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ABSTRACT
In the decade since oral rotavirus vaccines (ORV) were recommended by the World Health Organization 
for universal inclusion in all national immunization programs, significant yet incomplete progress has 
been made toward reducing the burden of rotavirus in low- to middle-income countries (LMIC). ORVs 
continue to demonstrate effectiveness and impact in LMIC, yet numerous factors hinder optimal perfor-
mance and evaluation of these vaccines. This review will provide an update on ORV performance in LMIC, 
the increasing body of literature regarding factors that affect ORV response, and the status of newer and 
next-generation rotavirus vaccines as of early 2020. Fully closing the gap in rotavirus prevention between 
LMIC and high-income countries will likely require a multifaceted approach accounting for biological and 
methodological challenges and evaluation and roll-out of newer and next-generation vaccines.
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Introduction

Rotaviruses are a leading cause of pediatric diarrheal disease and 
mortality worldwide, with rotavirus-associated deaths in chil-
dren <5 years old estimated to be 128,500–215,000 yearly.1-5 

Oral rotavirus vaccines (ORV) have demonstrated remarkable 
efficacy and effectiveness in high-income countries, but they 
suffer from reduced performance in low- to middle-income 
countries (LMIC). In this review, we will provide an LMIC- 
specific update on recent estimates of the performance of cur-
rently approved ORVs, review factors affecting ORV perfor-
mance, and discuss the status of newer and next-generation 
vaccines. This review will not discuss cost-effectiveness or vac-
cine supply and delivery issues, which are nicely summarized 
elsewhere.6

Background

Rotaviruses are non-enveloped, double-stranded RNA viruses 
belonging to the Reoviridae family. Intact virions are composed 
of a complex, triple-layered icosahedral capsid and contain 
a genome of 11 segments encoding 12 viral proteins.7 

Rotaviruses have traditionally been classified using a binary 
nomenclature based on the two outer capsid structural pro-
teins: the surface glycoprotein VP7 (G) forms the shell of the 
outer capsid layer, out of which protrude multiple copies of 
VP4 (P), a protease-sensitive spike that is responsible for 
attachment to cellular receptors.8

Rotavirus infection causes acute gastroenteritis (AGE), 
characterized by vomiting, watery diarrhea, and often fever, 
leading to dehydration which may be fatal in severe cases 
without timely rehydration.9 The major targets of infection 
are the mature enterocytes of the small intestinal villi, although 
enteroendocrine cells may also be infected.10,11 Pathogenesis 

involves both osmotic and secretory diarrhea via malabsorp-
tion by infected enterocytes, alteration of intracellular calcium 
homeostasis leading to disruption of cytoskeleton and tight 
junction integrity, an enterotoxin-like effect modulated by 
non-structural protein 4 (NSP4), and stimulation of the enteric 
nervous system.12 Transmission is presumed to be mainly 
fecal-oral, although spread by contaminated water and fomites 
are also likely.10,13 In the pre-vaccine era, virtually all humans 
were infected during early childhood, with subsequent natural 
immunity developing after several rounds of childhood infec-
tion; for unclear reasons, children in lower-income settings 
appear to require a greater number of infections to gain less 
complete immunity.14,15

In high-income countries, AGE due to rotavirus infection 
was historically one of the most significant causes of pediatric 
morbidity and health-care utilization.16 Effective disease con-
trol in the United States, for example, was not achieved until 
the late 2000s after ORV introduction,17 indicating that good 
hygiene and sanitation alone are insufficient to control trans-
mission. Thus, improvements in community sanitation and 
public health infrastructures in LMIC are unlikely to substan-
tially decrease rotavirus incidence, compounding the challenge 
of diarrheal disease control in regions where ORVs underper-
form. These settings shoulder a disproportionate burden of 
global rotavirus-associated mortality, with only four countries 
(India, Nigeria, Pakistan, Democratic Republic of Congo) suf-
fering nearly half of all rotavirus deaths.5

Current oral rotavirus vaccines

Four ORVs are currently pre-qualified by the World Health 
Organization (WHO) for global use: RotaTeq (Merck & Co., 
Inc., Kenilworth, NJ), Rotarix (GlaxoSmithKline Biologicals, 
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Rixensart, Belgium), Rotavac (Bharat Biotech International 
Ltd., Hyderabad, India), and Rotasiil (Serum Institute of 
India Pvt. Ltd., Pune, India). All are oral, live-attenuated vac-
cines; selected characteristics of each are presented in Table 1. 
Both RotaTeq and Rotarix demonstrated excellent vaccine 
efficacy in clinical trials conducted in higher-income 
settings,19,20 but markedly reduced vaccine efficacy was 
observed in clinical trials in LMIC.21–24 Despite reduced effi-
cacy, in high-incidence settings vaccination still provides 
a significant overall reduction in severe disease, prompting 
the WHO to universally recommend ORV inclusion in all 
national immunization programs in 2009.25

Rotarix and RotaTeq

Following introduction of Rotarix and RotaTeq, real-world vac-
cine effectiveness studies continued to support the observation 
that these vaccines provide substantial benefit yet underperform 
in LMIC compared to high-income settings. In a comprehensive 
systematic review and meta-analysis using data published prior to 
December 2, 2016, Jonesteller et al. reported a median vaccine 
effectiveness for Rotarix of 57% in countries with high child 
mortality, which are typically LMIC, vs 84% in low child mortality 
countries; for RotaTeq, median vaccine effectiveness was 45% and 
90% in high child mortality and low child mortality countries, 
respectively.26 Since then, additional studies of Rotarix or RotaTeq 
effectiveness in LMIC report generally similar findings, with point 
estimates for adjusted effectiveness against rotavirus-associated 
AGE in children <5 ranging up to 68% (Table 2).27–35

Despite decreased effectiveness in LMIC, substantial reduc-
tions in rotavirus-associated and all-cause AGE hospitaliza-
tions were observed in virtually all settings following national- 

level introduction of Rotarix or RotaTeq. Recently, Burnett 
et al. analyzed manuscripts of vaccine impact published prior 
to December 31, 2019 and found that median reductions in 
rotavirus hospitalizations or emergency department (ED) visits 
and all-cause AGE hospitalization in children <5 years in high 
child-mortality countries were 50% (IQR, 41–65) and 26% 
(IQR, 20–50).36 The largest study utilized the Global 
Rotavirus Surveillance Network (GRSN), which was estab-
lished by WHO in 2008 with funding from Gavi, the Vaccine 
Alliance. Data from 305,789 cases in children <5 years 
admitted to the hospital with AGE from 2008 to 2016 were 
analyzed, representing 198 sites in 69 countries from all six 
major WHO regions (African Region, Region of the Americas, 
South-East Asia Region, European Region, Eastern 
Mediterranean Region, and Western Pacific Region). Overall, 
the study found a 39.6% (95% CI 35.4–43.8) relative reduction 
in the proportion of children admitted for AGE due to rota-
virus post-vaccine introduction compared to pre-vaccine 
introduction.37 In Latin America, data from sentinel sites in 
Bolivia, El Salvador, Guatemala, Honduras, Paraguay, and 
Venezuela showed a mean reduction of 16% (95% CI 10–22) 
in the proportion of acute diarrhea samples positive for 
rotavirus.38 In Africa, percent reduction in rotavirus hospitali-
zations or emergency department visits was 46% among coun-
tries that had introduced ORV by 2013, and was 34% in 
countries that had introduced it later.39

Decreases in rotavirus-associated or all-cause AGE mortal-
ity in children following vaccine introduction have also been 
reported. In Malawi, a 31% reduction (95% CI, 1–52) was 
observed in all-cause AGE mortality following Rotarix 
introduction,40 and in Bolivia, a 53% reduction (95% CI, 
47–56) in the proportion of deaths due to all-cause AGE was 

Table 1. Overview of oral, live-attenuated rotavirus vaccines pre-qualified by the World Health Organization as of Jan 2020.

