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Recurrent neural networks are widely used in time series prediction and classification.
However, they have problems such as insufficient memory ability and difficulty in gradient
back propagation. To solve these problems, this paper proposes a new algorithm called
SS-RNN, which directly uses multiple historical information to predict the current time
information. It can enhance the long-term memory ability. At the same time, for the time
direction, it can improve the correlation of states at different moments. To include the
historical information, we design two different processing methods for the SS-RNN in
continuous and discontinuous ways, respectively. For each method, there are two ways
for historical information addition: 1) direct addition and 2) adding weight weighting and
function mapping to activation function. It provides six pathways so as to fully and deeply
explore the effect and influence of historical information on the RNNs. By comparing the
average accuracy of real datasets with long short-term memory, Bi-LSTM, gated recurrent
units, and MCNN and calculating the main indexes (Accuracy, Precision, Recall, and F1-
score), it can be observed that our method can improve the average accuracy and
optimize the structure of the recurrent neural network and effectively solve the problems of
exploding and vanishing gradients.

Keywords: RNN, LSTM, SS-RNN, data classification, deep learning

INTRODUCTION

Data classification is one of the most important tasks for different applications, such as text
categorization, tone recognition, image classification, microarray gene expression, and protein
structure prediction (Choi et al., 2017; Johnson and Zhang, 2017; Malhotra et al., 2017;
Aggarwal et al., 2018; Fang et al., 2018; Mikołajczyk and Grochowski, 2018; Kerkeni et al., 2019;
Saritas and Yasar, 2019; Yildirim et al., 2019; Chandrasekar et al., 2020). Many types of information
(e.g., language, music, and gene) can be represented as sequential data that often contains related
information separated by many time steps, and these long-term dependencies are difficult to model
as we must retain information from the whole sequence with greater complexity of the model (Trinh
et al., 2018; Liu et al., 2019; Shewalkar, 2019; Yu et al., 2019; Zhao et al., 2020).

With the rapid development of artificial intelligence and machine learning, the recurrent neural
network (RNN) models have been gaining interest as a statistical tool for dealing with the
complexities of sequential data (Chung et al., 2015; Keren and Schuller, 2016; Sadeghian et al.,
2019; Yang et al., 2019). In RNNs, the recurrent layers or hidden layers consist of recurrent cells, and
whose states are affected by both past states and current input with feedback connections (Yu et al.,
2019). However, the errors signal back-propagated through time often suffer from exponential
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growth or decay, a dilemma commonly referred to as exploding
or vanishing gradient. To alleviate this issue, the variants of RNNs
with gating mechanisms, such as long short-term memory
(LSTM) networks and gated recurrent units (GRU), have been
proposed. LSTMs have been shown to learn many difficult
sequential tasks effectively, including speech recognition,
machine translation, trajectory prediction, and correlation
analysis (Elman, 1990; Jordan, 1990; Hochreiter and
Schmidhuber, 1997; Schuster and Paliwal, 1997; Cho et al.,
2014; Alahi et al., 2016; Zhou et al., 2016; Su et al., 2017;
Gupta et al., 2018; Hasan et al., 2018; Li and Cao, 2018;
Salman et al., 2018; Vemula et al., 2018; Xu et al., 2018; Yang
et al., 2019). In LSTMs, the information from the past can be
stored within a hidden state that is combined with the latest input
at each time step, allowing long-term dependencies to be
captured. In spite of this, LSTMs are unable to capture the
history information far from the current time step, given that
the hidden state tends to focus on the more recent past, a finding
proven by Zhao et al. (2020) along with a statistical perspective.

