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Abstract
Clinical outcomes are positively associated with hematoma absorption. The monocyte-macrophage scavenger receptor, CD163, plays an 
important role in the metabolism of hemoglobin, and a soluble form of CD163 is present in plasma and other tissue fluids; therefore, we 
speculated that serum CD163 affects hematoma absorption after intracerebral hemorrhage. Patients with intracerebral hemorrhage were 
divided into high- and low-level groups according to the average CD163 level (1,977.79 ± 832.91 ng/mL). Compared with the high-level 
group, the low-level group had a significantly slower hematoma absorption rate, and significantly increased National Institutes of Health 
Stroke Scale scores and modified Rankin Scale scores. These results suggest that CD163 promotes hematoma absorption and the recovery 
of neurological function in patients with intracerebral hemorrhage. 
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Introduction
Intracerebral hemorrhage (ICH) is a common type of stroke, 
from a non-intracranial vascular traumatic spontaneous 
bleed. The bleeding site can be in the brain parenchyma and 
the hematoma may rupture into the ventricle or subarach-
noid space. ICH accounts for 10–15% of all strokes, and is 
one of the major causes of human death (Lei et al., 2013; 
Paciaroni and Agnelli, 2014; Specogna et al., 2014). 

Hematoma is an initial factor for mechanical compression 
of brain tissue and secondary neurological damage; there-
fore, controlling hematoma is essential for the treatment 
of ICH. In clinical practice, outcome is positively associat-
ed with the rate of hematoma absorption (van Asch et al., 
2010). Internal bleeding can result in the release of hemoglo-
bin (Hb), which causes tissue damage (Aronowski and Zhao, 
2011). The primary mechanism protecting against the dele-
terious effects of ‘free’ Hb is governed by the monocyte-mac-
rophage scavenger receptor, CD163 (Kristiansen et al., 2001; 
Schaer et al., 2013). CD163 is an important marker in ath-
erosclerosis, sepsis, hepatitis, and type 2 diabetes (Moreno et 
al., 2009; Møller et al., 2011; Ye et al., 2013; Kjærgaard et al., 
2014). It remains unclear whether CD163 can be used as an 
evaluation index of ICH. 

CD163, also known as M130, belongs to the scavenger 
receptor cysteine-rich superfamily, and was discovered in 
1987 by Zwadlo et al. CD163 is mainly localized on the sur-
face of monocytes/macrophages; however, its function is 
unclear (Högger et al., 1998). CD163 can be shed from the 
cell surface to produce a soluble form of CD163 in plasma 
and other tissue fluids (Sulahian et al., 2001; Møller et al., 
2002b). CD163 might mediate endocytosis of Hb when 
bound with the Hb-haptoglobin (Hp) complex (Droste et 
al., 1999; Kristiansen et al., 2001). Under pathological condi-
tions, CD163-mediated Hb clearance increases significantly. 
Liu et al. (2015) found that CD163 expression in brain tissue 
around a hematoma gradually increased after ICH. Based on 
the key role of CD163 in the Hb metabolic pathway, we spec-
ulated that CD163 functions in the absorption of hematoma 
after ICH and affects the prognosis of ICH. However, the 
relationship between the peripheral serum concentrations of 
CD163 and ICH is poorly understood.

In the present study, by measuring changes in blood levels 
of CD163 and making neurological assessments, we aimed 
to identify whether CD163 promotes absorption of hema-
toma following ICH. We also evaluated whether CD163 can 
serve as both a biomarker and a potential target for new ICH 
therapy.

Subjects and Methods
Patients
The study was performed with approval from the Ethics 
Committee of the First Hospital of Jilin University of China. 
Written informed consent was obtained from all patients or 
guardians of patients participating in the study.

A total of 54 patients (18 females and 36 males) with acute 
ICH that were hospitalized in the First Hospital of Jilin Uni-
versity of China from August 2013 to December 2014 were 

enrolled. Immediate treatment with osmotic dehydration 
and rehabilitation were given to all the patients. Inclusion 
criteria: (1) Age of the patient was in range 18 to 80 years; 
(2) ICH occurred within 24 hours after onset; (3) patients 
without prior history of ICH; hemorrhage was located in 
the basal ganglia diagnostically and confirmed by head com-
puted tomography (CT); (4) the hematoma did not rupture 
into the ventricle. 