Vaccine Manufacturer Composition Dosage Formulation Storagea
EPI 

schedule
WHO pre- 

qualificationa

RotaTeq Merck & Co., Inc. Pentavalent human-bovine 
mono-reassortants: 
human G1, G2, G3, G4, P 
[8] on bovine rotavirus 
(WC3) backbone

2–2.8 x 106 IU/ 
serotype

Liquid 2–8  C, 24 mo 6, 10, 14 weeks

Oct 2008
Rotarix GlaxoSmithKline 

Biologicals
Monovalent G1P[8] (strain 

RIX4414) human 
rotavirus

≥106 CCID50 Liquid 2–8  C, 24 mo 6, 10 weeks Mar 2009

Rotavacb Bharat Biotech 
International Ltd.

Monovalent G9P[11] 
(strain 116E) natural 
human-bovine 
reassortant

≥105 FFU Liquid −20 C, 60 mo After thaw: 
2–8 C, 6 mo

6, 10, 14 weeks

Jan 2018
Rotasiilc Serum Institute of India 

Pvt. Ltd.
Pentavalent human-bovine 

mono-reassortants 
(BRV-PV): human G1, G2, 
G3, G4, G9 on bovine 
rotavirus (UK) backbone

≥105.6 FFU/ 
serotype

Lyophilized 2–8 C, 30 mo 6, 10, 14 weeks

Sep 2018
Rotasiil 

Thermo
Same Same Same Lyophilized 25 C, 30 mo Same Jan 2020

Abbreviations: CCID50, cell culture infective dose 50; EPI, Expanded Programme on Immunizations; IU, international units; FFU, focus-forming units; WHO, World Health 
Organization 

a. Ref18 

b. Rotavac 5D: storage at 2–8 C but not yet pre-qualified by WHO 
c. Rotasiil: liquid formulation requiring storage at 2–8 C not yet pre-qualified by WHO
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observed.41 In the previously mentioned meta-analysis by 
Burnett et al., median reduction in AGE mortality was 37% 
(IQR, 24–41) for children <5 years in high child-mortality 
countries.36 An estimated 134,714 (IQR, 112,321–154,654) 
hospitalizations and 20,986 (IQR, 18,924–22,822) deaths were 
prevented in 2016 in the 29 African countries that had intro-
duced rotavirus vaccine by 2014; if all African countries had 
introduced vaccine, the numbers of hospitalizations and deaths 
prevented could have both been over twice these estimates.42 In 
Asia, ORVs introduction to all 43 Asian countries is estimated 
to decrease yearly rotavirus-associated hospitalizations by 
710,000 (49% decline) and rotavirus-associated deaths by 
35,000 (40% decline).43

Indirect vaccine effects among unvaccinated individuals, 
such as reductions in rotavirus incidence among unvaccinated 
individuals (e.g. herd immunity) have also been noted in many 
high-income settings, but are infrequently observed in LMIC.44 

However, there may be additional indirect effects of vaccine 
introduction that may be unmeasured in typical impact stu-
dies. For example, in Bangladesh, which has a high burden of 
AGE hospitalizations and a chronic shortage of hospital beds, 
ORV use was estimated to free over 600 hospital beds per year, 
improving access to care for critical non-diarrheal pediatric 
illnesses.45

Rotavac and Rotasiil

More recently, two ORVs manufactured in India, Rotavac, and 
Rotasiil, received WHO pre-qualification in 2018, after both 
demonstrated efficacy in clinical trials conducted in India 
(Rotavac, Rotasiil) and Niger (Rotasiil). A randomized, double- 
blind, placebo-controlled Rotavac trial performed from 2011 to 
2012 in three sites in India demonstrated vaccine efficacy of 
53.6% (95% CI, 35.0–66.9) against severe rotavirus gastroen-
teritis in the first year of life and 55.1% (39.9–66.4) until 2 years 
of age.46,47 A second formulation called Rotavac 5D has been 
developed and released, offering a ready-to-use liquid formula-
tion stored at 2–8 C (versus Rotavac, which must be stored 
frozen for long-term storage), although it is not yet WHO pre- 
qualified.

Rotasiil is a lyophilized, heat-stable ORV that has been 
shown to be stable when stored up to 18 months at 
37 C-40 C,48 and was tested in two separate trials. 
A randomized, double-blind, placebo-controlled trial was per-
formed among infants in Niger from 2014 to 2015; vaccine 
efficacy against severe rotavirus gastroenteritis was 66.7% (95% 
CI, 49.9–77.9).49 A similar trial conducted at six sites in India 
from 2014 to 2015 reported vaccine efficacy against severe 
rotavirus gastroenteritis of 36% (95% CI, 11.7–53.6).50 

Rotasiil has demonstrated lot-to-lot consistency with similar 
immunogenicity to that of Rotarix, as assessed by serum rota-
virus-specific IgA (RV-IgA) antibody concentration.51 

A ready-to-use liquid formulation has been developed which 
demonstrated immunogenicity (RV-IgA) non-inferiority to 
lyophilized Rotasiil with lot-to-lot consistency, but must be 
maintained at 2–8 C.52 This formulation is not yet WHO pre- 
qualified. The discrepancy between the efficacy estimates for 
the Niger study and the India study are unclear. Both studies 
were designed and powered for a primary endpoint of vaccine 
efficacy after a pre-determined target number of cases was 
achieved, and different protocols for vaccine storage tempera-
tures were used in each study but these seem unlikely to be 
contributing factors.49,50

India has introduced Rotavac and Rotasiil at the national 
level, with roll-out having occurred in stages by state.53 Outside 
of India, as of early 2020 Palestine54 and Benin had introduced 
Rotavac and Democratic Republic of Congo had introduced 
Rotasiil, with a number of additional countries reportedly 
planning introduction or transition – Rotavac or Rotavac 5D: 
Egypt, Nigeria, Ghana, Sao Tome; Rotasiil, lyophilized: Mali, 
Uzbekistan; Rotasiil, liquid: Burkina Faso (Carl Kirkwood, 
personal communication).