To address this problem, several improved RNNs have been
proposed (Arpit et al., 2018; ElSaid et al., 2018; Abbasvandi and
Nasrabadi, 2019; Ororbia et al., 2019). For example, Gui et al.
(2019) introduced a novel reinforcement learning-based method
to model the dependency relationship between words by
computing the recurrent transition functions based on the skip
connections. Inspired by the attention mechanism, Ostmeyer and
Cowell (2019) developed a new kind of RNNmodel by calculating
a recurrent weighted average (RWA) over every past processing
step (not just the preceding step) to capture long-term
dependencies, which performs far better than an LSTM on
several challenging tasks. Based on the RWA, Maginnis and
Richemond (2017) further presented a recurrent discounted
attention (RDA) model by allowing it to discount the
attention applied to previous time steps in order to carry out
tasks requiring equal weighting over all information seen or tasks
in which new information is more important than old. Later,
DiPietro et al. (2017) introduced a mixed history RNN (MIST
RNN) model, a NARX (nonlinear auto-regressive with extra
inputs) RNN architecture that allows direct connections from
the very distant past, and showed that MIST RNNs can improve
performance substantially over LSTM on tasks requiring very
long-term dependencies. In addition, Zhao et al. (2020) proposed
the long memory filter that can be viewed as a soft attention
mechanism, and proved that long-term memory can be acquired
by using long memory filter. Very recently, Ma et al. (2021)
proposed an end-to-end time series classification architecture
called Echo Memory-Augmented Network (EMAN), and which
uses a learnable sparse attentionmechanism to capture important
historical information and incorporate it into the feature
representation of the current time step. However, how to well
balance the accuracy and efficiency by adding past time
information is still difficult to solve.

In this work, we propose a new algorithm called Strengthened
Skip RNN (SS-RNN) to enhance the long-termmemory ability by
using multiple historical information to predict the next time
information. To explore the effective method for the addition of
historical information, we design six models for SS-RNN to

include the past information into the current moment in
continuous and discontinuous ways, respectively. For each
way, the additional historical information can be directly
added or added by weight weighting and function mapping.
To test the SS-RNN with different models, five groups of
datasets (Arrhythmia dataset, Epilepsy dataset 1, Epilepsy
dataset 2, Breast cancer dataset, and Diabetes dataset) were
used, and we also calculated these indexes to show the
classification efficiency of our model: accuracy, precision,
recall, and F1-score. From the results in Results, it is observed
that Model A with skip � 3 has the greatest influence on the
network. The important thing is that our SS-RNN method can
effectively solve the problems of exploding gradient and
vanishing gradient (Gers et al., 2000; Song et al., 2018; Tao
et al., 2019; Das et al., 2020; Mayet et al., 2020).

THEORETICAL MODEL ANALYSIS AND
DATA COLLECTION

SS-RNN Model Analysis
As for RNNs, the classical LSTM cell is proposed to deal with the
problem of “long-term dependencies” by introducing a “gate”
into the cell to improve the remembering capacity of the standard
recurrent cell.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ft� σ(Wfhht−1 +Wfxxt + bf)
it � σ(Wihht−1 +Wixxt + bi)
c̃t � tanh(Wc̃hht−1 +Wc̃xxt + bc̃ )
ct � ft · ct−1 + it · c̃t
ot � σ(Wohht−1 +Woxxt + bo)
ht � ot · tanh(ct)

(1)

whereWfh,Wfx,Wih,Wix,Wc̃h,Wc̃x,Woh, andWox are weight
matrices and bf, bi, bc̃ , and bo are biases of LSTM to be learned
during training. The above variables can parameterize the
transformations of the input gate it, forget gate ft, and output
gate ot, respectively.σ in Eq. 1 is the sigmoid function and · stands
for element-wise multiplication. ct denotes the cell state of LSTM.
xt includes the inputs of LSTM cell unit, and ht is the hidden layer
(Wang et al., 2016; Kong et al., 2017; Yu et al., 2019). One can find
the mathematical models of the RNN and GRU in the
Supplementary Material.

Based on the LSTM model, we propose our SS-RNN model,
which better utilizes historical information and could enhance the
long-term memory of the model. The architecture of the SS-RNN
model is shown in Figure 1. It consists of a feature extractor and a
three-layer strengthened skip LSTM (SS-LSTM) network
(Figure 1A). The feature extractor is added here to process
the datasets with multiple features (not time series data) like
the Diabetes data and Breast cancer data used in this paper. It
extracts the features of multiple feature data. Then, the output of
the feature extractor is reshaped to a matrix of 32*4 for further
input into the SS-LSTM network (refer to Supplementary Figure
S55 and Supplementary Material). For standard time series
datasets, such as Arrhythmia dataset, Epilepsy dataset 1, and
Epilepsy dataset 2 used in this paper, we input them to SS-LSTM
directly for training. Figure 1B shows the structure of a neuron in
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the second layer SS-LSTM, and the information at moment of
t-skip (skip is positive integer) is used to strengthen the memory
of the moment t.

