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Abstract

Short-chain quinones are described as potent antioxidants and in the case of idebenone have already been under clinical
investigation for the treatment of neuromuscular disorders. Due to their analogy to coenzyme Q10 (CoQ10), a long-chain
quinone, they are widely regarded as a substitute for CoQ10. However, apart from their antioxidant function, this provides
no clear rationale for their use in disorders with normal CoQ10 levels. Using recombinant NAD(P)H:quinone oxidoreductase
(NQO) enzymes, we observed that contrary to CoQ10 short-chain quinones such as idebenone are good substrates for both
NQO1 and NQO2. Furthermore, the reduction of short-chain quinones by NQOs enabled an antimycin A-sensitive transfer of
electrons from cytosolic NAD(P)H to the mitochondrial respiratory chain in both human hepatoma cells (HepG2) and freshly
isolated mouse hepatocytes. Consistent with the substrate selectivity of NQOs, both idebenone and CoQ1, but not CoQ10,
partially restored cellular ATP levels under conditions of impaired complex I function. The observed cytosolic-mitochondrial
shuttling of idebenone and CoQ1 was also associated with reduced lactate production by cybrid cells from mitochondrial
encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) patients. Thus, the observed activities separate the
effectiveness of short-chain quinones from the related long-chain CoQ10 and provide the rationale for the use of short-chain
quinones such as idebenone for the treatment of mitochondrial disorders.
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Introduction

Quinones, such as vitamin K or coenzyme Q10 (CoQ10), are a

chemical class containing a quinoid ring system [reviewed by 1,2]

as pharmacophore. Despite significant differences between

quinones, the quinoid system is the dominant feature that causes

all of them to be electrophiles, oxidants and colored. However,

already minor variances in their chemical and physicochemical

properties lead to extensive differences in their biological and

pharmacological effects. Enzymes involved in cellular quinone

metabolism catalyze mainly two different redox reactions. For

example, NADPH:cytochrome P450 reductase can generate

semiquinones by incomplete, one-electron reduction [1,2]. Since

semiquinones can react with molecular oxygen to generate

reactive oxygen species (ROS), this process can lead to oxidative

damage of cellular macromolecules, toxicity and mutagenicity

[1,2]. In contrast, NAD(P)H:quinone oxidoreductases (NQOs) are

cytosolic flavoproteins that compete with P450 reductase and

catalyze the reduction of highly reactive quinones and their

derivates by complete, two-electron reduction [2]. This results in

the formation of relatively stable hydroquinones, often also

referred to as quinols, and therefore avoids the formation of

ROS. Thus, NQOs are considered key detoxifying enzymes which

are induced by stressors such as xenobiotics or oxidants [3].

Currently, NQO1 and NQO2, with substantial differences in

substrate specificity and expression patterns, are described. While

NQO1 uses nicotinamide adenine dinucleotide (phosphate)

(NADH or NADPH) as electron donor, NQO2 shows a high

preference for dihydronicotinamide riboside (NRH) [3].

NQOs have been shown to reduce numerous pharmacologically

active compounds such as quinone epoxides, aromatic nitro and

nitroso compounds, azo dyes and Cr(VI) compounds [4]. Notably,

NQO1 has its highest affinity towards quinones; for example, b-

lapachone and mitomycin C exhibit their biological activity not

until their NQO1-dependent bioreduction [5,6]. Both NQO1 and

NQO2 are able to reduce CoQ0 [7] and CoQ1 [8,9]. These

quinones are short-chain analogs of CoQ10, which is best known

for its pivotal role in mitochondrial oxidative phosphorylation,

although the functional significance of NQO-dependent reduction

of CoQ0 and CoQ1 is still unclear.

Idebenone, a benzoquinone carrying exactly the same quinone

moiety as CoQ0, CoQ1 and CoQ10, shows multiple activities in

vitro and in vivo. Most prominently associated with idebenone is its

potent antioxidant capacity as substantiated by the ability to

prevent lipid peroxidation and ROS in multiple systems [10–14].

Consistent with this role, idebenone proved cytoprotective after
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cellular exposure to various toxic insults [10,12,13,15]. Conse-

quently, it is under investigation as a possible treatment for

disorders characterized by excessive oxidative damage due to

mitochondrial defects. Idebenone is quickly absorbed and is well

tolerated and safe given as single or repeated daily doses [16].

Successful treatment of a patient with Leigh syndrome using

idebenone, where high-dose CoQ10 had no effect on respiratory

function, is indicative of significant levels of idebenone in the

brain [17]. Thus, idebenone has been suggested for treating

patients with mitochondrial encephalopathy, lactic acidosis and stroke-like

episodes (MELAS) [18,19]. Idebenone has been most intensely

studied for the treatment of Friedreich’s Ataxia (FRDA) [20,21],

which is a mitochondrial disorder characterized by increased

sensitivity to free radicals [22]. FRDA patients also show deficient

activity of mitochondrial respiratory complexes I, II and III and

aconitase.

In addition to its antioxidant function, multiple activities have

been reported for idebenone such as blocking of Ca2+-channels

[23], increased synthesis of NGF [24], stimulation of mitochon-

drial glycerol-phosphate shuttle [25], modulation of arachidonic

acid metabolism [26] and increased mitochondrial function under

low oxygen [27]. Due to its structural analogy to CoQ10,

idebenone was anticipated to participate in electron transport

through the respiratory chain [11]. Indeed, idebenone interacts

with mitochondrial complexes I, II and III [28,29]. But whereas it

is a good substrate for the latter two, it inhibits both the proton

pumping and redox activity of mitochondrial complex I

[11,25,29–31]. To what extent this activity is responsible for the

beneficial effects of idebenone is still under investigation.

Here, we describe that idebenone is a substrate for reduction by

NQO1 and NQO2. The NQO1-reduced idebenone is able to

donate electrons into the mitochondrial respiratory chain and it

can partially restore cellular adenosine triphosphate (ATP) levels

under conditions of impaired complex I function. Consistent with

this cytoplasmic-mitochondrial redox cycling hypothesis, idebe-

none also reduces lactate production in a cell culture model of

MELAS. We also show that this effect is specific to some short-

chain quinones such as idebenone and is not shared with the

structurally related long chain quinones such as CoQ10.

Results

Reduction of short-chain quinones by NQO enzymes in
vitro

Since NQO1 is thought to be the main cellular enzyme

responsible for quinone metabolism, we were interested if this also

applied to idebenone (Ide) and related quinones such as CoQ1 and

CoQ10, since they share the identical substitution pattern of the

quinone moiety (Figure 1). We also analyzed QS-10 (6-(9-

carboxynonyl)-2,3-dimethoxy-5-methyl-1,4-benzoquinone), one of

the first idebenone metabolites during oxidative side chain

shortening [32]. Experiments with recombinant enzymes clearly

demonstrate that these four quinones are differentially reduced by

NQO1 (Table 1, Figure S1A+B). Generally, NQO1 demonstrated

a slight preference of NADPH over NADH as electron donor with

either idebenone, CoQ1 or QS-10 as acceptor substrate (Table 1).

