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Mechanosensitive (MS) ion channels are to date the best char-
acterized biological force-sensing systems. They present the best 
example of coupling protein conformations to the mechanics of the 
surrounding cell membrane. Studies of MS channels conducted 
over the last 28 years have from their serendipitous discovery1,2 
and confusion about their artifactual nature3 to their molecular 
identification4-6 and structural determination7-10 greatly contrib-
uted to our understanding of molecular mechanisms underlying 
the physiology of mechanosensory transduction.

Mechanotransduction is ancient, dating back some 3.8 billion 
years when the first life forms appeared of which microbes form 
the largest group.11 Diversity, number and adaptability of micro-
bial cells enabled them to populate all kinds of environments sup-
porting life. Mechanical forces primordial cells must have sensed 
and responded to first resulted predominantly from osmotic pres-
sure intrinsically linked to the essential role that water plays for 
the existence of life. MscL and MscS channels, whose discovery 
in bacteria12,13 coincided inherently with the advent of the patch-
clamp technique,14 serve today as a paradigm for mechanosen-
sory transduction. They are currently the best biophysical models 
used to study molecular principles of mechanosensory transduc-
tion.15-17 Their primary function is that of emergency valves 
releasing excess osmolytes upon hypo-osmotic stress to which 
bacterial cells become exposed in their living environments.5,17

In cells and tissues of eukaryotes, MS ion channels were first 
documented in patch clamp experiments by exposing membrane 
patches of red blood cells to hypotonic shock18 or by applying 
negative pressure to membrane patches of frog muscle1 and chick 
skeletal muscle cells.2 Despite much electrophysiological infor-
mation, molecular characterization of the MS channel role in 
mechanotransduction in eukaryotes has been slow compared 
with the progress made in the research on bacterial MS chan-
nels. This is because of the experimental advantages bacteria offer 
for molecular biological, biochemical and structural work, which 
greatly facilitated the cloning and crystallization of bacterial MS 
channels.19,20 The crystal structure of the human MS ion channel 
TRAAK, a member of the two pore domain K+ channel family 
controlling the resting membrane potential in neuronal cells, has 
only very recently been solved and reported.9

In animals and humans, MS ion channels function as molecu-
lar transducers of mechanical stimuli in senses of hearing and 
touch, blood pressure and cell volume regulation, as well as 
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stretch-induced stimulation of muscle and bone development, 
for example.21-23 With regards to pathology of various diseases 
scientific and medical communities have in recent years become 
increasingly aware of the role that MS channels apparently play 
in heart hypertrophy and arrhythmias, muscular dystrophy, poly-
cystic kidney disease, neuronal degeneration and tumor metas-
tasis.24-28 Most recently, a new exciting development presents a 
discovery of a family of eukaryotic MS ion channels that has 
been identified in insect, animal and human cells called Piezo, 
whose name is derived from the Greek piezein meaning “to 
squeeze or press”.29,30 Although the research on Piezo1 and Piezo2 
channels31,32 is still very young and the mechanism by which the 
Piezo channels sense stress will require detailed measurements 
to identify functional components involved in their gating by 
mechanical force they seem to function mainly in mechanosen-
sory transduction underlying senses of touch and pain. When 
the cell experiences stress, they are signaling the organism that 
an appropriate physiological response is required. Furthermore, a 
recent study indicated that Piezo1 could play a vital role in main-
taining homeostatic cell numbers in epithelia.33 In addition, two 
mutations in Piezo1 have been shown to cause a condition called 
Xerocytosis, a hereditary disease characterized by the inability to 
regulate cell volume of red blood cells.34 Hence, the Piezo chan-
nels are the first type of MS channels documented to underlie a 
human disease linked to mechanical pathologies. Finally, another 
very recent study suggested that loss of Piezo1 expression could 
cause increased cell migration and metastasis in lung tumors.35

This special issue of Channels assembles 11 papers from a 
number of leading scientists working in the MS channel field. 
Out of eight research papers, two papers describe the role TRP-
type MS channels play in the physiology of skeletal muscle-
s36and pathology of prostate cancer (see also the cover of this 
special issue).37 Four papers focus on bacterial MS channels. 
The first one describes novel insights into the functioning of 
the large conductance MscL channel,38 whereas the second study 
is using computational analysis of the MscL gating mechanism 
to determine the amino acid residues which by sensing mem-
brane tension promote the channel opening.39 This is followed 
by a report on the behavior of the small conductance MscS and 
MscK channels under extreme conditions of high hydrostatic 
pressure40 and the first description of YnaI, YbiO and YjeP 
(MscM), the three novel types of MS channels identified in  
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E. coli,41 in the third and the fourth paper, respectively. One of 
the two remaining research papers compares the gating proper-
ties of the Piezo1 channels in the whole-cell and cell-attached 
patch recording modes,42 whereas the second one describes mod-
ulation of the voltage-gated Na

v
1,5 channels by local anesthet-

ics.43 That voltage-dependent Na+ channels44,45 as well as K+ and 
Ca2+ channels,46 could also play a role in mechanosensation has 
previously been suggested. This notion is further substantiated 
by a very recent report showing that small physiologically rele-
vant changes in membrane tension can cause a shift in the voltage 
range over which voltage-gated K+ channels normally operate.47 
In addition to these research papers three reviews are part of this 
special issue. The first one summarizes up-to-date knowledge of 
the Piezo family of MS channels.48 It discusses their role as key 
players in responses of eukaryotic cells to mechanical stimuli and 
comments on their involvement in a disease resulting from muta-
tions in Piezo1. The second review focuses on the regulation of 

MS channel function by membrane lipid mechanics. It further 
discusses similarities between responses of pore-forming anti-
microbial peptides and bacterial MS channels to membrane 
tension and elaborates on the usefulness of these peptides as 
models for studies of general principles underlying activity and 
evolution of MS channels.49 Finally, the third one provides a suc-
cinct overview of mammalian touch receptors, summarizes their 
complex role in mechanosensory transduction pathways of the 
touch reception and links their function to the recent studies on 
mechanosensitive ion channels suspected to serve as the primary 
transducers of various types of innocuous and noxious mechani-
cal stimuli.50 Although the limited selection of papers in this 
issue cannot do justice to all the great achievements of many 
scientists working in the field, it presents a cross-section of recent 
significant contributions that have advanced our understanding 
of the structure and function of these fascinating membrane 
proteins.
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