Locally approved vaccines: Rotavin and Lanzhou lamb 
rotavirus (LLR) vaccine

Two countries, China and Vietnam, have developed vaccines 
approved and licensed for national use. In China, LLR 
(Lanzhou Institute of Biological Products, Lanzhou, China), 
a G10P[15] strain, is recommended once annually in children 

Table 2. Summary of recent oral rotavirus vaccine effectiveness studies in LMIC.

Adjusted vaccine effectiveness (95% CI)

Country Vaccine Setting Age (years) Any rotavirus gastroenteritis Severe rotavirus gastroenteritis Ref

Bangladesh Rotarix Hospital, Outpatient <2 41% (23–55) 43% (22–58) 27

Burkino Faso RotaTeq Hospital <5 
6–11

35% (−15-63) 
58% (10–81)

39% (−18-68) 
NR

28

Lebanon Rotarix, RotaTeq Hospital <5 68% (50–80) NR 29

Malawi Rotarix Hospital <5 62% (28–80) 75% (41–89) 30

<12 mo 75% (45–89) 83% (54–94)
Philippines Rotarix Hospital <5 62% (26–80) 67% (18–87) 31

Tanzania Rotarix Hospital <2 49% (−30-80) 66% (−2-89) 32

Tanzania Rotarix Hospital <5 75% (−8-94) NR 33

85% (27–97)a NR
Thailand Rotarix Hospital <18 mo 88% (76–94)b NR 34

Zimbabwe Rotarix Hospital, ED 1–5 −48% (−148-11) −38% (−164-28) 35

6–11 mo 61% (21–81) 68% (13–88)

Rotavirus detection by stool rotavirus enzyme immunoassay except as otherwise noted. 
Abbreviations: NR, not reported 
aDetection by qPCR 
bDetection by polyacrylamide gel electrophoresis
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from 2 months to 3 years of age. It has been available in China 
since 2000, but lack of inclusion in China’s universal vaccine 
program and lack of formal phase 3 efficacy trials hamper 
understanding of the vaccine’s true performance.55 Single- 
dose effectiveness has been estimated from 34.9% (95% CI, 
5.3–55.3) to 73.3% (95% CI, 61.2–81.6) in children <5 years, 
with improved performance observed with earlier 
vaccination.56–60 In Vietnam, Rotavin M-1, (POLYVAC, 
Hanoi, Vietnam), an attenuated G1[P8] strain of human rota-
virus, has been licensed since 2012, based solely on immuno-
genicity data.61

Updated formulations of these vaccines are currently under-
going or have recently completed evaluation. A phase 3 trial to 
compare Rotavin-M1, which is stored frozen, with a newer 
liquid formulation simply called Rotavin, is reportedly in pro-
gress (ClinicalTrials.gov NCT0370336). Very recently, LLR3 
(Lanzhou Institute of Biological Products, Lanzhou, China), 
a new G2, G3, G4 trivalent human-lamb mono-reassortant 
vaccine based on Lanzhou lamb rotavirus vaccine, was evalu-
ated in a phase 3 clinical trial in China. Vaccine efficacy against 
any rotavirus AGE was 56.6% (95% CI, 47.5–60.1) and 70.3% 
(95% CI, 60.6–77.6) against severe rotavirus AGE through two 
epidemic seasons following vaccination.62 These estimates are 
similar to vaccine efficacies measured in phase 3 clinical trials 
of Rotarix in China,63 and slightly lower than findings for 
RotaTeq.64

Factors affecting oral vaccine performance

A number of factors have been proposed to contribute to poor 
ORV performance among children in LMIC, such as maternal 
antibodies, micronutrient deficiencies, gut dysbiosis, coinfec-
tions, environmental enteric dysfunction, and genetic 
factors.65,66 Most studies assessing factors related to ORV per-
formance have utilized immunologic endpoints, typically RV- 
IgA seroconversion or concentration. RV-IgA is a suboptimal 
correlate of protection for ORVs in LMIC,67–71 so the effects of 
many factors on clinical protection remain incompletely 
understood. With this limitation in context, targeted interven-
tions to improve ORV response have generally been unsuccess-
ful (as further discussed below). Only two interventions, delay 
of the first ORV dose and separation of the first ORV dose from 
the first dose of oral polio vaccine have consistently demon-
strated improvements in RV-IgA concentration or 
seroconversion.72 Unfortunately, these interventions would 
require significant adjustment to the WHO Expanded 
Programme on Immunizations (EPI) schedule, limiting 
feasibility.

Vaccine schedules and dosing

Delayed dosing
The EPI schedule recommends ORV vaccination at 6 and 
10 weeks (Rotarix) or 6, 10, and 14 weeks of age (RotaTeq, 
Rotavac, Rotasiil). The rationale for delayed dosing is that it 
may mitigate the inhibitory effects of maternal antibodies, as 
further discussed below. In systematic reviews and meta- 
analyses, delayed dosing of Rotarix, defined as the first vaccine 
dose administered at or beyond 10 weeks of age, was associated 

with improved RV-IgA seroconversion.72,73 Limited data also 
suggest improved clinical efficacy of delayed dosing. In 
Bangladesh, a delayed dosing schedule of 10 and 17 weeks 
demonstrated higher than expected efficacy against severe rota-
virus diarrhea of 73.5% (95% CI, 45.8–87.0), but this was not 
directly compared to standard EPI scheduling.22,74 Pooled 
analyses from multiple Rotarix and RotaTeq studies suggested 
very modest improvements in protection from severe rotavirus 
gastroenteritis in children receiving a delayed first dose or 
increased interval between doses.75 Whether delayed dosing 
can truly improve vaccine efficacy may require additional 
dedicated, adequately powered clinical trials.

Additional doses
A related issue is the potential benefit of additional vaccine 
doses. Assessments of an additional dose or doses of Rotarix at 
14 weeks of life or later on ORV immunogenicity have yielded 
inconsistent conclusions. In Ghana, increased RV-IgA sero-
conversion and geometric mean concentration (GMC) was 
seen among infants who received an additional dose of 
Rotarix at 14 weeks compared to infants who received 
Rotarix at 6 and 10 weeks only.76 However, a similar study in 
Pakistan was unable to demonstrate any effect, while a study in 
India found no differences with five doses of Rotarix compared 
to three.77,78 These studies suggest that the utility of this strat-
egy may be location-specific. A study conducted at two sites in 
Africa (South Africa and Malawi) did demonstrate a slight 
improvement (not statistically significant) in year one vaccine 
efficacy with three doses compared to two doses among infants 
at the South Africa site, but not among infants in Malawi.79 

The initial WHO recommendation for a two-dose Rotarix 
regimen included review of these year one efficacy data from 
these two sites.25 Subsequently, improved vaccine efficacy 
through 2 years of age was noted at both study sites in the 
three-dose group, as well as slightly increased RV-IgA sero-
conversion rates and GMC.23,79,80 However, these data alone 
were felt to be insufficient to recommend universal adoption of 
a three-dose regimen, although there was a call for additional 
research on the topic.81