Whereas maximal reduction velocity (vmax) for NQO1 presented

in the following order: CoQ1 . idebenone . QS-10, we could not

Figure 1. Chemical structures of the quinones tested. Idebenone, CoQ1, CoQ10 and QS-10 share the same substitution pattern of the quinone
moiety but differ in the alkyl tail attached to the C6-carbon atom of their quinone ring. Whereas idebenone and QS-10 possess an alkyl chain with a
terminal polar group (hydroxyl or carboxylic acid group), CoQ1 and CoQ10 contain one or ten isoprenoid repeats, respectively. Molecular weight and
calculated log D value (Advanced Chemistry Development Software Package, Version 12, ACD Labs, Toronto, Canada) for each molecule are shown.
Log D values are a measure for lipophilicity incorporating ionization of the compound in which small values indicate affinity for the aqueous phase.
doi:10.1371/journal.pone.0017963.g001

NQO1-Dependent Redox Cycling of Idebenone
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find any evidence for a NQO1-mediated reduction of CoQ10

(Table 1). Due to poor solubility of CoQ10 in aqueous solutions,

we repeated the assay with different formulations of CoQ10 in

accordance to its lipophilic requirements. Nevertheless, when

complexed with fetal bovine serum (FBS) or incorporated into

phosphatidylcholine-based liposomes [33,34], we were unable to

detect any NQO1-dependent reduction of CoQ10 (Figure S1C). In

contrast, idebenone was clearly reduced by NQO1 under all

conditions tested.

NQO2, although much less studied, is reported to possess similar

oxidoreductase activity with some differences in substrate specific-

ities [35]. Despite similar cDNA and amino acid sequences of

NQO1 and NQO2, NQO2 has different co-factor requirements (3).

We were unable to demonstrate NQO2-dependent reduction of

quinones using either NADH or NADPH as electron donor (data

not shown), and used 1-(3-sulfonatopropyl)-3-carbamoyl-1,4-dihy-

dropyrimidine, a synthetic analog of NRH [36], as electron donor

instead. For all four quinones, we found similar results with regards

to the Km and vmax for NQO2-dependent reduction compared to

the data generated with NQO1 (Table 1, Figure S1D).

Cellular reduction of short-chain quinones by NQO1
To confirm the in vitro reduction of short-chain quinones by NQO

enzymes in cells, we employed an assay that measures the reduction-

associated change in absorption of WST-1 to quantify NQO1-

dependent reduction of quinones. A recent publication associated

the quinone-dependent reduction of the tetrazolium dye WST-1

with NQO1 activity [37]. The authors demonstrated that WST-1 is

converted only in the presence of functional NQO1, since inhibition

of enzymatic activity by dicoumarol (Dic) abolished WST-1

reduction. Furthermore, the dye was potently reduced in cells

expressing NQO1 but failed to change absorption in NQO1

deficient cells such as CHO cells. Indeed, using this assay,

idebenone, CoQ1 and QS-10 were readily reduced by NQO1 in

a dose-dependent manner in HepG2 cells; whereas for CoQ10

consistently no activity was detected (Figure 2A). Prior to

differentiating between NQO1- and NQO2-dependent activities,

it was essential to confirm the usefulness of the NQO1 inhibitor

dicoumarol, with a reported IC50 for NQO1 of approximately 10

nM [38]. Consistent with previous reports [3,35], our results showed

that dicoumarol (20 mM) potently inhibited recombinant NQO1

activity (4% residual activity), while at the same time NQO2 activity

was only inhibited by 14% (86% residual activity) (Figure S2).

Therefore, co-incubation of HepG2 cells with quinones and

dicoumarol for 120 minutes efficiently abolished the WST-1 signal

(0% and 5% for idebenone and CoQ1, respectively) (Figure 2B). To

rule out a cell line specific metabolism in HepG2 cells, comparable

effects were also detected in primary fibroblasts and rat L6

myoblasts (Figures S3, S4). Reduction of substrates such as quinones

by NQO1 uses NAD(P)H as electron donor. In agreement with

previous reports using CoQ1 and b-lapachone [9,39], idebenone

Table 1. Steady-state kinetic constants of NQO1 and NQO2 with different quinones.

Enzyme NQO1 NQO2

Substrate NADH NADPH NRH-derivate*

Km [mM] vmax [mmol/mg/min] Km [mM] vmax [mmol/mg/min] Km [mM] vmax [mmol/mg/min]

Idebenone 27 41.9 30 53.4 38 97.4

CoQ1 31 115.5 36 172.2 47 128.0

CoQ10 - { - { - { - { - { - {

QS-10 8 20.5 13 23.3 5 29.6

*For NQO2 enzymatic assays 1-(3-sulfonatopropyl)-3-carbamoyl-1,4-dihydropyrimidine (NRH-derivative) was used as electron donor as described [36];
{No enzymatic activity above background could be detected for CoQ10, thus, steady-state kinetics could not be calculated.
doi:10.1371/journal.pone.0017963.t001

Figure 2. NQO1-dependent cellular reduction of quinones. (A)
Dose-dependent cellular quinone reduction was measured as described
by Tan et al. [37] in HepG2 cells. (B) Dicoumarol (Dic)-treatment (20 mM)
efficiently blocked cellular quinone reduction in HepG2 cells. Bars
represent mean +stdev of triplicates from one typical out of three
independent experiments.
doi:10.1371/journal.pone.0017963.g002

NQO1-Dependent Redox Cycling of Idebenone
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reduced NADH levels in human lymphoblastoid cells in a dose-

dependent manner. Using the NADH-dependent conversion of

resazurin into the fluorescent resofurin product, idebenone reduced

the fluorescence signal by 9% and 11% at (0.1 mM), 11% and 17%

(1 mM) and 27% and 40% (10 mM) after 1- or 6-hours incubation,

respectively (Figure S5A). Similarly, idebenone, CoQ1 and QS-10

decreased NADH levels after 3-hours incubation at a concentration

of 10 mM quinone (6964%, 6260%, and 8064% residual levels,

respectively) (Figure S5B). In presence of dicoumarol (20 mM), the

reduction of NADH was less prominent (8065% with CoQ1) or was

even prevented (105615% and 9266% by idebenone and QS-10,

respectively). CoQ10 had no influence on NADH levels independent

of a co-treatment with dicoumarol (10061% without and 11864%

with dicoumarol).