In comparison with the LSTM model, by adding
the information from time t − 1, the information from the time
of t-skip is also involved in the input at current time t (i.e.,xt). So,
the SS-RNN mathematical model can be written as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ft� σ(Wfskipht−skip +Wfhht−1 +Wfxxt + bf)
it � σ(Wiskipht−skip +Wihht−1 +Wixxt + bi)
c̃t � tanh(Wc̃skipht−skip +Wc̃hht−1 +Wc̃xxt + bc̃)
ct � ft · ct−1 + it · c̃t
ot � σ(Woskipht−skip +Wohht−1 +Woxxt + bo)
ht � ot · tanh(ct)

(2)

where Wfskip, Wiskip, Wc̃skip, and Woskip are weight matrices for
the corresponding inputs of the network activation functions, and
ht−skip is the output of the moment t-skip.

Obviously, from the above model, there are two important
issues to address: 1) information of which historical moments
should be involved into the current moment? 2) how should
the past information be involved into the current moment?
To answer these two questions, we enumerated all the
methods to add the historical information to the current
recurrent unit. These methods can be divided into
continuous addition and discontinuous addition. The last
information input consists of adding directly and weight
weighting and function mapping for calculation. There are
in total six models (Models A–F used in this work) for the
addition of historical information, shown in Figure 2, and the
detailed descriptions can be seen below (also, refer to the
Supplementary Material).

Model A The information of historical moments (t-skip) is
directly added to the current moment (t) and the method is
discontinuous (Figure 2A). The mathematical expressions of the
LSTM cell can be written as follows:

FIGURE 1 | (A) The architecture of the SS-RNN model for data classification. (B) The structure of a neuron in the second SS-LSTM layer with the information of
moment t-skip used to strengthen the long memory at the moment t. (C) The internal schematic diagram of an LSTM cell. (D) The structure of the second layer and the
third layer of the SS-LSTM network.
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FIGURE 2 | Structures of six models (e.g., skip � 3) used in the SS-RNN. (A)Model A, the method is discontinuous addition without weight weighting and function
mapping. (B)Model B, themethod is discontinuous addition with weight weighting and functionmapping. (C)Model C, themethod is continuous addition without weight
weighting and function mapping. (D)Model D, the method is continuous addition with weight weighting and function mapping. (E)Model E, add all the information of the
time by corresponding skip before; the method is discontinuous addition with weight weighting and function mapping. (F) Model F, add all the information of the
time by corresponding skip before; the method is discontinuous addition without weight weighting and function mapping.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ft � σ(Wfhht−1 +Wfxxt + bf)
it � σ(Wihht−1 +Wixxt + bi)
c̃t � tanh(Wc̃hht−1 +Wc̃xxt + bc̃)
ct � ft · ct−1 + it · c̃t
ot � σ(Wohht−1 +Woxxt + bo)
N � ot · tanh(ct)
ht � {N + ht−skip, if t � 1 + i × skip

N , if t ≠ 1 + i × skip

(3)

where skip is the order and i∈N+ (N+ is the set of positive
integers); the part marked in bold indicates that the original
formula has been changed. The order of Model A in Figure 2A is
3. For example, as shown in Figure 2A, when t � 4 with skip � 3,
the input of recurrent unit h4 comes from h1, h3 and x4, and h1 is
directly added to the original output of h4 to form a new output of
h4. Every three moments, additional historical information is
added to the current moment.

Model B Similar to Model A, but the past information is added
to the current moment after the transformation of the activation
function by a weight of Wn (Figure 2B). The corresponding
mathematical expressions can be rewritten as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M � Wfhht−1 +Wfskip · ht−skip

ft �
⎧⎨⎩σ(Wfxxt + bf +M),
σ(Wfhht−1 +Wfxx + bf),

if t � 1 + i × skip
if t ≠ 1 + i × skip

N � Wihht−1 +Wiskip · ht−skip
it � {σ(Wixxt + bi +N),

σ(Wihht−1 +Wixxt + bi),
if t � 1 + i × skip
if t ≠ 1 + i × skip

Q � Wc̃hht−1 +Wc̃skip · ht−skip

c̃t � {tanh(Wc̃xxt + bc̃ + Q),
tanh(Wc̃hht−1 +Wc̃xxt + bc̃),

ct � ft · ct−1 + it · c̃t

if t � 1 + i × skip
if t ≠ 1 + i × skip

R � Wohht−1 +Woskip · ht−skip
ot � {σ(Woxxt + bo + R),

σ(Wohht−1 +Woxxt + bo),
ht � ot · tanh(ct)

if t � 1 + i × skip
if t ≠ 1 + i × skip

(4)

When t � 4, the input of loop unit h4 comes from h1, h3, and x4.
After h1 is weighted, the function is transformed to add it to the
current moment and form the output of new h4.