Booster doses
Vaccine efficacy appears to be lower during the second year of 
life among children in LMIC,82,83 prompting investigations of 
a booster dose of ORV to counter waning immunity. A third 
(booster) dose of Rotarix administered with measles-mumps- 
rubella vaccine at 9 months was evaluated in Bangladesh. No 
effects on measles or rubella antibody titers were observed, and 
significant increases were seen in RV-IgA and RV-IgG seropo-
sitivity rates and geometric mean titer (GMT) in Rotarix boos-
ter recipients.84 A similar study in Mali was conducted to 
administer a booster dose of RotaTeq with yellow fever, 
measles, and meningococcal A vaccines at 9 months. 
Seroresponses to measles and meningococcal A vaccine were 
similar in RotaTeq booster recipients compared to control, and 
RotaTeq recipients had significant increases in RV-IgA and 
RV-IgG concentration and seroresponse rates; the study was 
unable to demonstrate non-inferiority to yellow fever serore-
sponse (as defined by ≥4-fold increase in titer), but responses 
to yellow fever vaccine were inexplicably quite low in both 
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groups, making the clinical significance of this result unclear. 
These findings suggest potential for extending the duration of 
vaccine protection, but the overall effect may be fairly modest: 
mathematical modeling suggests that a 9- or 12-month ORV 
booster might avert 4,000–19,600 deaths (3–16% reduction) 
among children aged 1–2 per year globally.85

Size of vaccine inoculum
The potential effect of increasing vaccine inoculum has been 
widely discussed but few studies have directly addressed this 
topic in LMIC. For Rotarix, the effect of increasing vaccine 
inoculum, ranging from 1 × 104.1 to 1 × 106.4 focus-forming 
units (FFU)/dose, on seroconversion and RV-IgA GMC 
reached a plateau in studies from Europe, North America, 
Singapore, and Latin America.86–89 Early RotaTeq studies 
demonstrated a dose–response effect (range, 2.41 × 106 to 
2.69 × 107 plaque-forming units/dose) of vaccine inoculum 
on G1-specific neutralizing antibody titers among children in 
Finland, although similar rates of RV-IgA seroconversion were 
seen.902xrefSimilarly, increased seroconversion was observed at 
higher dosages for both Rotavac (1x105 vs 1 × 104 FFU/dose) 
and Rotasiil (range, 1 × 105 to 1 × 106.4 FFU/dose) in early 
studies in India.91,92 Our group recently performed 
a randomized-controlled trial comparing double the standard 
dose of Rotarix to standard dosing (1x106.3 vs 1 × 106 FFU/ 
dose) among infants in Dhaka, Bangladesh. No differences 
were observed in RV-IgA seroconversion in high- versus stan-
dard-dose recipients (46% and 42%, respectively) or in GMC 
(30.4 units/mL vs 22.8 units/mL, respectively).93 The overall 
increase in vaccine inoculum was modest, which may help 
explain the apparent lack of benefit.

Maternal antibodies

Maternally-derived serum RV-IgG
The most plausible explanation for the beneficial effect of 
delayed ORV dosing noted above is the inhibitory effect of 
maternally derived, transplacentally acquired serum antibo-
dies (RV-IgG). Higher levels of RV-IgG or neutralizing anti-
bodies at the time of vaccination have consistently and 
convincingly been associated with decreased ORV 
immunogenicity.69,76,77,94–96 Delayed dosing may provide 
additional time for waning of maternal antibodies, diminish-
ing their effect on infant ORV response. However, the appar-
ent benefits of delayed dosing would need to be weighed 
against the logistical challenges associated with alterations 
to the EPI schedule, along with the potential increase in 
early episodes of rotavirus AGE in regions with significant 
incidence at very young ages.97,98

Breast milk antibodies and antiviral factors
The role of breast milk on ORV response is less clear. Both 
breast milk antibodies and non-antibody breast milk compo-
nents, such as lactoferrin, lactadherin, and human milk oligo-
saccharides (HMOs) diminish the infectivity of rotaviruses, 
including vaccine strains, in vitro.99–101 Formula-fed infants 
in Mexico achieved higher RV-IgA concentrations compared 
to breast-fed infants, even though RV-IgA geometric mean 
titer (GMT) in breast-fed infants was still quite robust.102 The 

hypothesis that withholding breastfeeding at the time of vacci-
nation could potentially improve infant vaccine response was 
tested in multiple LMICs. In clinical trials in India and South 
Africa, no differences in vaccine immunogenicity could be 
detected between infants in whom breastmilk was withheld 
around the time of vaccination compared to those breastfed 
at the time of vaccination,103,104 and in a similar study from 
Pakistan, RV-IgA seroconversion was paradoxically increased 
in the immediate breastfeeding arm.105 Given the clear health 
benefits of breastfeeding and the lack of effect from short-term 
withholding of breastfeeding, further studies targeting breast-
feeding are difficult to justify.

Histoblood group antigens (HBGA)

HBGA status, particularly secretor status, clearly affects sus-
ceptibility to rotavirus gastroenteritis. Secretor status is deter-
mined by the FUT2 gene, which encodes an α-[1,2]- 
fucosyltransferase that controls the expression of various 
2-fucosylated HBGAs on mucosal surfaces (such as the gut) 
and in exocrine secretions (including saliva and breast milk). 
In the gut, these HBGAs are proposed molecular receptors for 
viral attachment. Non-secretors, who do not express these 
fucosylated targets, have been found to be far less susceptible 
to AGE due to P[8] and P[4] rotaviruses, and individuals who 
lack Lewis (FUT3)-derived antigens are more susceptible to P 
[6] viruses.106–110 Therefore, a recent area of scrutiny has been 
the role of infant secretor status on ORV response, particularly 
for Rotarix, an attenuated P[8] strain. Studies from Ghana and 
Pakistan have reported decreased rates of RV-IgA seroconver-
sion among infant secretors,111,112 while no such differences 
were found in studies from Bangladesh and Malawi.113,114 

Additional findings from the Bangladesh study offer 
a potential explanation. In this study, infants born to maternal 
non-secretors had significantly increased risk of seroconver-
sion compared to infants born to maternal secretors, and the 
greatest affect was observed in infants who were themselves 
secretor-positive but born to non-secretor mothers, with 73% 
seroconversion in secretor-positive infants born to genotype- 
confirmed non-secretor mothers, compared to 23% in those 
born to genotype-confirmed secretor mothers.114 A proposed 
mechanism for this effect is that FUT2-dependent HMOs pre-
sent in breast milk may act as decoy receptors for vaccine- 
strain virus; this could explain why vaccinated infants without 
interference from breast milk ligands but who expressed 
2-fucosylated HBGAs on the gut surface (i.e. secretor infants 
born to maternal non-secretors) had the highest rates of vac-
cine seroconversion.114 Inability to account for maternal secre-
tor status is a possible explanation for the discordant results 
reported for infant secretor status across studies, but this 
requires further investigation.