Effect of reduced quinones on rescue of rotenone-
induced loss of ATP

It has been suggested that hydroquinones such as reduced

CoQ1, despite their reduction in the cytosol, can donate electrons

into the mitochondrial electron transport chain [8,40,41]. As a

consequence, it was described that proton flux, membrane

potential and ATP synthesis increased under conditions of

impaired mitochondrial complex I function. We therefore

determined the individual effectiveness of the related quinones

for this cytosolic-mitochondrial electron transfer (Figure 3). In

HepG2 cells, acute treatment of cells with the complex I inhibitor

rotenone dramatically reduced ATP levels to 2% residual ATP

while all four quinones left ATP levels unaffected (idebenone:

91612%, CoQ1: 120615%, CoQ10: 99610%, and QS-10:

10469% of control) (Figure 3A). However, under conditions of

rotenone-induced ATP depletion (261% residual ATP), idebe-

none and CoQ1 partially restored ATP levels (7166% or 6466%

of control levels, respectively) while CoQ10 and QS-10 were

completely unable to restore ATP levels (261% for both

quinones).

In the light of the results obtained in the cell-free system, we

investigated to what extent the observed quinone-mediated rescue

of ATP levels of complex I-inhibited cells was dependent on

Figure 3. Idebenone and CoQ1 rescue ATP levels in complex I-repressed hepatocytes. (A) HepG2 cells were incubated with rotenone (Rot;
60 mM), dicoumarol (Dic; 20 mM) or antimycin A (Ant, 6 mM) in absence (empty bars) or presence (filled bars) of different quinones (5 mM idebenone,
CoQ1, CoQ10 or QS-10) for 1 hour. ATP levels were normalized to protein and expressed as percentage of DMSO-treated cells in absence of rotenone.
(B) HepG2 cells were incubated with 6 mM rotenone for 60 minutes, while 10 mM idebenone was pre-, co- or post-incubated regarding the time point
of rotenone addition. ATP levels are expressed as percentage of untreated cells. Bars represent mean +stdev of triplicates of one typical out of two
independent experiments. (C) Rescue of ATP levels of rotenone-treated (60 mM) primary mouse hepatocytes by acute idebenone treatment (5 mM) for
1 hour. Bars represent mean +stdev of six independent experiments. (D) Idebenone (400 mg/kg/day; p.o.) was administered to mice over 4 weeks
and protection of ATP levels was maintained in rotenone-treated (20 and 60 mM for 1 hour) primary hepatocytes ex vivo without acute addition of
idebenone. Bars represent mean +stdev of duplicates from each one idebenone- and sham-treated mouse. ATP levels were normalized to cell
number and expressed as percentage of sham-treated hepatocytes in absence of rotenone. p**,0.01, p***,0.001.
doi:10.1371/journal.pone.0017963.g003
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NQO1. In presence of rotenone, dicoumarol completely abolished

the rescue of ATP levels normally induced by idebenone and

CoQ1 (Figure 3A). Specifically, addition of 20 mM dicoumarol

reduced ATP levels in presence of 60 mM rotenone from 7166%

and 6466% residual ATP for idebenone and CoQ1, respectively,

to 2% for both quinones (Figure 3A). Likewise, to address the

question whether the quinone-dependent rescue of ATP levels is

dependent on mitochondrial function we used the mitochondrial

complex III inhibitor antimycin A (Ant). Analogous to the results

obtained with dicoumarol, antimycin A prevented quinone

dependent rescue of ATP levels (2% and 261% residual ATP

with idebenone and CoQ1, respectively).

Recently, some evidence emerged that longer incubation

periods of up to one week are required to detect some protective

effects by CoQ10 [42]. Therefore, we investigated whether rescue

of ATP levels, as demonstrated for acute exposure to idebenone

and CoQ1, would be detectable after a 1-week treatment with

CoQ10 (Figure S6). Rescue of ATP levels could not be detected for

any quinone when administered only once at the beginning of a 1-

week treatment. However, further addition of quinone simulta-

neously to the rotenone challenge after the 1-week treatment

restored ATP levels in the case of idebenone and CoQ1, whereas

under these conditions, CoQ10 again failed to protect ATP levels

(Figure S6).

To test a possible time-dependency of the idebenone-mediated

rescue of ATP levels, HepG2 cells were incubated with 6 mM

rotenone for 60 minutes (Figure 3B). In addition, these cells were

also treated with 10 mM idebenone for various incubation periods,

either before or after the addition of rotenone (Figure 3B).

Compared to rotenone-only treated cells (360% residual ATP),

idebenone showed consistent protection of ATP levels in cells

either pre-treated 40 minutes before the rotenone challenge

(8161% residual ATP) or cells simultaneous treated with rotenone

and idebenone (7367%) (Figure 3B). Interestingly, protection of

ATP levels by idebenone was also evident, when it was added after

the rotenone challenge. A 5-minute idebenone treatment still

showed significant efficacy (5464% residual ATP) in cells, which

were already exposed to rotenone for 55 minutes (Figure 3B).

Similar results were observed in freshly isolated mouse

hepatocytes. After isolation, hepatocytes were immediately treated

with 60 mM rotenone in presence or absence of 5 mM idebenone.

Again, idebenone protected cells from rotenone-induced ATP

depletion (Figure 3C). Although, acute incubation of primary

hepatocytes with rotenone did not lead to the same striking

reduction of ATP levels compared to HepG2 cells (72618% of

control), idebenone fully restored ATP levels (106621%) in this

system. At the same time, in the absence of rotenone, idebenone

did not alter ATP levels in these cells (111616%).

This ex vivo activity of idebenone on ATP levels after rotenone-

mediated impairment of complex I raised the question, whether

this protective action could also be observed in vivo. Therefore,

idebenone (400 mg/kg/day; p.o.) was administered to mice over a

period of four weeks before hepatocytes were isolated and

immediately treated with 20 mM or 60 mM rotenone for one hour

as in previous experiments. In this experiment, however,

idebenone was not freshly added to hepatocytes during this stress

phase. Freshly isolated hepatocytes of idebenone-treated and

sham- treated mice had similar basal ATP levels (113616% and

100621% respectively) (Figure 3D). Consistent with our in vitro

and ex vivo data, rotenone led to a drop in ATP levels in

hepatocytes of sham-treated animals (4562% residual ATP levels

at 20 mM rotenone, 4668% at 60 mM rotenone). However,

hepatocytes of idebenone-fed mice were significantly more

resistant to rotenone challenge (8167% residual ATP at 20 mM

rotenone and 7764% at 60 mM rotenone).

ATP rescue is dependent on NQO1
Even though dicoumarol is reported to be a specific inhibitor of

NQO1 [38], we wanted to rule out that other activities of

dicoumarol, independent of NQO1, are responsible for the

observed abolition of ATP rescue. Therefore, we investigated

the ability of idebenone to rescue ATP levels after rotenone-

challenge in cell lines and primary cells with different NQO1

expression levels (Figure 4). To compare the different cell lines,

NQO1 mRNA levels, determined by qPCR, were normalized to

HepG2 cells which showed the highest expression levels (mRNA

levels: 10062.7%; ATP rescue: 54.7683%). In comparison,

human embryonic kidney cells (HEK293) with very low NQO1

mRNA levels (0.461.2%) consistently failed to rescue ATP levels

(20.460.1%). Similarly, human neuroblastoma cells (SH-SY5Y)

showed low NQO1 expression (3.760.3%) as well as ATP rescue

capacity (20.860.3%). In cells expressing higher NQO1 mRNA

levels, such as human keratinocyte cell line (HaCaT) (18.960.0%),

human myoblasts (42.861.2%) or human fibroblasts (52.060.5%),

ATP rescue was more prominent (3.860.4%, 10.760.8% or

29.067.9%, respectively). Furthermore, downregulation of NQO1

expression in HepG2 cells by shRNA reduced mRNA levels (from

10062.7% to 66.267.6%) as well as the ability to rescue ATP

levels in presence of rotenone (from 54.768.3% to 39.064.4%).