Model C It continuously adds additional historical
information to the current moment in a direct addition
(Figure 2C). The corresponding mathematical expressions can
be rewritten as:

ht � ot · tanh(ct) + ht−skip (5)

The parts in bold represent changes to the original formula.
The other part is the basic formula of LSTM. For example, when
t � 4, the input of loop unit h4 comes from h1, h3, and x4, and h1 is
directly added to the current moment to form the output of new
h4. Model C can be regarded as the general form of Model A. In
both models, the additional historical information is calculated in
the same way. Model A adds historical information
intermittently, and Model C adds historical information
continuously where every current moment adds the historical

information of the moment of t-skip, and which leads to a greater
computational complexity for the model.

Model D It continuously adds historical information to the
current moment in the form of weight weighting and function
mapping (Figure 2D). The corresponding mathematical
expressions can be rewritten as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ft � σ(Wfhht−1 +Wfxxt +Wfskip · ht−skip + bf)
it � σ(Wihht−1 +Wixxt +Wiskip · ht−skip + bi)
c̃t � tanh(Wc̃hht−1 +Wc̃xxt +Wc̃skip · ht−skip + bc̃)
ct � ft · ct−1 + it · c̃t
ot � σ(Wohht−1 +Woxxt +Woskip · ht−skip + bo)
ht � ot · tanh(ct)

(6)

When t � 4, the input of loop unit h4 comes from h1, h3, and x4,
and h1 is directly added to the current moment to form
the output of new h4. Model D can be regarded as the
general form of Model B. In Model B and Model
D, additional historical information is calculated in the
same way, Model B adds historical information
intermittently, and Model D adds historical information
continuously.

Model E It intermittently adds additional historical
information to the current moment in the form of weight
weighting and function mapping (Figure 2E). The
corresponding mathematical expressions can be rewritten as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M � Wf 1ht−1 +Wf 2ht−2 +Wf 3ht−3
ft � σ(Wfxxt + bf +M)
N � Wi1ht−1 +Wi2ht−2 +Wi3ht−3
it � σ(Wixxt + bi + N)
Q � Wc̃1ht−1 +Wc̃2ht−2 +Wc̃3ht−3
c̃t � tanh(Wc̃xxt + bc̃ + Q)
ct � ft · ct−1 + it · c̃t
R � Wo1ht−1 +Wo2ht−2 +Wo3ht−3
ot � σ(Woxxt + bo + R)
ht � ot · tanh(ct)

(7)

When t � 4, the input of loop unit h4 comes from h1, h2, h3, and
x4, and h1 and h2 are added to the current moment through
weight weighting and function mapping and constitutes the
output of new h4.

Model F It intermittently adds historical information to
the current moment, and the historical information directly
adds to the current moment (Figure 2F). The corresponding
mathematical expressions after the improvement of LSTM can be
rewritten as:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
N � ot · tanh(ct)
ht �

⎧⎪⎨⎪⎩N + ∑skip
s�2

ht−s, if t � 1 + i × skip

N , if t ≠ 1 + i × skip

(8)

Data Collection
To test the effect of long-termmemory introduced in this work on
data classification, we first conduct experiments on three time
series datasets (i.e., Arrhythmia dataset, Epilepsy dataset 1, and
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Epilepsy dataset 2). In addition, due to the potential correlations
between the characteristics in some non-time-series biomedical
data, we also perform experiments on two disease datasets:
Diabetes dataset and Breast cancer dataset, to validate the
ability of the model on non-time series data classification.
Each dataset was split into training and testing set using the
standard split. Table 1 summarizes the details of the five datasets.