Factors affecting the infant gut microenvironment

Oral polio vaccine interference
It has now been well demonstrated that concurrent adminis-
tration of the first dose of oral polio vaccine (OPV) with the 
first dose of ORV decreases RV-IgA seroconversion and 
concentration.115–117 This phenomenon is likely due to 
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interference from intestinal OPV replication, which is most 
robust following the first dose of OPV and may out-compete 
ORV replication. With planned withdrawal of OPV as a part of 
the global polio eradication effort, this may become less of 
a factor if more countries can transition to inactivated polio 
vaccines (IPV). Unfortunately, this remains a challenge due to 
higher cost and supply issues of IPV and recent resurgences in 
outbreaks due to circulating vaccine-derived polioviruses, par-
ticularly due to Sabin strain 2.118–120 Genetically stable novel 
OPV vaccines (nOPV) that are less likely to revert to neuro-
virulence than Sabin strains are currently under development. 
nOPV against type 2 poliovirus is furthest in development, but 
since nOPV2 shedding in infants was comparable to histori-
cally observed rates of monovalent OPV2 shedding shortly 
after vaccination,121 nOPVs seem unlikely to differ in inhibi-
tory effect on ORVs, although this remains to be determined.

Coinfections and microbiome
In Bangladesh, infection with non-polio enteroviruses at the 
time of ORV administration was associated with decreased 
RV-IgA seroconversion and concentration and increased vac-
cine failure.122 However, similar studies conducted in India 
and Zimbabwe found opposite effects, with enterovirus quan-
tity positively associated with ORV RV-IgA seroconversion, 
although quantity of non-polio enteroviruses in these studies 
were inferred rather than directly measured due to lack of 
methods that specifically detect non-polio enteroviruses but 
not Sabin-strain polioviruses.115,117 It is possible that timing 
of vaccination could have affected these findings, as the 
Bangladesh study provided the first Rotarix dose at 10 weeks, 
concurrent with the second OPV dose, while infants in the 
Zimbabwe and India studies received their first doses of 
Rotarix and OPV concurrently at 6 weeks. No consistent 
pathogen-specific effects, including enterovirus, at the time of 
vaccination on ORV response have thus been observed.

The role of infant intestinal microbiome is an area of active 
interest. Investigators have reported significant differences in 
infant gut microbiota in Rotarix RV-IgA seroresponders and 
non-responders in cohorts from Pakistan and Ghana.123,124 In 
Pakistan, vaccine response correlated with higher relative 
abundance of bacteria belonging to Clostridium cluster XI 
and Proteobacteria, while in Ghana vaccine responders had 
an increased abundance of Streptococcus bovis and decreased 
abundance of Bacteroidetes compared to non-responders. This 
study was limited by very low RV-IgA response (15% serocon-
version). In both studies, infants were also compared to 
a cohort of Dutch infants, with responders sharing greater 
similarity in overall microbiome composition with healthy 
Dutch infants, who were presumed to have good ORV 
response, compared to non-responders. In contrast, no con-
sistent differences in microbiota composition or alpha or beta 
diversity could be detected in Rotarix seroconverters vs non- 
converters in India, although slightly more pre-vaccination 
bacterial taxa were observed in those who shed vaccine after 
the first dose.115 In Dutch adults who underwent microbiota 
modification via narrow- vs- wide-spectrum oral antibiotics 
followed by a single dose of Rotarix, those who received nar-
row-spectrum antibiotics (oral vancomycin) had an increased 
rate of RV-IgA boosting, defined as a two-fold increase, and 

increased frequency of fecal vaccine shedding compared to 
controls, suggesting that alterations in microbiota could have 
detectable effects on ORV response.125 Since all volunteers 
were adult males who had quite robust baseline RV-IgA levels, 
it remains unclear how these findings would translate to infants 
in LMIC.

An underexplored topic is maternal breast milk micro-
biome. Breast milk microbiome in mothers of neonates with 
symptomatic rotavirus infections due to neonatal G10P[11] 
rotavirus in India clustered differently from those with asymp-
tomatic neonatal infection or uninfected neonates, with 
increased Enterobacter/Klebsiella relative abundance in breast 
milk of mothers of symptomatic infants.126 Similar findings 
were observed for infant fecal microbiome. However, the rele-
vance of these findings for ORV response also remain uncer-
tain. The effects of infant and maternal microbiome on ORV 
responses will likely remain an area of intense interest, with 
further insights to come.

WASH
The impact of household-level water, sanitation, and hygiene 
(WASH) interventions on Rotarix response was evaluated in 
Zimbabwe in a cluster-randomized 2 × 2 factorial trial, which 
also assessed improved feeding interventions on child health 
outcomes. WASH interventions were associated with 
a modest increase in seroconversion among vaccinated 
infants in WASH groups versus non-WASH groups, with an 
absolute difference of 10.6% (95% CI 0.54–20.7).127 Fewer 
infants in the WASH group were seropositive pre- 
vaccination, meaning this difference could have resulted 
from reductions in early RV exposure in the WASH group 
rather than a direct effect on vaccine response. However, 
exclusion of baseline-seropositive infants demonstrated 
a consistent effect, with an absolute difference of 9.8% (95% 
CI, −6-20.2). These results are tempered by the low rates of 
seroconversion observed, which was 35.4% in WASH infants 
who received both doses of vaccine. In this setting, WASH 
was not associated with significant reductions in rotavirus 
prevalence.128 The ability of household-level WASH alone to 
improve ORV performance thus appears to be limited.

Probiotics and zinc supplementation
Zinc deficiency is common in children in LMIC and has long 
been recognized as important in the treatment of pediatric 
diarrhea, with recent evidence suggesting a specific role in 
protection from rotavirus diarrhea.22 Therefore, zinc supple-
mentation has been proposed as a potential adjunct to aid in 
response to rotavirus vaccination. Similarly, probiotics have 
received interest as another possible intervention to induce 
a gut microbiota more favorable to oral rotavirus vaccine 
response. A study in India randomized infants into four 
groups: probiotic (1010 Lactobacillus rhamnosus GG) plus 
oral zinc (5 mg daily); probiotic only with zinc placebo; pro-
biotic placebo with zinc only; or probiotic placebo and zinc 
placebo, all starting one week before initiating the Rotarix 
vaccine series until 6 weeks after the second dose.129 Neither 
zinc nor probiotic was associated with significantly increased 
RV-IgA seroconversion, although a suggestion of benefit was 
noted for probiotic, with a 7.5% increase in seroconversion in 
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all infants who received probiotic compared to those who 
received none (97.5% CI −1.4–16.2).