The data for all human cell lines tested clearly showed a positive

correlation (R2 = 0.9458) of ATP rescue and NQO1 expression

(Figure 4).

Effect of quinones on lactate production by MELAS
cybrids

Cells from mitochondrial encephalomyopathy, lactic acidosis and

stroke-like episodes (MELAS) patients are characterized by

impaired mitochondrial respiratory function. Mutations in

mtDNA in these cells are generally associated with impaired

function of mitochondrial complex I. As a consequence, low

Figure 4. Rescue of ATP levels is dependent on NQO1.
Correlation of ATP rescue and NQO1 mRNA expression in different
human cell lines and primary cells. Percentage of ATP rescue by 10 mM
idebenone in presence of 6 mM rotenone was defined as percentage of
ATP levels in presence of rotenone and idebenone relative to the
difference between ATP levels of DMSO- and rotenone-treated cells.
mRNA levels were determined using qPCR and are relative to NQO1
expression in HepG2 cells. Results from HepG2 cells transduced with
lentivirus encoding NQO1-specific shRNA are also included (open
circle). Error bars represent standard deviation for both mRNA levels
and ATP rescue (R2 = 0.9458).
doi:10.1371/journal.pone.0017963.g004

NQO1-Dependent Redox Cycling of Idebenone
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levels of ATP synthesis and excess production of lactate are

described [43]. The observed excess lactate is largely a result of

increased glycolysis to maintain sufficient energy levels under

conditions of defective oxidative phosphorylation. The reason

for producing lactate is to regenerate NAD+ levels which were

utilized in the initial steps of glycolysis. Without sufficient

NAD+, glycolysis cannot proceed. Since we showed quinone-

dependent rescue of ATP levels under conditions of impaired

mitochondrial complex I function (Figure 3) and NQO1-

dependent metabolism is described to increase NAD+/NADH

ratio [9], we investigated the role of quinones on cellular

metabolism in cybrids harboring either wild type (WT)

mitochondria or mitochondria from MELAS patients. If the

effects of idebenone and CoQ1 in MELAS cybrids were

comparable to those observed in healthy cells, it should

strengthen mitochondrial respiration and, as a result, increase

mitochondrial membrane potential (Dym). Although neither

quinone changed Dym in WT cybrids after a 2-day treatment,

in MELAS cells, which have a slightly lower Dym (85.0616.9%)

compared to DMSO-treated WT, Dym was substantially

increased after treatment with idebenone (145.8626.2%) and

CoQ1 (120.0619.9%) (Figure 5A). Under these conditions,

CoQ10 and QS-10 did not influence Dym (80.3615.2% and

78.8623.9%). Unlike the situation where acute short-term

incubation with quinones increased ATP levels after rotenone

challenge (Figures 3,4), MELAS cells did not show increased

ATP levels after 48-hour treatment (Figure S7). However, upon

treatment with quinones for 48 hours, only idebenone and

CoQ1 significantly reduced lactate levels by 24% and 57%,

respectively (Figure 5B), which was partially reversed by

addition of the NQO1-inhibitor dicoumarol (Figure 5C).

Toxicological assessment of quinones
Previous studies reported that idebenone and CoQ1 inhibit

mitochondrial complex I function [11,25,29–31]. Based on results

with other complex I inhibitors such as rotenone, it was suggested

that some short-chain quinones could possess cytotoxic potential.

Since a pro-oxidative function for some short-chain quinones was

discussed [29,31], we investigated the effects of the quinones tested

in this study on cellular DNA damage in different cell lines. After

24-hour incubation with 10 mM quinones in normal medium, only

CoQ1 showed a marked increase in cH2AX-positive cells

(Figure 6A). This effect was most prominent in HEK293 cells

(34% positive cells compared to 4% in sham-treated cells), but also

in SH-SY5Y (10% compared to 2%), and amounted to only a

slight increase in cH2AX-positive nuclei in HepG2 cells (33%

compared to 25%). We extended this study also to primary cells.

After 72-hour incubation of primary human fibroblasts with

quinones (10 mM), only cells treated with CoQ1 were positive for

the nuclear DNA damage marker cH2AX, while for all other

quinones, including idebenone, no increase above basal levels

could be detected (Figure 6B).

Discussion

Quinones that are analogous to CoQ10 in the substitution

pattern of their quinone moiety have often been proposed to share

its biological activity. Just recently, Villalba et al. [44] suggested

idebenone to be a good substitute for CoQ10 in different diseases.

However, such predictions are questionable, since structural

variances entail different chemical and physicochemical proper-

ties. Here, we have described that short-chain quinones are

excellent substrates for reduction by NQO1 and NQO2, which is

generally in agreement with previous reports [8,40]. For instance,

the obtained vmax for CoQ1 reduction by NQO1 is within the

same range as reported by Beyer et al. [41]. In accordance to

CoQ1, we have demonstrated here that idebenone and QS-10, an

early metabolite of idebenone [32], are good substrates for NQO1.

Strikingly, we did not detect any NQO1 or NQO2 activities above

background when the lipophilic CoQ10 was used as electron

Figure 5. Effect of quinones on mitochondrial membrane
potential and lactate production in MELAS cybrids. Cells were
cultivated in galactose-containing media for 2 days in the presence or
absence of quinones (10 mM). (A) Mitochondrial membrane potential
(Dym) in wild-type (WT) and MELAS cybrids was measured using TMRM.
Bars represent mean +stdev of 4 separate wells of a typical experiment
as relative percentage compared to TMRM/protein in DMSO-treated WT
cybrids (B) Lactate was measured in the supernatant and standardized
to protein content. Data depict one typical experiment out of three and
each data point represents mean + standard deviation of three
individual wells. (C) Co-incubation with dicoumarol (10 mM) partially
reverses the drop of lactate levels induced by idebenone or CoQ1.
Extracellular lactate levels were standardized to protein content. Bars
represent mean +stdev of 4 separate dishes within a typical experiment.
p*,0.05, Student t-test.
doi:10.1371/journal.pone.0017963.g005
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acceptor, despite testing different formulations of CoQ10 such as

liposomes. These results mirror a report by Siegel et al. [45], who

described CoQ10 reduction by NQO1 with a vmax 3 orders of

magnitute lower than the vmax we observed for CoQ1. Further

publications reporting reduction of CoQ10 by NQO1 [reviewed in

46] display similar low velocities, which fall below the detection

level of our system. These differences between the long-chain

CoQ10 and its short-chain analogs were also observed in cells. The

selective reduction of different quinones by NQO1, which was

observed by us and others in different cellular systems, supports

the idea of a general mechanism that is not cell type-dependent.