Arrhythmia dataset It contains 109,338 recordings of 48 half-
hour excerpts of two-channel ambulatory ECG, and which have
been divided into five classes based on the heart rate: one normal
and four abnormal.

Epilepsy datasets There are two well-known Epilepsy datasets
used in this work. One is from the Department of Epilepsy at the
University of Bonn, Germany, and which contains five categories
(A–E) of 100 single-channel 23.6-s segments of
electroencephalogram (EEG) signals (11,500 in total). The
other is from Children’s Hospital Boston including 361,377
EEG recordings from 22 epileptic patients and these
recordings have been grouped into two classes.

Diabetes dataset It contains 16 features, such as age, sex, and
polyuria, and the source is from the University of California at
Irvine Machine Learning Repository. This has been collected
using direct questionnaires from the patients at Sylhet Diabetes
Hospital in Sylhet, Bangladesh, and approved by a medical
doctor.

Breast cancer dataset It contains nine features from UC Irvine
Machine Learning Repository (see Supplementary Material).

The original five datasets are available through the websites
listed in Table 1, and we also rearranged them for the
convenience of use, and which can be found in the
Supplementary Material.

Evaluation Index
For the classification task, the models are evaluated by the
classification accuracy, precision, recall, and F1-score, which
are defined by the confusion matrix. It is one of the most
intuitive metrics used for evaluating the performance and
accuracy of the model in machine learning, especially used for
classification problems. The terms associated with confusion
matrix can be defined as follows: True positives (TP), when
the actual class of the data point is 1 and the predicted
outcome is also 1. True negatives (TN) are the cases when the

actual class of the given data point is 0 and the predicted result is
also 0. False positives (FP) are the cases when the actual class of
the data point is 0 and the predicted outcome is 1, which can be
assumed that the model predicts incorrectly as the actual class is
positive. False negatives (FN) are the cases when the actual class
should be 1 and the predicted outcome is 0, where the model
predicts incorrectly as negative. The forms are expressed as
follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Accuracy � TP + TN

TP + FP + FN + TN

Precision � TP

TP + FP

Recall � TP

TP + FN

F1 − score � 2 × Precision × Recall

Precision + Recall

(9)

RESULTS

The Workflow of the SS-RNN
In SS-RNN, the information of historical moments (e.g., t-skip)
can be added to the current moment (i.e., t) to accurately classify
sequential data with long-term dependences. To determine the
best methods of the past information addition and verify the
effectiveness of the SS-RNN model, we did six groups of
comparison experiments on five datasets, respectively. The six
different models (Models A–F) and five datasets are shown in
Theoretical Model Analysis and Data Collection. For each
experiment, there are three steps: data preprocessing, training,
and test.

Data preprocessing Outliers and missing values often appear
in the dataset, whereas the network model cannot process those
data samples. We first fill the missing values with the mean of the
variable and delete the samples with outliers, which can be judged
from the method of Anomaly Detection. The pre-processed time
series datasets (e.g., Arrhythmia and Epilepsy datasets in Table 1)
can be directly input into the SS-LSTM model. However, for the

TABLE 1 | Description of five datasets used in this work for data classification.

Datasets Source Size Traina Testa Classesb Sources

Arrhythmia
dataset

MIT-BIH Arrhythmia Database 109,338 87,470 21,868 5 https://www.physionet.org/content/mitdb/1.0.0/

Epilepsy dataset 1 Epileptologie Bonn 11,500 9,200 2,300 5 https://archive.ics.uci.edu/ml/datasets/Epileptic+Seizure+Recognition
Epilepsy dataset 2 CHB-MIT Scalp EEG

Database
361,377 289,102 72,275 2 https://physionet.org/content/chbmit/1.0.0/

Diabetes dataset UC Irvine Machine Learning
Repository

520 416 104 2 http://archive.ics.uci.edu/ml/datasets/
Early+stage+diabetes+risk+prediction+dataset

Breast cancer
dataset

UC Irvine Machine Learning
Repository

116 93 23 2 https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Coimbra

aSizes of the training and testing sets for the five datasets, respectively.
bNumber of classes of five datasets.
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non-time series data with multiple features and different
dimensions (e.g., Diabetes and Breast cancer datasets used in
this work), after the above preprocessing, it needs to be fed into
the feature extractor to obtain a new set of data and their
characters, which can be further transformed to a matrix of
32*4 as input into the SS-LSTM. Taking the Diabetes dataset
as an example, we also give detailed descriptions in the
Supplementary Material.