Environmental enteric dysfunction (EED)
EED is a subclinical disorder of gut function and inflammation 
that affects impoverished populations in LMIC, presumably 
due to high enteropathogen exposure. It is associated with 
intestinal villus blunting, impaired barrier function, and 
malabsorption.130 EED has long been proposed as an impor-
tant variable in oral vaccine underperformance, but compelling 
evidence has proven difficult to produce, with large trials 
yielding conflicting results.131 The greatest barrier to this field 
has been lack of validated surrogate markers for EED: the 
current gold standard for diagnosis remains histopathologic 
examination of intestinal biopsy specimens, and an objective 
scoring index has only recently been developed.132 Numerous 
stool, serum, and urine biomarkers capturing specific aspects 
of EED-associated pathology (e.g. intestinal inflammation, per-
meability, malabsorption, translocation, etc.), have been eval-
uated in multiple settings with few consistent findings.133,134 

Work to identify reliable noninvasive biomarkers as surrogates 
for biopsy-proven EED is currently ongoing, and may hope-
fully refine approaches toward EED detection and risk stratifi-
cation in at-risk populations.135

Factors impacting measurements of vaccine efficacy

At least part of the lower estimates of vaccine efficacy observed 
in LMIC may have to do with mathematical phenomena due to 
limitations in standard methods for measuring vaccine efficacy. 
For example, using data from a Rotarix trial performed in 
Bangladesh, researchers determined that traditional efficacy 
measurements that failed to account for immunity due to 
natural infections in the placebo group during periods of 
prior exposure underestimated overall efficacy by 7.1%, with 
a 13.5% increase specifically in year 2 efficacy when only 
evaluating rotavirus-naïve children.136 They further developed 
a model to simulate variation in year 2 efficacy using data from 
other regions representing a spectrum of rotavirus incidence 
rates and vaccine efficacies. This model suggested that under-
estimation of year 2 vaccine efficacy was greatest in settings 
with calculated efficacy near 50%, which generally corresponds 
to efficacy estimates for many LMIC.

Similarly, lack of accounting for decreased natural suscept-
ibility to rotavirus infections in individuals with non-secretor 
HBGA status was shown to decrease reported estimates of 
vaccine efficacy in Bangladesh.107 In this study, efficacy against 
rotavirus-associated AGE of any severity among non-secretors 
was 31.7%, compared to 56.2% among secretors. The reduced 
efficacy observed among non-secretors appeared to be due to 
the natural protection afforded by non-secretor status in 
unvaccinated infants (which approached a 50% risk reduction 
compared to unvaccinated secretors): decreased susceptibility 
in non-secretors meant that vaccination in this group offered 
little additional protection. The difference in rotavirus inci-
dence in vaccinated versus unvaccinated non-secretors was 
thus minimal, resulting in a reduced effect size. This led to 
a mathematical reduction in efficacy that did not reflect the 
biological mechanism for this outcome. Similar effects may 

provide an incremental contribution to lower efficacy estimates 
in other trials, particularly in regions with a high population 
prevalence of non-secretors. In contrast, a study in Malawi 
found that non-secretors had a reduced risk of rotavirus vac-
cine failure, suggesting that secretor status does not impact 
vaccine performance estimates, but this analysis was performed 
using a case–control design and may not be directly compar-
able to efficacy estimates obtained from prospective clinical 
trials.113

Difficulties in attribution of diarrheal etiology have also 
come under increased scrutiny. Among infants in LMIC, coin-
fections with multiple enteropathogens are frequently 
observed.3,137 In the context of a vaccine trial, vaccinated 
infants with a rotavirus-positive diarrheal episode would be 
considered a case of vaccine failure. However, significant mis-
attribution of diarrhea incidence to rotavirus could occur if 
these episodes were also frequently associated with coinfec-
tions with other etiologic agent of gastroenteritis, but for 
which testing was not performed. Post-vaccination, it is possi-
ble that rotavirus infections would be more likely to be asymp-
tomatic, as is observed in subsequent episodes of natural 
infection,14 and therefore more frequently seen in the context 
of coinfection rather than symptomatic monoinfection. A high 
incidence of diarrhea due to other undetected pathogens could 
thus confound vaccine outcome measures in rotavirus efficacy 
trials. In Botswana, a recent study did not detect a difference in 
rotavirus vaccine effectiveness in patients with intestinal coin-
fections compared to those without.138 In this study, co- 
pathogens were detected using either in-house multiplex PCR 
(nine targets) or a commercial gastrointestinal PCR panel (15 
targets). A significant limitation of this study was a small 
sample size, which may have underpowered the study to 
reach more definitive conclusions, particularly as there did 
appear to be a possible effect of coinfections detected using 
the in-house panel: vaccine effectiveness was 48% in the coin-
fection group and 62% in the group with rotavirus infection 
alone. Similarly, detection of an even broader range of coin-
fections using Taqman Array Card (TAC) was performed in 
the Rotavac vaccine efficacy trial in India.139 In this study, 
accounting for enteric coinfections led to an 11.3% increase 
in vaccine efficacy. Similar effects could help explain a portion 
of the lower vaccine efficacy estimates observed in LMIC, but 
further work will be required to resolve this issue.

Clearly, the underperformance of current ORVs in LMIC is 
multifactorial. A small but important component of the 
reduced efficacy observed in these regions may have to do 
with limitations in approaches for measuring vaccine perfor-
mance. However, a spectrum of biological factors is also clearly 
involved, meaning any single intervention is unlikely to fully 
achieve levels of ORV performance comparable to high- 
income settings. Such interventions (e.g. delayed or extra dos-
ing, booster doses, increased vaccine inoculum, staggered OPV 
administration, micronutrient or probiotic supplementation) 
have had limited success in improving oral vaccine responses, 
as detailed above. Even if they demonstrated larger effects, 
none are easily implemented as they would all require large- 
scale restructuring of current WHO vaccine schedules or add 
significant cost to the global rotavirus vaccine effort, at a time 
when access to current vaccines is already suboptimal. In 2019, 
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an estimated 85 million children still did not have access to 
vaccine.140 Therefore, next-generation vaccines will likely be 
needed to fully bridge this gap. A number of newer vaccines are 
currently undergoing clinical evaluation or development, 
including oral, live-attenuated vaccines and parenteral non- 
replicating rotavirus vaccines.

Newer and next-generation rotavirus vaccines

An overview of newer and next-generation vaccines is pro-
vided in Table 3.

Newer oral vaccines

RV3-BB
A promising newer ORV is RV3-BB (PT BioFarma, Bandung, 
Indonesia). This vaccine consists of a neonatal strain of G3P 
[6] human rotavirus (RV3). As a naturally attenuated neona-
tal strain, it was found to cause wild-type asymptomatic 
infection very early in life and is infectious and immunogenic 
in spite of high levels of maternally derived serum or breast 
milk antibodies, providing a rational alternative path for 
improving oral rotavirus vaccine responses.141 RV3-BB 
demonstrated efficacy in a double-blind, placebo-controlled 
Phase 2b trial in Indonesia using both infant and neonatal 
dosing.142 In this trial, participants were randomized to neo-
natal dosing at 0–5 days, 8 weeks, and 14 weeks of age, infant 
dosing at 8, 14, and 18 weeks of age, or placebo. Vaccine 
efficacy against severe rotavirus AGE through 18 months 
was 75% (95% CI, 44–91) in the neonatal-schedule group 
and 51% (95% CI, 7–76) in the infant-schedule group. 
Efficacy was even higher for the first year of life, estimated 
at 94% (95% CI, 56–99) in the neonatal-schedule group and 
77% (95% CI, 31–92) in the infant-schedule group. A phase 2 
dose-ranging study to confirm appropriate dosing in African 
infants has been performed in Malawi, although results are 
not yet available (ClinicalTrials.gov NCT03483116). A phase 

3 trial in Indonesia using RV3-BB produced under Halal 
manufacture (PT BioFarma) is scheduled to commence in 
mid-2020; pending trial results, developers plan to submit 
for local licensure and national roll-out in Indonesia, fol-
lowed by WHO pre-qualification (Julie Bines, personal 
communication).