The relevance of NQO1-mediated reduction of short-chain

quinones such as idebenone and CoQ1 lies in the fact that some

hydroquinones can shuttle into the mitochondria and participate

in mitochondrial electron transport. We were therefore interested

if this phenomenon could restore energy levels under conditions of

complex I deficiency. In this study, we observed a beneficial effect

of idebenone and CoQ1 on cellular energy levels under conditions

of acute inhibition of mitochondrial complex I by rotenone. Our

results for CoQ1 are consistent with previously published data [8].

In this study, we demonstrate that idebenone also rescues ATP

levels after acute complex I inhibition and that this action is

dependent on both NQO1 and mitochondrial complex III. The

dependency of NQO1 is not only shown by dicoumarol-mediated

inhibition of enzymatic activity, but NQO1 expression in different

cell lines and primary cells correlates well with the capacity to

rescue ATP levels after rotenone challenge. In addition, partial

silencing of NQO1 by RNAi reduces the idebenone mediated

ATP rescue.

Both cytosolic and mitochondrial events are required for the

quinone-dependent circumvention of complex I blockage of

mitochondrial electron transport. Under normal conditions,

mitochondrial complex I transfers two electrons from mitochon-

drial NADH to CoQ10 in the mitochondrial membrane which

then passes the electrons on to cytochrome c in complex III. In

contrast, the mechanism possibly used by idebenone and CoQ1

starts with the reduction of the quinone by NQO1 in the cytosol

(Figure 7). Thereby, cytosolic NAD(P)H acts as the electron donor

and substitutes for mitochondrial NADH as carrier of energy. The

hydroquinone then enters the mitochondria to donate its electrons

to complex III. Experiments by Degli Esposti et al. [29] revealed

that reduced idebenone is a good substrate for complex III and

can potently lead to reduction of cytochrome c. Since the

hydroquinone is oxidized back into its quinone form by this

reaction, a new cycle can be triggered resulting in a quinone-

driven electron shuttle from cytosolic NAD(P)H to mitochondrial

cytochrome c. Not only is this the first time that this mode of action

has been described for the clinically used short-chain quinone

idebenone, we have also provided evidence by treating animals

with idebenone that this mechanism can operate in vivo.

Interestingly, when complex I was inhibited by rotenone for

about one hour, a short, additional 5-minute incubation period

with idebenone was still able to protect ATP levels. This suggests

that idebenone is quickly absorbed and reduced by cellular systems

and that restoration of decreased ATP levels can occur extremely

fast. These findings provide a rationale why idebenone can be

protective in disorders associated with impaired complex I

function but normal levels of CoQ10. The reason for the extremely

poor reduction of CoQ10 by NQO enzymes most likely originates

from compartmentalization of enzyme and substrate. While

NQO1 and NQO2 are strictly cytosolic enzymes [1,3], CoQ10 is

extremely hydrophobic and under physiological conditions only

found integrated into biological membranes [47]. Therefore,

CoQ10 cannot participate in this cytosolic-mitochondrial shuttling

of electrons. Consistently, even prolonged cellular exposure to

CoQ10 for up to one week failed to trigger an ATP rescue when

complex I was dysfunctional. On the other hand, the surprising

lack of detectable activity of QS-10, one of the first metabolites of

idebenone [32], on restoring ATP levels, despite being reduced

efficiently in cells and in cell-free conditions, could lie in its

polarity. QS-10 is significantly more hydrophilic than idebenone

and CoQ1, as manifested in a smaller log D value (Figure 1). It is

Figure 6. Genotoxic assessment of quinones. Induction of DNA
damage by CoQ1. (A) HepG2, HEK293 and SH-SY5Y cells were cultured
under culture conditions in presence of quinones (10 mM) for 24 hours
before cells were fixed and stained against the DNA damage marker
cH2AX. More than thousand cells per condition were counted manually
for each condition and cH2AX-positive cells were expressed as
percentage of the total number of cells counted. (B) Human primary
fibroblasts were incubated for 72 hours with quinones (10 mM) under
ambient conditions before cells were fixed and stained against the DNA
damage marker cH2AX (red). DAPI dye was used as nuclear
counterstain (blue). Scale bar: 10 mm.
doi:10.1371/journal.pone.0017963.g006
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therefore less likely that reduced QS-10 can pass through the

lipophilic mitochondrial membrane to donate the electrons to

complex III. Thus, our findings imply several requirements for this

form of cytosolic-mitochondrial respiration. Not only is it

necessary for quinones to enter the cytoplasm and show efficient

reduction by NQO1, these compounds must also be able to enter

the mitochondria. Then, within the mitochondria, they must be

able to interact with complex III of the respiratory chain and

release electrons that contribute to the mitochondrial proton

gradient which is necessary for ATP synthesis.

Cybrid cells harboring the A3243G MELAS mutation possess a

dysfunctional complex I. Thus, in order to generate sufficient

ATP, they have to depend on anaerobic glycolysis. The price for

increased glycolysis is the excessive production of lactate.

Consistent with previous work [43], our data demonstrate that

MELAS cybrids show more than 4-fold increased levels of

extracellular lactate. It is interesting to note in this context that

the main function of lactate production from pyruvate is entirely

focused on regenerating NAD+ that is needed as co-factor for the

initial steps of glycolysis. Here we show that quinone-mediated

electron transfer from cytosolic NADH to mitochondrial complex

III, as we described it for idebenone and CoQ1, is associated with

increased mitochondrial membrane potential and an NQO1-

dependent reduced lactate production of MELAS cybrids. The

observation that at the same time both quinones were unable to

increase ATP levels in cybrid cells suggests that MELAS cells are

switching their metabolism from anaerobic glycolysis to mito-

chondrial respiration in order to generate the same levels of ATP.

Since excess lactate production is considered to be one of the main

pathological events in MELAS, this switch could be sufficient to

alleviate some of the problems associated with the disease.

Although we can not rule out a contribution of NQO1-quinone-

dependent NAD+ production in the reduction of lactate levels

observed in MELAS cells, we hypothesize that the mode of action

lies predominantly in a quinone-dependent increase in mitochon-

drial activity.

Idebenone and CoQ1 have both been described to inhibit

complex I [11,25,29–31]. As consequence of complex I inhibition,

both quinones were suggested to also act as pro-oxidants under

certain conditions [29,31]. However, our results demonstrate that

only CoQ1 but not idebenone triggered substantial DNA damage

in different cell types. This clearly indicates that, despite sharing

the protective activity against acute rotenone toxicity, idebenone

does not cause DNA damage compared to CoQ1 after long-term

administration. Because of these serious cytotoxic effects of CoQ1,

we strongly caution against the use of CoQ1 in a clinical

indication. Of the four quinones tested in this study, only

idebenone met all requirements for cytosolic-mitochondrial redox

cycling without evoking adverse effects (Table 2). Our findings also

highlight the influence of modifications to the alkylic tail of short-

chain quinones on their biological activity.