Exclusion criteria: (1) treated with surgery; (2) in a coma 
or died within 14 days; (3) ICH caused by non-hypertension, 
e.g. as a result of a brain tumor, trauma, substance abuse, ab-
normal blood clotting, anticoagulation therapy or vascular 
malformation; (4) three months before recruitment, patient 
suffered from an infectious disease, an autoimmune disease 
or used hormone therapy; (5) acute myocardial infarction, 
liver damage, kidney damage or bacterial sepsis/infection; (6) 
diabetes; (7) consent not given.

Detection of hematoma volume and hematoma absorption 
rate
A cranial CT (64-slice spiral CT, Siemens, Germany) scan 
was performed on the day of ICH onset and 14 days after 
onset. We used hematoma volume = π/6 × length (cm) × 
width (cm) × height (cm) to measure hematoma volume 
and [hematoma volume (on the 14th day) – hematoma vol-
ume (on the day of admission)]/hematoma volume (on the 
day of admission) × 100% to calculate hematoma absorp-
tion rate. 

On the day of onset and 7, 14 and 30 days after onset, 
the National Institutes of Health Stroke Scale (NIHSS) was 
used to evaluate severity of ICH (scores range from 0 to 25, 

Figure 1 Typical cranial computed tomography images of
intracerebral hemorrhage patients showing the hemorrhage 
absorption process. 
On the onset day, there was no significant difference in the hematoma 
volume between groups L and H. However, on day 14, hematoma vol-
ume was larger in the L group compared with that in the H group. L 
group: Low-level group, below the average level of soluble CD163; H 
group: high-level group, above the average level of soluble CD163. L: 
Left; R: right. 
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higher scores indicate more severe stroke). We used mod-
ified Rankin Scale (mRS) scores (scores range from 0 to 6, 
higher scores indicate poorer recovery) to measure the re-
covery of neurological function of patients 90 days after the 
onset of the ICH (Lyden et al., 2007). The scale consists of 
six grades, arranged from 0–5, where 0 corresponds to no 
symptoms and 5 corresponds to severe disability (Sulter et 
al., 1999).

Determination of soluble CD163
Forearm venous blood was sampled post fast to measure 
plasma levels of soluble CD163 within 24 hours after ICH 
onset. Blood samples were centrifuged at 1,000 × g for 
15 minutes and the supernatant stored at −20°C. Soluble 
CD163 was quantified using a highly sensitive enzyme-linked 
immunosorbent assay (ELISA) kit (R&D Systems, Min-
neapolis, MN, USA) (Møller et al., 2002a). All steps were 
completed according to the instructions of the ELISA kit. 
Absorbance was measured at 450 nm. Absorbance values of 
standard concentrations were used to draw a standard curve 
and sample CD163 concentrations were determined from 
their absorbance values against the standard curve. All the 
steps were repeated twice and mean levels used.

Statistical analysis
Values for the concentration of soluble CD163 are expressed 
as the mean ± SD. All data were analyzed with SPSS 17.0 
software (SPSS, Chicago, IL, USA). The normality test was 
used to determine if data were normally distributed. Nor-
mally distributed data were analyzed with the paired t-test. 
Correlation between soluble CD163 levels and hematoma 
absorption rate was assessed using Pearson correlation anal-
ysis. P < 0.05 was considered statistically significant. 

Results
Quantitative analysis of participants 
All patients (18 females and 36 males; aged 28–79 years) 
were included in the final analysis. There was no significant 
difference in sex ratio, average age or past medical histo-
ry (stroke, hypertension, diabetes, dyslipidemia, drinking, 
and smoking) between the low-level group (L group) and 
high-level group (H group).