Other unique characteristics of RV3-BB make it an intri-
guing addition to the ORV repertoire. For example, high rates 
of vaccine take were observed irrespective of infant HBGA 
status, and immune response appeared to be less susceptible 
to interference from OPV, with vaccinated infants who 
received concurrent OPV demonstrating similar rates of anti-
body seroconversion and GMT compared to vaccinated 
infants who received IPV.143,144 Interestingly, Rotavac is 
also derived from a neonatal rotavirus strain (G9P[11]) but 
showed efficacy levels similar to those of other ORVs in 
LMIC. Whether strain-specific differences or adoption of 
a neonatal dosing regimen means RV3-BB’s promising find-
ings from Indonesia can be replicated in other locations 
remains to be seen.

Non-replicating rotavirus vaccines (NRRVs)

Given the ongoing challenges with oral vaccine underperfor-
mance, the potential of parenteral NRRVs has received 
intense interest. The potential advantages of such vaccines 
include: circumventing the so-called “tropical barrier” pre-
sented by multiple factors (e.g. EED) that prevent successful 
take of live-attenuated vaccines in the gut, hopefully leading 
to improved efficacy; reduced cold-chain footprint and cost; 
opportunity via sequential scheduling strategies (e.g., “prime- 
boost”) to augment (rather than replace) current ORV pro-
grams; and development of combination vaccines to facilitate 
administration and improve access. A meeting of NRRV 
vaccine developers was organized by PATH and held in 
Geneva, Switzerland in June 2019; additional information 
regarding the following vaccine candidates are available in 

Table 3. Overview of newer and next-generation vaccines under evaluation or in development.

Vaccine type Manufacturer/Developer Composition Status

Oral, live-attenuated

RV3-BB PT BioFarma Monovalent G3P[6] (strain RV3) 
neonatal human rotavirus

Phase 2/3

Non-replicating, parenteral

P2-VP8* PATH 
SK Bioscience

Trivalent subunit vaccine: tetanus 
toxoid P2 fused to P[4] (strain DS1), 
P[6] (strain 1076), and P[8] (strain 
Wa) VP8*

Phase 3

CDC-9 CDC Serum Institute of India Pvt. Ltd 
Zhifei Lvzhu Biopharmaceutical Co., Ltd.

Monovalent inactivated human 
rotavirus strain CDC-9

Preclinical

116E Bharat Biotech International Ltd. Monovalent inactivated human 
rotavirus strain 116E

Preclinical

VLP VP2/6/7 Mitsubishi/Medicago Virus-like particle Phase 1
VLP VP2/4/6/7 Baylor College of Medicine Virus-like particle Preclinical
VP6 + norovirus Tampere University, Finland Nanoparticle: VP6 nanotubes or 

microspheres + norovirus viral-like 
protein admixture

Preclinical

VP6 + norovirus Cincinnati Children’s Hospital Medical Center Sub-viral particles (norovirus S or P) 
expressing rotavirus VP8* particle

Preclinical

VP8* mRNA CureVac VP8* mRNA Preclinical

Newer formulations of already licensed vaccines are not included.
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the meeting proceedings145. An overview of NRRV candidates 
currently in development is provided in Table 3.

Subunit vaccines
Furthest along in development is a trivalent P2-VP8* subunit 
vaccine developed by PATH. This vaccine consists of 
a truncated segment of VP8* that contains all known VP8*- 
specific neutralizing epitopes fused to the P2 tetanus toxoid 
T cell epitope.146 An initial monovalent formulation consisting 
of VP8* derived from G1P[8] Wa strain rotavirus was well 
tolerated and immunogenic in a phase 1 trial among South 
African infants.147 All children received Rotarix following 
completion of study vaccination, which provided a unique 
opportunity to assess mucosal immunity: if recipients of 
study vaccine inhibited shedding of Rotarix (a homotypic P 
[8] virus) following oral challenge, this would suggest that the 
antibodies induced by the parenteral vaccine provided steriliz-
ing immunity in the gut mucosa. Indeed, those who received 
study vaccine had reduced frequencies of stool Rotarix shed-
ding following the first Rotarix dose compared to placebo 
recipients, with the overall percent reduction in shedding at 
any measured time point in vaccinated infants compared to 
placebo recipients ranging from 49% to 66%, depending on the 
investigational vaccine dose received. However, serum neutra-
lizing responses to heterotypic rotavirus strains were poor 
overall. Based on these results, a trivalent formulation that 
added DS1 strain P[4] VP8* and 1076 strain P[6] VP8* under-
went a subsequent phase 1/2 trial in the same location. In this 
study, the trivalent formulation was well tolerated and robust 
IgG and neutralizing seroresponses to P[4], P[6], and P[8] 
rotaviruses were observed, although serum IgA responses to 
each individual antigen were modest (20–34%) across all three 
dosages evaluated.148 Similar to the previous trial, Rotarix was 
given to all infants after study vaccination, and post-Rotarix 
shedding data were collected in a subset of infants: compared 
to placebo, significant reductions in shedding were again 
observed in infants who received parenteral vaccine, but only 
at the highest dose (90 µg) administered, which is quite high for 
a typical infant vaccine injection.148

Since functional antibodies in the gut are primarily IgA, 
it remains to be seen whether strong serum IgG and neu-
tralizing antibodies induced by this vaccine can mediate 
sufficient mucosal immunity to prevent symptomatic AGE 
due to rotavirus. Observational data demonstrating the 
importance of maternally derived serum RV-IgG in infants 
(see above) gives reason for optimism, but the extent to 
which VP8*-specific antibodies alone can mediate this effect 
is unknown. A commercial partner, SK Bioscience (Seoul, 
South Korea) has been identified for this vaccine and 
a multinational phase 3 efficacy trial evaluating three 90ug 
doses of trivalent P2-VP8* at sites in Africa (Ghana, 
Malawi, Zambia) and India is currently in progress 
(ClinicalTrials.gov NCT04010488).

Inactivated vaccines
A monovalent, heat-inactivated whole virus vaccine consisting 
of G1P[8] strain CDC-9 human rotavirus developed by the 
Centers for Disease Control and Prevention is currently in 
development. Unlike other rotavirus strains, CDC-9 is 

reported to grow to high titer and demonstrate very high 
stability in the infectious, triple-layered particle form.149,150 

Since the mechanisms of immunity and the effectors necessary 
or sufficient for protection from rotavirus AGE remain incom-
pletely understood, an inactivated, intact virion is an attractive 
choice for a non-replicating vaccine, since this would promote 
presentation of all surface neutralizing epitopes. This vaccine 
has undergone extensive pre-clinical evaluation, demonstrat-
ing strong induction of homotypic and heterotypic serum 
neutralizing antibody responses and reductions in fecal virus 
shedding upon oral challenge in vaccinated animals compared 
to placebo in multiple animal models,150–153 including when 
delivered intradermally using a novel-coated skin microneedle 
patch.152,154 Two commercial partners, Serum Institute of 
India Pvt. Ltd. (Pune, India) and Zhifei Lvzhu 
Biopharmaceutical Co., Ltd. (Beijing, China) have reported 
initiation of Good Manufacturing Process (GMP) production 
and regulatory approvals processes in preparation for phase 1 
clinical trials146.