In summary, our data show that short-chain quinones possess

entirely different activities compared to the lipophilic CoQ10

which suggests that they cannot substitute for each other. Some

short-chain quinones such as idebenone, upon reduction by

NQO1, generate a cytosolic-mitochondrial electron shuttle that

can increase cellular energy levels, which can be utilized under

conditions of impaired mitochondrial function. This mode of

action appears promising for disorders characterized by complex I

deficiencies such as MELAS, Leber’s hereditary optic neuropathy

(LHON) and Leigh’s syndrome. However, without further testing

for additional features of short-chain quinones, such as possible

toxic liabilities, as shown here for CoQ1, extreme caution has to be

exerted with regards to their therapeutic usefulness.

Figure 7. Schematic representation of NQO1-dependent cyto-
solic-mitochondrial electron shuttling. (A) During oxidative
phosphorylation under normal conditions, CoQ10 transports electrons
from complex I (CI) to complex III (CIII) and cytochrome c, reduced by
complex III, transfers them to complex IV. As a consequence of this
electron propagation, all three complexes translocate protons (H+)
across the mitochondrial membrane, thus generating a proton gradient.
ATP synthase utilizes the energy stored in this electro-chemical gradient
to generate ATP. (B) Upon rotenone-induced (Rot) inhibition of complex
I, ATP levels decrease dramatically (see also results of Fig. 3). (C) Some
short-chain quinones (Q) such as idebenone or CoQ1 can bypass
complex I inhibition via a cytosolic-mitochondrial shuttling of electrons.
Upon reduction by cytosolic NQO1 (QH2), these quinones can feed
electrons into the mitochondrial respiratory chain in a complex III-
dependent manner, thereby restoring ATP production.
doi:10.1371/journal.pone.0017963.g007
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Materials and Methods

Ethical Statement
All animal experiments were approved by the governmental

authorities (Kantonales Verterinäramt Basel-Land, Switzerland;

permit number BL404) and were in accordance with international

guidelines.

Reagents and Chemicals
All chemical reagents, if not otherwise stated, were purchased

from Sigma (Sigma-Aldrich, Buchs, Switzerland). All cell culture

media and solutions, if not otherwise stated, were purchased from

Omnilab (Zurich, Switzerland). Idebenone and QS-10 were

synthesized in-house and were solid with purity $95% as

determined by NMR and LCMS. For all assays described,

compounds were dissolved at 10 mM (stock solution) in 100%

DMSO (Acros Organics, Belgium).

Cell culture and animal husbandry
Primary human fibroblasts (GM08402, Coriell, Camden NJ,

USA), human neuroblastoma cell line SH-SY5Y (330154, Cell Line

Services, Eppelheim, Germany), spontaneously transformed human

keratinocyte cell line HaCaT (330493, CLS, Eppelheim, Germany),

human embryonic kidney cell line HEK293 (CRL-1573, ATCC,

Molsheim, France), rat L6 myoblasts (CRL-1458, ATCC, Mol-

sheim, France), and human hepatic cell line HepG2 (330198, CLS,

Eppelheim, Germany) cells were cultured under ambient conditions

(37uC, 5% CO2, 90% humidity) in DMEM, 10% fetal bovine serum

(FBS), Penicillin-Streptomycin-Glutamine. Lymphoblastoid cells

(GM15851, Coriell) were cultured in RPMI 1640 under conditions

as described above. Primary human myoblasts (from biopsy of

healthy, 14-year old male, AFM, Evry, France) were cultured in

MEM EBS supplemented with 25% M-199 EBS, 10% Hyclone

FCS, 10 mg/ml insulin, 100 ng/ml EGF, 100 ng/ml FGF and

Penicillin-Streptomycin-Glutamine under conditions described

above. Wild-type (RN236, WT, homoplastic) and MELAS

(RN164, A3243G homoplastic) cybrid cells [43] were cultured in

DMEM, 7% FBS, Penicillin-Streptomycin-Glutamine and 50 mg/

ml uridine. If not otherwise stated all animals were held under

standard laboratory conditions (12 hours light per day, 2262uC,

40–60% humidity) with food and water available ad libitum.

NQO1 and NQO2 Activity
Recombinant NQO1 and NQO2 (Sigma, Buchs, Switzerland)

activity in presence of different quinones was measured essentially

according to a modified protocol by Ernster [48]. Reactions were

performed in 1-ml disposable cuvettes at room temperature in

reaction buffer (25 mM Tris-HCl pH 7.4, 0.7 mg/ml bovine

serum albumin (BSA), 1 mg/ml enzyme, 10 mM quinone). The

reaction was started by addition of NAD(P)H (for NQO1) or 1-(3-

sulfonatopropyl)-3-carbamoyl-1,4-dihydropyrimidine (a NRH-

derivate, for NQO2) [36]. Enzyme activity was measured as

decrease of A340 for NAD(P)H and A355 for the NRH-derivate,

respectively, during 30 seconds in a spectrophotometer (Ultros-

pecH 3000, Amersham Pharmaceutical Biotech, Little Chalfont,

UK). All assays were performed in triplicate. Electron

donor concentrations at start of linear phase of the decrease

of absorbance were calculated using the absorbance coef-

ficient (eNADH = 6300 M21 cm21; eNADPH = 6200 M21 cm21;

eNRH-derivate = 4480 M21 cm21). Reduction rates per mg enzyme

were calculated during the linear phase of the reduction. Since

NQO1 possesses a single quinone-binding site [49], steady-state

kinetic constants were calculated using the Michaelis-Menten

equation combined with Hanes-Woolf plot because of its

independence towards variability at high substrate levels. To

determine the dicoumarol sensitivity of enzymes, reactions were

performed in triplicate in the presence or absence of 20 mM

dicoumarol in reaction buffer (25 mM Tris-HCl pH 7.4, 0.7 mg/

ml BSA, and 1 mg/ml enzyme) containing 50 mM CoQ1 and

started with 100 mM NADH or 1-(3-sulfonatopropyl)-3-carbamo-

yl-1,4-dihydropyrimidine, respectively. Electron donor consump-

tion rate was calculated as described above and expressed as

percentage of the rate in the absence of dicoumarol. For

complexing quinones with serum, powdered quinones were

dissolved in heat-inactivated FBS by vortexing for one minute.

Alternatively, quinones were formulated in liposomes as described

[33,34]. Briefly, L-a-phosphatidylcholine and quinone were

dissolved in PBS at a final concentration of 25 mg/ml lipid in a

molar drug/lipid fraction of 0.05 (final quinone concentration:

1.6 mM). The mixture was then subjected to five repetitive freeze-

thaw cycles.