Blood level of soluble CD163
According to the average CD163 level among patients 
(1,977.79 ± 832.91 ng/mL), all patients were divided into 
two groups: L group (below the average soluble CD163 level, 
n = 28) and H group (above the average soluble CD163 level, 
n = 26). A significant difference in the concentration of sol-
uble CD163 was observed between the L group (1,347.90 ± 
963.13 ng/mL) and the H group (2,656.13 ± 1,002.04 ng/mL) 
(P < 0.01).

Absorption of hematoma
On the day of ICH onset, no significant difference was 
observed in the hematoma volume between the L and H 
groups (P > 0.05), but on day 14, hematoma volume in the 

L group (11.68 ± 4.63 mL) was significantly larger com-
pared with that in the H group (P < 0.01) (Figures 1, 2A). 
According to changes in hematoma volume, we calculated 
the hematoma absorption rate and found that the hemato-
ma absorption rate in the L group was significantly lower 
compared with that in the H group (P < 0.01) (Figure 2B). 
Furthermore, correlations between soluble CD163 levels 
and hematoma absorption rate were observed in the H 
group (r2 = 0.91, P < 0.01) and the L group (r2 = 0.86, P < 
0.01) (Figure 3).

Improvement of neurological deficit 
NIHSS scores were higher in the L group compared with 
those in the H group at 7, 14 and 30 days and were signifi-
cantly different at 14 and 30 days (P < 0.05; Figure 2C). The 
mRS scores were also significantly higher in the L group 
compared with those in the H group at 90 days (P < 0.05; 
Figure 2D).

Discussion
Many studies have shown that primary and secondary 
damage resulting from brain injury, including hemor-
rhagic volume and hematoma expansion, cerebral edema, 
inflammation, and cellular apoptosis, ultimately lead to 
blood-brain barrier disruption and massive brain cell 
death (Kaindl et al., 2012; Vitner et al., 2012; Roth et al., 
2014). The pathophysiology of cerebral hemorrhage is very 
complex (Zou et al., 2015). Within the first few hours after 
ICH, primary brain injury occurs as the bleed in the brain 
tissue clots forming a hematoma causing a physical mass 
effect on the surrounding tissue (Xi et al., 2006; Keep et 
al., 2012). During coagulation, blood clots contract and 
plasma permeates into the brain tissue around the hema-
toma. This increases the internal hydrostatic pressure of 
peri-hematomal tissue and brain edema occurs, leading to 
secondary ischemia. In addition, blood components also 
contribute to ICH-induced secondary injury (Xi et al., 
2006; Aronowski and Zhao, 2011; Babu et al., 2012); for 
example, the lysis of erythrocytes after ICH leads to the 
release of Hb, causing tissue damage (Aronowski and Zhao, 
2011). It has been shown that the monocyte-macrophage 
scavenger receptor, CD163, is involved in protecting against 
the deleterious effects of ‘free’ Hb (Kristiansen et al., 2001; 
Schaer et al., 2013). CD163 is expressed only on cells of the 
monocyte/macrophage lineage and its expression increases 
as monocytes differentiate into macrophages (Graversen 
and Moestrup, 2015). Under physiological conditions, mi-
croglial cells do not express CD163, until activation by Hb 
stimulation (Xue and Del Bigio, 2000). Hp is the primary 
Hb-binding protein in plasma. Hb-bound Hp targets a 
specific clearance pathway through CD163. Hb is then con-
verted by the enzyme heme oxygenase-1 into neurotoxic 
components, such as heme and iron which are major con-
tributors to secondary brain injury (Kenneth, 2003; Wu et 
al., 2003; Keep et al., 2012). Under physiological conditions, 
approximately 10% of erythrocytes are degraded through 
this pathway, corresponding to approximately 0.5–1.0 
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gram of Hb being cleared by CD163 every day (Garby and 
Noyes, 1959a, b; Thomsen et al., 2013). However, under 
pathological conditions, CD163-mediated Hb clearance is 
significantly increased. Liu et al. (2015) found that CD163 
expression in brain tissue around a hematoma gradually 
increased after ICH. Augmenting the capacity of the intra-
thecal CD163-Hp–Hb scavenging system prevents delayed 
cerebral ischemia (Galea et al., 2012).

