)*

CG

2.63

(−1.51, 6.65)

0.97

(−3.56, 5.49)

1.22

(−2.44, 4.82)

−0.47

(−3.76, 2.71)

AT+RT

1.98

(−0.94, 4.80)

0.32

(−2.74, 3.38)

0.55

(−1.60, 2.68)

−1.12

(−2.58, 0.34)

−0.65

(−4.15, 2.85)

AT

The outcome analysis-derived ranking table shows the percentage change in BDNF level relative to baseline data. The ranking table shows only the relative effects of each exercise on BDNF

levels (interventions in the columns vs. those in the rows). In addition, relative effects are expressed as the standardized mean difference in percent change in BDNF and 95% Cl. *indicates

a statistically significant difference. The color of each table cell indicates the recommended evidence for assessment and development and the level of assessment determined. All tables list

treatments in alphabetical order.

TrkB receptor activity in peripheral tissues, and may impair

the regulated secretion and intracellular transport of BDNF

(Lemos Jr et al., 2016; Trombetta et al., 2020). It has been

shown that individuals carrying the BDNFMet allele have

a reduced exercise gain effect, which seems to explain the

consistent lack of significant BDNF changes after exercise

in some subjects, regardless of their health (Lu et al., 2013;

Lemos Jr et al., 2016). Notably, when participants possessed

high levels of physical activity, their memory and cognitive

performance remained consistently high whether they carried

the BDNFMet allele or the BDNFVal allele. It is not difficult

to find that maintaining good exercise habits can offset

the potential cognitive disadvantage caused by the BDNF

Val66Met polymorphism.
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In addition to RT, HIIT, CT, AT+RT, and AT also have

beneficial effects on other body functions and peripheral blood

BDNF levels. Although some studies confirmed that exercise

TABLE 6 Probability ranking results of di�erent outcome indicators

for each intervention.

Interventions AT AT+RT CG CT HIIT RT

BDNF Score 0.02 0.06 0.00 0.11 0.16 0.66

FIGURE 5

Funnel plot of the e�ects of five exercise interventions on BDNF

levels.

has no significant effect on BDNF levels, there is a lack of

follow-up studies to demonstrate whether there is a decrease

in BDNF levels after cessation of exercise. The current study

showed that all five interventions achieved effective outcomes,

suggesting that all types of exercise are beneficial. However,

we observed that the effect of exercise on BDNF levels in

the healthy population was not significant, which may be

attributed to the consistently higher levels of serum BDNF

in the healthy population. The increase in BDNF in healthy

individuals may have plateaued because physical activity cannot

drive an unrestricted increase in BDNF, demonstrating that

regular physical activitymaintains function-specific homeostasis

in the body (Liu et al., 2014). BDNF levels were negatively

correlated with aerobic capacity in healthy populations (Rezola-

Pardo et al., 2020) and higher levels of fitness prevented a

decrease in hippocampal volume (Erickson et al., 2011), which

plausibly explains the non-significant effect of exercise on BDNF

levels in healthy populations.Neither physical exercise nor other

interventions can repair what is not damaged. Finally, we used

the quantitative difference(QD) statistical method proposed

by research group of Liu et al. (2017), Sun et al. (2019) to

reanalyze the geometric mean (Waldinger et al., 2008; Moser

et al., 2020) (calculated from the baseline mean and endpoint

means) of the intervention results of the 39 papers included

in this network meta-analysis. The study interventions of Yin

et al. (2022) and Seifert et al. (2010) were found to have a

significant effect on BDNF levels in the chronically inactive

population, with QD values greater than α at the level of

FIGURE 6

Exercise mediated peripheral cytokines(By Figdraw).

Frontiers in AgingNeuroscience 16 frontiersin.org

https://doi.org/10.3389/fnagi.2022.981002
https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org


Zhou et al. 10.3389/fnagi.2022.981002

cells, molecules or central nervous systems. Suggesting that

CT and AT may have more significant activation of specific

signal transduction pathways in the non-exercise habit group,

thereby inducing BDNF expression in skeletal muscle cells. It

is important to note that the reasons for its QD value failed

to exceed α at the level of cells, molecules or central nervous

systems from reanalysis of the other 37 studies may be related

to the rigor of the study design, the failure to investigate the

previous exercise habits of the intervention population, or the

recruitment of a population with active exercise behavior prior

to the intervention, which will be verified by our group in a

follow-up study. Therefore, exercise may be a specific factor

to prevent the decline of BDNF level or keep it at an optimal

level. Furthermore, exercise positively regulates BDNF and IGF-

1 levels, which is beneficial for neuronal growth, development,

and survival. Consequently, it acts as a crucial protective factor

in mediating exercise-induced improvements in cognition and

reducing depression to prevent the continued progression of

other neurodegenerative diseases.

The mechanism by which exercise regulates BDNF and IGF-

1 levels to improve brain health is unknown. We speculate, as

active stimulation, exercise mediates stress in skeletal muscle or

other tissues and organs in response to injury or inflammation,

thereby initiating the repair process. BDNF and IGF-1 cross the

BBB for the repair of injured and aging brain tissues.

Research prospects

Maintaining optimal levels of BDNF is critical for

physical and brain health. Modern advances in biology have

made it easier to extract or synthesize BDNF from other

animal tissues. However, the special structure of the BBB

prevents harmful substances from entering the CNS, and

also reduces the penetration of exogenous drugs through

the BBB, and affects the treatment of brain diseases. This is

attributed to the lack of curative drugs for other degenerative

neurological diseases such as depression and Alzheimer’s

disease. Endogenous BDNF produced by exercise, on the

other hand, can bind specifically to TrkB, which crosses the

BBB for the repair of injured and aging brain tissues. In

future studies, we will focus on the effect of exercise on BBB

permeability and the ameliorative effect of exogenous BDNF on

degenerative neurological disorders when used after exercise.

In the end, more evidence of high-intensity interval training

interventions is desired to determine if resistance training is the

optimal intervention.

Limitations

This study also has several limitations. In the

quantitative consolidation, the means and standard

deviations presented partially in the form of graphs

were extracted through GetData, which may have led

to some errors. Additionally, only Chinese and English

databases were searched. Finally, small sample studies

were included.

Conclusion

Bayesian Network Meta-Analysis evidence suggests that

better outcomes were observed in all five intervention

groups than that in the conventional control group. The

effect of exercise on BDNF level improvement in healthy

and non-healthy populations was ranked as follows: RT

> HIIT > CT > AT+RT > AT > CG. Exercise has a

polypill effect, consequently activating endogenous disease

resistance mechanisms. Physical activity as a positive non-

pharmacological stimulus enables organs or tissues to initiate

the release of endogenous drugs to fight internal diseases

of the organism due to aging. RT at moderate intensity is

recommended for children and older adults in the case of

exercise tolerance, which is more effective in maintaining

or increasing BDNF levels for brain health compared to

other exercise types. In summary, exercise is a simple and

effective way to maintain brain function and promote brain

remodeling. Finally, exercise prescriptions should take into

account the exercise preferences of the target population to

avoid noncompliance.
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