WST-1 assay for measuring NQO1-dependent quinone
reduction in cells

WST-1 absorbance was determined as described previously

[37]. Briefly, 96-well plates (Greiner, Frickenhausen, Germany)

were seeded with 104 HepG2 cells per well in DMEM with 2%

FBS and 0.3 g/l glucose on the day before the WST-1 experiment.

Inhibitors were preincubated for one hour using the following

concentrations: dicoumarol 20 mM; rotenone 6 mM; antimycin

6 mM. After the preincubation time, the medium was replaced by

Hank’s balanced salt solution (HBSS; Omnilab, Zurich, Switzer-

land) containing 450 mM WST-1 (Dojindo Laboratories, Kuma-

moto, Japan) with or without inhibitors. The reaction was started

by the addition of the quinone. WST-1 reduction (A450) was

followed over a period of 120 minutes.

Table 2. Summary of the quinone characteristics.

NQO substrate
Complex III substrate
(reported) Increased Dym

ATP rescue (in
presence of
rotenone)

Decrease of lactate
(in MELAS) Absence of toxicity

Idebenone + +* + + + +

CoQ1 + +* + + + -

CoQ10 - +{ - - - +

QS-10 + - - - - +

The abilities of the individual quinones to meet the requirements of cytosolic-mitochondrial shuttling and consequences thereof, as well as caveats for clinical
administration, are listed.
*Idebenone and CoQ1 [29], as well as {CoQ10 [47], have been reported to be complex III substrates.
doi:10.1371/journal.pone.0017963.t002
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Isolation of hepatocytes
Hepatocytes were isolated from 6-week old female NMRI mice

(Janvier, France) as described [8]. Briefly, animals were sacrificed

by CO2 and immediately perfused with 50 ml perfusion buffer

(10 mM HEPES pH 7.4, 140 mM NaCl, 5 mM KCl, 2.5 mM

Na2HPO4, 6 mM glucose and 0.2 mM EGTA; 37uC). The liver

was removed and minced in pre-warmed collagenase buffer

(10 mM HEPES pH 7.4, 140 mM NaCl, 5 mM KCl, 2.5 mM

Na2HPO4, 6 mM glucose, 0.2 mM CaCl2, 1.3 mM MgSO4 and

0.05% collagenase D (Roche Diagnostics AG, Switzerland)).

After incubation for 30 minutes at 37uC, hepatocytes were

dissociated using a 5-ml syringe. The homogenous solution was

filtered through gauze and the viability of cells was assessed using

trypan blue staining. Typical viability of isolated hepatocytes was

about 90%. For ex vivo studies with long-term treated mice, five-

week-old male C57BL/6J mice were purchased from Janvier

(France). After one week acclimatization period in the facility, the

animals were single-housed and received a daily dose of 400 mg/

kg idebenone in the food. For this, idebenone was dissolved in

0.5% carboxymethyl-cellulose by overnight stirring at 4uC. A 1:1

(w/w) mixture thereof with a normal chow/sugar (9:1 w/w ratio)

mash was prepared. Portions which amounted of approximately

75% of the daily calorie intake were stored at 220uC and

administered just before start of the dark period. The portions for

control animals were prepared identically with the exception of

omitted idebenone. Additionally, mice had access to ad libitum

food. Hepatocytes were isolated and treated as described before.

Quinone-dependent rescue of ATP levels
HepG2 cells were seeded at a density of 105 cells per well in a 96-

well plate and incubated for 24 hours in DMEM without glucose,

2% FBS and Penicillin-Streptomycin-Glutamine. Cells were treated

with 10 mM quinones in presence or absence of rotenone (60 mM),

dicoumarol (20 mM) and antimycin A (6 mM) for 60 minutes in

DMEM without glucose. Subsequently, cells were lysed and ATP

levels were determined. Immediately after isolation, 106 hepatocytes

were diluted in 1 ml Krebs-Hensleit buffer (12.5 mM HEPES

pH 7.4, 120 mM NaCl, 5 mM KCl, 1 mM KH2PO4, 1.2 mM

MgSO4, 3 mM CaCl2, 24 mM NaHCO3,) and treated with

different concentrations of quinones and inhibitors for 60 minutes

at 37uC before ATP levels were determined.

Quantification of ATP
Cellular ATP levels were quantified using luminescence from the

ATP-dependent enzymatic oxidation of luciferin by luciferase. Briefly,

isolated and treated cells were lysed in a volume of 200 ml (4 mM

EDTA, 0.2% Triton X-100) for five minutes. In 96-well plates, 100 ml

of ATP measurement buffer (25 mM HEPES pH 7.25, 300 mM D-

luciferin, 5 mg/ml firefly luciferase, 75 mM DTT, 6.25 mM MgCl2,

625 mM EDTA and 1 mg/ml BSA) was combined with 10 ml lysate

to start the reaction. Luminescence was quantified immediately using

a multimode plate reader (Tecan M1000, Tecan iControl 1.6

software; Tecan Austria GmbH, Grödig, Austria). ATP levels were

standardized to cell number for isolated hepatocytes or protein levels

using BCA assay (ThermoScientific, Rockford, IL, USA) for cultured

cells. Changes were calculated as percentage relative to levels of

DMSO-treated control cells. ATP rescue is defined as the percentage

of quinone-induced increase in ATP levels in presence of rotenone

relative to the ATP reduction by rotenone alone.

Lentiviral knock-down of NQO1
To knock down NQO1 expression, HepG2 cells were seeded in

12-well plates at 30000 cells per well in normal growth medium for

24 hours. Medium was replaced by 180 ml growth medium and

20 ml stock solution containing 105 infectious units (IFU) of

lentivirus encoding shRNA against NQO1 (sc-37139-V, Santa

Cruz, Santa Cruz CA, USA) for a 24-hour incubation. Cells were

then immediately used for quantifying NQO1 gene expression

using qPCR and for ATP rescue experiments.

mRNA levels
RNA was extracted from cultured cells using the High Pure RNA

Isolation kit (Roche, Switzerland) according to the manufacturer’s

recommendations. Synthesis of first-strand cDNA was conducted

using High Fidelity Transcriptor cDNA Synthesis kit (Roche,

Switzerland) and random hexamer primers in a total volume of

20 ml containing 5 mg RNA. Real-time PCR was performed with

Sybrgreen Real-Time PCR Master Mix (Roche, Switzerland) in a

LightCycler 480 mastercycler and results were analyzed with the

corresponding software (version 1.5.0.39). Protocol parameters

used: 5 minutes at 95uC followed by 40 cycles of 10 seconds at 95uC
for denaturing, 10 seconds at 56uC for annealing, and 10 seconds at

72uC for extension. GAPDH was used as internal control. Target

gene sequences were amplified with the following primer pairs:

NQO1 (forward: 59-CACACTCCAGCAGACGCCCG-39, re-

verse: 59-TGCCCAAGTGATGGCCCACAG-39) and GAPDH

(forward: 59-GAAGGTGAAGGTCGGAGTC-39, reverse: 59-

GAAGATGGTGATGGGATTTC-39).