Bharat Biotech is reportedly also developing an inactivated 
version of Rotavac for parenteral administration. No data 
regarding its progress or performance are publicly available 
to date146.

Virus-like particle (VLP) and nanoparticle vaccines
Double- or triple-layered VLPs containing various combina-
tions of all major capsid layer proteins (VP2, VP6, VP7, and/ 
or VP4) expressed in recombinant baculovirus-infected insect 
cell culture have been developed as potential NRRV candi-
dates by Baylor College of Medicine (Houston, TX).153,155 

These candidates have also undergone extensive preclinical 
testing in multiple animal models, including the demonstra-
tion of broad heterotypic neutralizing antibody induction in 
mice immunized with a G1 VP7-containing construct.156–158 

Immunization with this approach is now used to stimulate 
generation of protective antibodies in a commercial bovine 
colostrum formulation that was approved by the United 
States Department of Agriculture in 2017 for passive vaccina-
tion to prevent calf scours (First Defense Tri-Shield, 
Immucell, Portland, ME).159 Despite successful use in veter-
inary medicine and the growing list of successful human 
VLP-based vaccines, insect cell-produced VLP vaccine candi-
dates for rotavirus have yet to advance past the preclinical 
phase.

More recently, Medicago Inc. (Quebec City, Canada), 
a subsidiary of Mitsubishi Tanabe Pharma Corporation 
(Osaka, Japan), has applied its proprietary technology using 
plant-based VLP production toward development of 
a rotavirus VLP vaccine. A randomized, placebo-controlled, 
descending age dose-escalation phase 1 trial to evaluate the 
safety and immunogenicity of their candidate vaccine MT- 
5625 in adults, toddlers, and infants has been completed in 
Australia and South Africa (ClinicalTrials.gov NCT03507738), 
but results have not yet been released.

Several nanoparticle-based vaccines are also in the pre- 
clinical phase of development. A group at Tampere 
University, Finland, has developed a combined rotavirus/ 
norovirus vaccine candidate containing self-assembled rota-
virus VP6 nanoparticles expressed in recombinant 
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baculovirus-infected insect cells, including in both nanotube 
and microsphere configurations.160,161 Interestingly, VP6 
appeared to have the additional benefit of acting as an adju-
vant for norovirus immunogenicity in mice.161 Another pro-
posed combination rotavirus/norovirus construct under 
development at Cincinnati Children’s Hospital Medical 
Center (Cincinnati, OH) uses rotavirus VP8* expressed on 
the surface of recombinant norovirus P or S subviral parti-
cles. Noroviruses contain a single outer capsid structural 
protein, VP1, which contains two domains, the shell (S) and 
protrusion (P) domains, each of which can be independently 
expressed to form self-assembling sub-viral particles as 
a platform for foreign antigen presentation.162 Both P and 
S formulations were immunogenic in mice and the S-particle 
construct reduced fecal viral shedding in vaccinated mice 
following oral challenge with a VP8*-homologous 
strain.162,163

mRNA vaccines
Finally, the Bill and Melinda Gates Foundation has partnered 
with CureVac (Tübingen, Germany) to leverage their mRNA- 
based technologies toward development of a rotavirus VP8* 
mRNA vaccine146. This project is also in the preclinical stage of 
development and public data are not yet available. The overall 
mRNA approach has been evaluated as a plausible approach 
for vaccine development.164

Future vaccine prospects
The recent development of a plasmid-based reverse genetics 
system for rotavirus is an important breakthrough with signif-
icant potential to accelerate rotavirus research. Hopefully, this 
new technology will augment existing platforms (as detailed 
above) and assist in development of new vaccine candidates.165

Additional challenges

In addition to the issues related to vaccine development, 
clinical evaluation in the field remains challenging. Next- 
generation vaccines will likely be targeted specifically to 
LMIC, where large-scale field trials remain more difficult 
to perform, often due to relative limitations in research 
infrastructure, supplies procurement, and transportation, 
posing added challenges to overall research capacity. New 
studies may need to carefully consider and account for the 
growing list of biological and mathematical phenomena 
that may confound accurate measures of true vaccine effi-
cacy. Furthermore, the availability and use of multiple 
WHO pre-qualified ORVs means that placebo-controlled 
efficacy trials are now difficult to justify ethically. Future 
studies may need to rely on active comparator arms, as was 
the approach adopted for the current phase 3 trivalent P2- 
VP8* efficacy study (NCT04010448).

Under such conditions, one potential approach would be 
using bridging studies comparing immunogenicity out-
comes. The currently accepted standard for ORV immuno-
genicity, RV-IgA, may be a plausible approach for new oral 
vaccines, despite being a sub-optimal correlate of protection 
in LMIC.69,166 RV-IgA is likely a non-mechanistic correlate 

of protection, as immunized infants without a post- 
immunization RV-IgA response still appear to have greater 
protection from rotavirus diarrhea than non-immunized 
infants, and similarly those with high RV-IgA may still 
develop disease.69,166 Nevertheless, current evidence sug-
gests that it may be “reasonably likely to predict clinical 
benefit,” although it has not been validated as a true surro-
gate endpoint.67,166 However, RV-IgA may not be as applic-
able for assessment of NRRVs, as immune responses 
induced by parenteral vaccination may differ from those 
induced by live-attenuated oral vaccines. Until a true rota-
virus immune correlate of protection that can be induced by 
both parenteral and oral vaccines can be confirmed, trials of 
NRRVs are likely to ultimately require clinical endpoints. 
Non-inferiority studies may be a reasonable option, but 
opportunities to demonstrate improved efficacy compared 
to current vaccines may be significantly hindered by the 
substantially larger sample sizes required.

Conclusions

Current ORVs have had substantial impact on rotavirus 
morbidity and mortality throughout LMIC, but continue to 
underperform in these settings relative to high-income 
countries. Coupled with ongoing challenges related to ORV 
cost, supply, and access, the full global potential of rotavirus 
vaccines is still not being realized. Overcoming this chal-
lenge will require a multifaceted approach, taking into con-
sideration the multiple factors that impact ORV 
performance and the likely need for newer and next- 
generation vaccines. Ongoing exploration to identify better 
immune correlates of protection following vaccination for 
both ORVs and NRRVs are needed. Indeed, the landscape 
for rotavirus vaccines may substantially change in coming 
years, and hopefully the second decade following universal 
WHO rotavirus vaccine pre-qualification will see increas-
ing progress toward reducing rotavirus vaccine underperfor-
mance and rotavirus-associated morbidity and mortality 
among children in LMIC.
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