Training For each dataset (Table 1), the training set is used to
train the model. The optimized parameters of the network are as
follows: dimensions of the network are 128, 64, 32, and 16,
respectively (Figure 1A). For each dataset, the configuration of
the SS-LSTM model is implemented in Pytorch using Eqs 3–8,
and the dimensions for the three layers of the SS-LSTM model
are 18, 8, and 5, respectively. The activation function is tanh, and
the training algorithm is stochastic gradient descent with a
learning rate of 0.01 and a training epoch of 50. Here, we
used the cross-entropy loss as the objective function for
training the network:

Loss � −∑n
i�1

yi log(ŷi) (10)

where yi is the true value, and ŷi is corresponding predicted
value. The batch size of each dataset after fine-tuning is shown in
the Supplementary Material.

Test For each dataset, 25 different comparative experiments
were performed using different structures of LSTM. One of the
experiments adopted the ordinary LSTM, while the others used
SS-LSTM with different models (i.e., Models A–F in Figure 2).
For each model, the values of skip were set as 2, 3, 4 and 5,
respectively. Furthermore, we also used the other classical models
(LSTM, GRU and Bi-LSTM) to create the classification set for
three of the datasets (i.e., Arrhythmia, Epilepsy 1 and Diabetes),
and made a comparison with our SS-RNN model.

Testing the Models With Data
To test the effect of the addition of past information on the data
classification, we used our network with six different SS-LSTM
models (Models A–F; Figure 2) to classify the data for five
datasets (Table 1), respectively. For each SS-LSTM model,
different values of skip (e.g., skip � 2, 3, 4, 5) were used. As
shown in Supplementary Figures S1–S10, S12–S17, S19–S24,
S26–S31 in the Supplementary Material, the loss functions
calculated by Eq. 10 for the experiments in this work always
converged before 50 steps, indicating that 50 steps are sufficient
for the training and test processes.

Epilepsy Dataset 1
For the Epilepsy dataset, 19,200 samples were used to train our
SS-LSTM, which were further tested by the rest of the samples.
The loss functions show that Models A and C are more stable
than the others, and the loss value of the training set is consistent
with the test set, indicating that no overfitting has occurred
(Figure 3, Supplementary Figures S1–S4). As shown in
Figure 4, the value of loss function of Model A is also the
lowest among all models (Figure 4A), and the predicted
accuracy of Model A is ∼47%, which is not only higher than
that (∼37%) of the original LSTM, but also significantly better
than those predicted by SS-LSTM with other models (e.g.,
∼40% of Model C with skip � 4, i.e., Model C-4). The results
indicate that the past information (t-skip) directly added to the
current moment (t) could effectively improve the classified
accuracy on the Epilepsy dataset 1. However, Model C with
skip � 2 has the lowest predicted accuracy (∼24%), and which
could suggest that Model C is not suitable for processing this
dataset.

Diabetes Dataset
As shown in Figure 5A, the predicted accuracy of most SS-LSTM
models is much higher than that (∼61%) of the original LSTM

FIGURE 3 | The change curves of loss function between train set and test set with different skip value of Epilepsy dataset 1. e.g., Model A-2 is Model A (A) with
skip � 2, Model C-4 is Model C (B) with skip � 4.
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model for the Diabetes dataset, and Model A with skip � 3 has
the highest accuracy (∼98%). The accuracy of Model B is
significantly and positively correlated with the order. The
change curve of the loss function of each model in the
training process is also shown in the Supplementary
Material.

Arrhythmia Dataset and Other Datasets
For the Arrhythmia dataset, the long-term memory in Model A
can markedly improve the classification accuracy, e.g., the ACC
increases from ∼82 to 94%, as skip increasing from 2 to 5
(Figure 5B). Surprisingly, although the large values of skip can
also be helpful for Model F, the ACC of Model F with any skip
values is obviously lower than the original LSTM. Furthermore, in
the other models (i.e., Model B, Model D, and Model E), no
matter how the skip changes, the accuracy stays at the same level
(∼82%), which suggests that the addition of past information

could be a burden for the RNN and has no positive effect on data
classification (Figure 5B). The structure of Models B and D,
which both have a common characteristic that adopts the same
way of weight weighting and function mapping to put the
historical information added to the current time damage the
dynamic performance of the RNN. So, this is not an ideal method
for the Arrhythmia dataset.