Soluble CD163 is present in plasma (Møller et al., 2002b) 
and, related to macrophage activity, its concentration in-
creases during disease (Møller, 2012). The physiological 
role of soluble CD163 is not yet clear. Soluble CD163 can 
combine with Hp-Hb complexes, but to a far lesser degree 
than CD163 on the cell membrane (Møller et al., 2010). In 
a large cohort study, soluble CD163 was shown to positively 
correlate with insulin resistance, which is the fundamental 
problem in type-2 diabetes (Moestrup, 1994; Zanni et al., 
2012). Plasma levels of soluble CD163 were markedly in-
creased and correlated with disease severity and prognosis 
in acute-on-chronic hepatitis B liver failure patients (Ye et 
al., 2013). The levels of soluble CD163 were also increased 
in acute inflammations, such as bacterial sepsis/infection 
(Møller et al., 2006). Glucocorticoids have been reported 
to regulate the expression of CD163. The upregulation 
of CD163 by glucocorticoid has been verified by human 
volunteers injecting prednisone (Zwadlo-Klarwasser et al., 
1990). Based on this, we excluded patients with diabetes, 
liver damage and other conditions that might affect shed-
ding of CD163. Currently, there are not many studies on 
the correlation between CD163 and ICH, especially in vivo 
studies. We believe that CD163 plays an important role in 
the absorption of hematoma after ICH and also affects the 
prognosis of ICH. Our aim is to identify a biological mark-
er to predict the prognosis of ICH.

In our study, the absorption of hematoma in patients with 
higher concentrations of soluble CD163 was increased and 
the neurological deficits more improved compared with pa-
tients with lower CD163 levels. The level of soluble CD163 
in the serum of patients with ICH was positively correlated 
with hematoma absorption rate. This indicated that CD163 
accelerates absorption and promotes removal of hematoma. 
Rapid neurological recovery has been observed in patients 
with fast absorption of hematoma. We believe that CD163 
can improve the prognosis of patients with cerebral hemor-
rhage. Our study provides evidence that CD163 is a potential 
target for the treatment of ICH. Further studies are neces-
sary to examine how CD163 functions in the absorption of 
hematoma.

There were some limitations of our study. First, the mea-
surements of CD163 serum levels by ELISA were not stable 
due to interference by many factors. Although we minimized 
their impact, there were still many non-specific factors. In 
addition, more research is needed to confirm the effect of 
factors on the relationship between CD163 and ICH. Sec-
ond, the number of patients enrolled was small, resulting 
in potential bias. Given the limitations of our study, further 
studies are necessary to verify our results.

In spite of these limitations, our study revealed that CD163 
functions in promoting hematoma absorption and improving 
the prognosis of patients with ICH and may provide possible 
therapeutic options for future treatment of ICH.
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Figure 2 Comparison of hematoma absorption, NIHSS scores and mRS scores between L and H groups.
(A) On day 14, hematoma volume was significantly higher in the L group than in the H group (P < 0.01). (B) Hematoma absorption rate was 
significantly lower in the L group than in the H group. (C) The NIHSS scores were significantly higher in the L group than in the H group at 14 
and 30 days. (D) The mRS scores were also significantly higher in the L group than in the H group at 90 days. *P < 0.05, **P < 0.01, vs. H group. 
Data are expressed as the mean ± SD (L group: n = 28, H group: n = 26; paired t-test). L group: Low-level group, below the average level of soluble 
CD163 (1,977.79 ± 832.91 ng/mL); H group: high-level group, above the average level of soluble CD163 (1,977.79 ± 832.91 ng/mL). NIHSS: Na-
tional Institutes of Health Stroke Scale; mRS: modified Rankin Scale. 

Figure 3 Correlations between soluble CD163 levels and hematoma absorption rate in the H and L groups. 
There is a positive linear correlation between CD163 levels and absorption rate of hematoma in the L group (A) and H group (B)  (H group: n = 
26, r2 = 0.91, P < 0.01; L group: n = 28, r2 = 0.86, P < 0.01; Pearson linear correlation analysis). L group: Low-level group, below the average level of 
soluble CD163; H group: high-level group, above the average level of soluble CD163.  
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