Measurement of mitochondrial membrane potential
MELAS and WT cybrid cells were seeded in black 96-well

plates at 7500 cells per well in normal growth medium (DMEM,

4.5 mg/ml glucose, 10% FBS, 50 mg/ml uridine, Penicillin-

Streptomycin). After 24 hours, the medium was changed to

challenge medium (DMEM, 2 mg/ml glucose, 10% FBS, 50 mg/

ml uridine, 2.5 mg/ml galactose, 0.11 mg/ml pyruvate, Penicillin-

Streptomycin) containing DMSO or 10 mM quinones. After

48 hours, 50 ml of DMEM without glucose containing 3 mM

tetramethylrhodamine methyl ester perchlorate (TMRM; Sigma-

Aldrich, Buchs, Switzerland) was added on top. After 15 min

incubation, cells were washed with warm PBS and 50 ml PBS was

used for measurement of TMRM fluorescence using a multimode

plate reader (Ex.: 545 nm; Em.: 580 nm; Tecan M1000).

Fluorescence, corresponding to mitochondrial membrane poten-

tial (Dym), was standardized to protein content of lysates.

Determination of extracellular lactate
MELAS and WT cybrid cells were seeded at a density of 1.5*105

cells per 3.5-cm diameter cell culture dish in normal growth

medium. After 24 hours, the medium was changed to challenge

medium containing either DMSO or compounds. After 48 hours,

the medium was removed for lactate measurement and the cells

were lysed in 500 ml lysis solution (4 mM EDTA, 0.2% NP-40,

0.2% Tween-20) for 10 minutes. In a 96-well plate, 90 ml of reaction

buffer (10 mM KH2PO4 pH 7.8, 2 mM EDTA, 1 mg/ml BSA,

0.6 mM DCPIP, 0.5 mM PMS, 0.8 mM NAD+, 1.5 mM gluta-

mate, 5 U/ml glutamate-pyruvate-transaminase, 12.5 U/ml lactate

dehydrogenase) was mixed with 10 ml medium. After incubation at

30uC for 30 minutes, absorption at 600 nm was quantified using a

multimode plate reader (Tecan M1000). A lactate standard curve

was run in parallel. Finally, the lactate concentration in the medium

was standardized to protein content of the lysate using BCA assay.

Genotoxic assessment of quinones
HepG2 cells, HEK293 cells, SH-SY5Y neuroblastoma cells and

human primary fibroblasts were seeded in 8-chamber slides (Ibidi,
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Martinsried, Germany) under ambient conditions and treated for

24-hours with 10 mM quinones (72 hours for human primary

fibroblasts). Cells were fixed using 4% PFA/PBS and stained

against the DNA damage marker cH2AX (ab2893, Abcam,

Cambridge, UK; 1:1000 in TBST, 5% horse serum). DAPI dye

was used as nuclear counter stain.

Supporting Information

Figure S1 Different quinones as substrates for NQO1
and NQO2. Hanes-Woolf plots depict oxidation of (A) NADH or

(B) NADPH by NQO1 in presence of different quinones as

electron acceptors. Each data point represents the average of three

independent measurements. (C) Effect of different quinone

formulation in DMSO, liposomes (Lip) and fetal bovine serum

(FBS) on metabolism by NQO1. Graph depicts electron donor

oxidation rate expressed as percentage of control; mean +stdev of

three independent measurements; p***,0.001, p**,0.01, two-

tailed t-test. (D) Hanes-Woolf plot of NRH-derivate oxidation by

NQO2 in presence of different quinone analogs. Each data point

represents the average of three independent measurements.

(TIF)

Figure S2 Specific inhibition of NQO1 by dicoumarol.
Dicoumarol (20 mM) selectively inhibited recombinant NQO1

activity (96% inhibition, filled bars) in vitro, whereas it reduced

NQO2 activity by only 14% (empty bars). Graph depicts electron

donor oxidation rate (%Vsubstrate oxidation) expressed as percentage

of control; mean +stdev of three independent measurements;

p***,0.001, p**,0.01, two-tailed t-test.

(TIF)

Figure S3 NQO1-dependent reduction of quinones in
primary fibroblasts. Dose-dependent cellular quinone reduc-

tion was measured as described [32] in human fibroblast cells.

Bars represent mean +stdev of triplicates from one representative

out of three independent experiments.

(TIF)

Figure S4 NQO1-dependent reduction of quinones in
rat L6 muscle cell line. Dicoumarol (Dic)-treatment (20 mM)

also efficiently blocked cellular quinone reduction in rat L6 cells.

Bars represent mean +stdev of triplicates from one representative

out of three independent experiments.

(TIF)

Figure S5 NADH turnover in presence of quinones in
human lymphoblastoid cells. (A) Idebenone reduces NADH

levels in a dose-dependent manner. (B) NADH levels are differently

affected by treatment with idebenone, CoQ1, CoQ10 and QS-10

(10 mM) in absence (empty bars) or presence (filled bars) of

dicoumarol (Dic; 20 mM). NADH content was measured using

the NADH-dependent conversion of non-fluorescent resazurin into

the fluorescent product resofurin. For cell culture experiments, 96-

well black plates (Greiner, Frickhausen, Germany) were seeded with

105 wild-type lymphoblastoid cells per well in 110 ml medium and

compounds were added ranging from 0 to 10 mM. After one-day

incubation at 37uC, cells were washed with PBS and resuspended in

110 ml phenol red-free RPMI. A volume of 10 ml cells was removed

for protein determination. Resazurin was added to a final

concentration of 4 mM and the cells were incubated at 37uC.

Fluorescence change (Ex.: 544 nm, Em.: 590 nm) was measured at

(A) 1 and 6 or (B) 3 hours. Wells containing medium and resazurin

but no cells served to determine background fluorescence.

Fluorescence signal was normalized to protein levels.

(TIF)

Figure S6 ATP rescue after 1-week treatment. HepG2

cells were seeded in to 96-well plates and treated for 1 week with

10 mM quinones under normal culture conditions. Medium was

replaced by DMEM without glucose and cells were incubated for

one hour in presence or absence of 6 mM rotenone. In addition,

some of the wells were treated with fresh quinone (1 week + acute).

After one hour, ATP levels were determined as described. Bars

represent mean +stdev of one typical experiment.

(TIF)

Figure S7 Effect of quinones on ATP levels in cybrid
cells. Cells were cultivated in galactose-containing challenge

media for 2 days in the presence or absence of quinones (10 mM)

and dicoumarol (10 mM). ATP levels were determined as

described. Data depict one typical experiment out of three and

each data point represents the mean +stdev of four individual

dishes. p*,0.05, Student t-test.

(TIF)
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