We also have experiments on Epilepsy dataset 2 and Breast
cancer dataset, and the relevant results and analysis are shown in
the Supplementary Material.

Comparison Results With Other Models
Furthermore, we also made classifications for three of the datasets
(Arrhythmia dataset, Epilepsy dataset 1, and Diabetes dataset) by
using the classical networks such as LSTM, GRU, and Bi-LSTM
with default parameters of the torch.nn module, and compared
the results with that from the SS-RNN with Model A of skip � 3

FIGURE 4 | The loss functions (A) and predicted accuracy (B) of each model for classification of Epilepsy dataset 1. Original represents the results from the original
LSTM, and others represent the results from the SS-LSTM with different models, e.g., SkipA-2 is Model A with skip � 2 (Figure 2). For each violin in (A, B), the top of the
black rectangle is the three-quarter digit, the bottom is the quarter digit, the white dots are the mean, and the width of the orange area is the distribution of density.
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(Figure 6; Tables 2–4). We also show the simulation results of
other indexes with Model A of skip � 3 andModel C of skip � 5 in
the Supplementary Material.

From Figure 6, it shows that our SS-RNN method can
improve the classification accuracy as compared to the

classical methods. Also, from Tables 2–4, it can be found that
the other main indexes are almost improved. At the same time, we
compared our method with the latest methods RNN, RNN+GRU,
RNN+LSTM, and MCNN (Zhang et al., 2017; Singh et al., 2018)
with the same Arrhythmia dataset. The result is shown in Table 5,

FIGURE 5 | The predicted accuracy of each model for classification on Diabetes dataset (A), Arrhythmia dataset (B), Epilepsy dataset 2 (C) and Breast cancer
dataset (D).

FIGURE 6 | Comparisons between LSTM, GRU, Bi-LSTM, and our SS-RNN (SkipA-3). (A) Accuracy of the Arrhythmia dataset. (B) Accuracy of the Epilepsy
dataset 1. (C) Accuracy of the Diabetes dataset.
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which also indicates that our SS-RNN method can improve the
classification accuracy.

In fact, as a variant of LSTM, GRU reduces the forget gate and
input gate, and adds the update gate. GRU has simpler internal
structure and less parameters than LSTM, which reduces the risk
of overfitting. Although LSTM and GRU partially solve the
problem of the vanishing gradient of the RNN, the
information loss is still very severe in the propagation of a
very long distance. Bi-LSTM, namely, bi-directional LSTM,
does not change any internal structure of LSTM itself. LSTM
is applied twice in different directions, and then the LSTM results
obtained twice are spliced as the final output. For datasets with
both forward and backward dependencies, this method can
enhance the correlation between data and improve the
efficiency of the model. It is often used to capture some
specific pre or post features of language and syntax in natural

language processing. However, in biological datasets like ECG
and EEG, the progression and onset of diseases are irreversible, so
the relationship between data in the reverse time direction is not
of practical significance for disease classification. In addition,
excessive number of parameters may lead to overfitting in
network training, so the Bi-LSTM model is not suitable here.

The long-termmemory ability of LSTM and GRU is weak, and
with the increase of the time step, the farther away the memory,
the more information the model forgot and the less it
remembered. Our model has enhanced the information in
distant moments, which makes up for the defect of long-term
dependence in RNNs. Therefore, our SS-RNN method can
improve the precision, recall, F1-score, and finally improve the
classification accuracy of sequential data compared with other
models.

DISCUSSION

The performance of the loss function is different between five
datasets and six models. Model A has the best performance. In
Epilepsy dataset 1, Model A has the lowest loss function and the
highest accuracy of all models. In the Diabetes dataset, the loss
function of Model A-3 is the lowest and the accuracy is the
highest. In the Arrhythmia dataset, the performance of the loss
function of each model is different, and Model A has the best
performance, in which the loss function is negatively correlated
with the order and the accuracy is positively correlated with the
order. In Epilepsy dataset 2, overfitting occurred due to the
convergence effect of each model. Therefore, Model A did not
show good performance, Model C had the lowest loss function,
and Model D-2 had the highest accuracy. As for the Breast cancer
dataset, the training effect of the network is not optimal because
the data scale is too small, and the average loss of Model D-5 is the
lowest and the accuracy is the highest. There is a certain
relationship between order and accuracy in each model.

Furthermore, we calculated the average accuracy of the six
models by our method on the Arrhythmia dataset, Epilepsy
dataset 1, and Diabetes dataset. Comparing the results with the
original LSTM, GRU, and Bi-LSTM models, the average
accuracy is improved. It is shown in Figure 7. It means that
our SS-RNN method is generally useful. We also compared the
average accuracy of the six models by our method with original
LSTM with five groups of datasets. It can be found in
Supplementary Figure S54. According to the results in
Figure 7, it shows that Model A is the best with the highest
average accuracy among the six ways of adding historical
information. By comparing the differences of various adding
methodologies, it can be found that the discontinuous adding
method is better than the continuous adding method, while the
direct adding method is better than the method of weight
weighting and function mapping. It does not mean that
more historical information is better. Adding more historical
information did not improve the memory ability of the RNN.
Different data have different dependence intensity, so the same
model has different modeling performance for different
datasets.

TABLE 2 | Arrhythmia dataset classification comparison results with LSTM, GRU,
and Bi-LSTM.

Accuracy Precision Recall F1-score

LSTM 0.9181 0.9564 0.9380 0.9316
GRU 0.9380 0.9660 0.9380 0.9479
Bi-LSTM 0.9274 0.9596 0.9274 0.9384
SS-RNN(SkipA-3) 0.9524 0.9670 0.9524 0.9573

TABLE 3 | Epilepsy dataset 1 classification comparison results with LSTM, GRU,
and Bi-LSTM.

Accuracy Precision Recall F1-score

LSTM 0.7178 0.7190 0.7178 0.2506
GRU 0.7226 0.7240 0.7226 0.2540
Bi-LSTM 0.1926 0.0371 0.1926 0.3276
SS-RNN(SkipA-3) 0.7126 0.7115 0.7126 0.3834

TABLE 4 | Diabetes dataset classification comparison results with LSTM, GRU,
and Bi-LSTM.

Accuracy Precision Recall F1-score

LSTM 0.6154 0.3787 0.6154 0.4689
GRU 0.8556 0.8832 0.8558 0.8467
Bi-LSTM 0.6154 0.3787 0.6154 0.4689
SS-RNN(SkipA-3) 0.9808 0.9817 0.9808 0.9809

TABLE 5 | Arrhythmia dataset classification comparison results with RNN,
RNN+GRU, RNN+LSTM, and MCNN.

Accuracy Recall (Sensitivity)

RNN 0.8540 0.8060
RNN GRU 0.8250 0.7890
RNN LSTM 0.8810 0.9240
MCNN 0.9110 NAa

SS-RNN(SkipA-3) 0.9524 0.9524

aNA means that it is not available in the original paper.
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CONCLUSION

In order to effectively capture the long-term dependencies in
sequential data, we propose the SS-RNN, which allows the
historical information to add to the moment by different
methods. We designed six models with different skips to
simulate the possible patterns of the addition of past
information, and tested them on five disease-related datasets
with different sizes and data types. By comparing our method
with the original LSTM, GRU, and Bi-LSTM and the recent
methods RNN+GRU, RNN+LSTM, and MCNN, the
simulation results suggest that our method can significantly
improve the accuracy of sequential data classification.
Furthermore, the best method to add the past information
could be the method discontinuous addition without weight
weighting and function mapping. It can effectively solve the
problems of exploding gradient and vanishing gradient. There
is a certain correlation between the model performance and
the order.

The SS-RNN provides a new idea to improve the classification
accuracy of sequential data by optimizing the LSTM model.
Therefore, users can also optimize their own network model
by adding the SS-RNN module, which is of great significance for

the classification diagnosis and precision treatment of diseases.
Although the SS-RNN generally has a good classification effect
for large datasets, the performance of the model for small sample
datasets needs to be further improved. In the future, few-shot
learning could be further introduced to train the SS-RNN
network to improve the classification efficiency for small
sample datasets. The code of the SS-RNN model can be
available through github (https://github.com/WTU-RCNS-
Bioinformatics-Lab/SS-RNN).
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